Search results for: evaluation accuracy
9533 The Effect of Explicit Focus on Form on Second Language Learning Writing Performance
Authors: Keivan Seyyedi, Leila Esmaeilpour, Seyed Jamal Sadeghi
Abstract:
Investigating the effectiveness of explicit focus on form on the written performance of the EFL learners was the aim of this study. To provide empirical support for this study, sixty male English learners were selected and randomly assigned into two groups of explicit focus on form and meaning focused. Narrative writing was employed for data collection. To measure writing performance, participants were required to narrate a story. They were given 20 minutes to finish the task and were asked to write at least 150 words. The participants’ output was coded then analyzed utilizing Independent t-test for grammatical accuracy and fluency of learners’ performance. Results indicated that learners in explicit focus on form group appear to benefit from error correction and rule explanation as two pedagogical techniques of explicit focus on form with respect to accuracy, but regarding fluency they did not yield any significant differences compared to the participants of meaning-focused group.Keywords: explicit focus on form, rule explanation, accuracy, fluency
Procedia PDF Downloads 5189532 Optimized Real Ground Motion Scaling for Vulnerability Assessment of Building Considering the Spectral Uncertainty and Shape
Authors: Chen Bo, Wen Zengping
Abstract:
Based on the results of previous studies, we focus on the research of real ground motion selection and scaling method for structural performance-based seismic evaluation using nonlinear dynamic analysis. The input of earthquake ground motion should be determined appropriately to make them compatible with the site-specific hazard level considered. Thus, an optimized selection and scaling method are established including the use of not only Monte Carlo simulation method to create the stochastic simulation spectrum considering the multivariate lognormal distribution of target spectrum, but also a spectral shape parameter. Its applications in structural fragility analysis are demonstrated through case studies. Compared to the previous scheme with no consideration of the uncertainty of target spectrum, the method shown here can make sure that the selected records are in good agreement with the median value, standard deviation and spectral correction of the target spectrum, and greatly reveal the uncertainty feature of site-specific hazard level. Meanwhile, it can help improve computational efficiency and matching accuracy. Given the important infection of target spectrum’s uncertainty on structural seismic fragility analysis, this work can provide the reasonable and reliable basis for structural seismic evaluation under scenario earthquake environment.Keywords: ground motion selection, scaling method, seismic fragility analysis, spectral shape
Procedia PDF Downloads 2989531 Effects of Topic Familiarity on Linguistic Aspects in EFL Learners’ Writing Performance
Authors: Jeong-Won Lee, Kyeong-Ok Yoon
Abstract:
The current study aimed to investigate the effects of topic familiarity and language proficiency on linguistic aspects (lexical complexity, syntactic complexity, accuracy, and fluency) in EFL learners’ argumentative essays. For the study 64 college students were asked to write an argumentative essay for the two different topics (Driving and Smoking) chosen by the consideration of topic familiarity. The students were divided into two language proficiency groups (high-level and intermediate) according to their English writing proficiency. The findings of the study are as follows: 1) the participants of this study exhibited lower levels of lexical and syntactic complexity as well as accuracy when performing writing tasks with unfamiliar topics; and 2) they demonstrated the use of a wider range of vocabulary, and longer and more complex structures, and produced accurate and lengthier texts compared to their intermediate peers. Discussion and pedagogical implications for instruction of writing classes in EFL contexts were addressed.Keywords: topic familiarity, complexity, accuracy, fluency
Procedia PDF Downloads 549530 A Developmental Survey of Local Stereo Matching Algorithms
Authors: André Smith, Amr Abdel-Dayem
Abstract:
This paper presents an overview of the history and development of stereo matching algorithms. Details from its inception, up to relatively recent techniques are described, noting challenges that have been surmounted across these past decades. Different components of these are explored, though focus is directed towards the local matching techniques. While global approaches have existed for some time, and demonstrated greater accuracy than their counterparts, they are generally quite slow. Many strides have been made more recently, allowing local methods to catch up in terms of accuracy, without sacrificing the overall performance.Keywords: developmental survey, local stereo matching, rectification, stereo correspondence
Procedia PDF Downloads 2979529 The Combination Of Aortic Dissection Detection Risk Score (ADD-RS) With D-dimer As A Diagnostic Tool To Exclude The Diagnosis Of Acute Aortic Syndrome (AAS)
Authors: Mohamed Hamada Abdelkader Fayed
Abstract:
Background: To evaluate the diagnostic accuracy of (ADD-RS) with D-dimer as a screening test to exclude AAS. Methods: We conducted research for the studies examining the diagnostic accuracy of (ADD- RS)+ D-dimer to exclude the diagnosis of AAS, We searched MEDLINE, Embase, and Cochrane of Trials up to 31 December 2020. Results: We identified 3 studies using (ADD-RS) with D-dimer as a diagnostic tool for AAS, involving 3261 patients were AAS was diagnosed in 559(17.14%) patients. Overall results showed that the pooled sensitivities were 97.6 (95% CI 0.95.6, 99.6) at (ADD-RS)≤1(low risk group) with D-dimer and 97.4(95% CI 0.95.4,, 99.4) at (ADD-RS)>1(High risk group) with D-dimer., the failure rate was 0.48% at low risk group and 4.3% at high risk group respectively. Conclusions: (ADD-RS) with D-dimer was a useful screening test with high sensitivity to exclude Acute Aortic Syndrome.Keywords: aortic dissection detection risk score, D-dimer, acute aortic syndrome, diagnostic accuracy
Procedia PDF Downloads 2199528 Oil Producing Wells Using a Technique of Gas Lift on Prosper Software
Authors: Nikhil Yadav, Shubham Verma
Abstract:
Gas lift is a common technique used to optimize oil production in wells. Prosper software is a powerful tool for modeling and optimizing gas lift systems in oil wells. This review paper examines the effectiveness of Prosper software in optimizing gas lift systems in oil-producing wells. The literature review identified several studies that demonstrated the use of Prosper software to adjust injection rate, depth, and valve characteristics to optimize gas lift system performance. The results showed that Prosper software can significantly improve production rates and reduce operating costs in oil-producing wells. However, the accuracy of the model depends on the accuracy of the input data, and the cost of Prosper software can be high. Therefore, further research is needed to improve the accuracy of the model and evaluate the cost-effectiveness of using Prosper software in gas lift system optimizationKeywords: gas lift, prosper software, injection rate, operating costs, oil-producing wells
Procedia PDF Downloads 969527 A Study of Permission-Based Malware Detection Using Machine Learning
Authors: Ratun Rahman, Rafid Islam, Akin Ahmed, Kamrul Hasan, Hasan Mahmud
Abstract:
Malware is becoming more prevalent, and several threat categories have risen dramatically in recent years. This paper provides a bird's-eye view of the world of malware analysis. The efficiency of five different machine learning methods (Naive Bayes, K-Nearest Neighbor, Decision Tree, Random Forest, and TensorFlow Decision Forest) combined with features picked from the retrieval of Android permissions to categorize applications as harmful or benign is investigated in this study. The test set consists of 1,168 samples (among these android applications, 602 are malware and 566 are benign applications), each consisting of 948 features (permissions). Using the permission-based dataset, the machine learning algorithms then produce accuracy rates above 80%, except the Naive Bayes Algorithm with 65% accuracy. Of the considered algorithms TensorFlow Decision Forest performed the best with an accuracy of 90%.Keywords: android malware detection, machine learning, malware, malware analysis
Procedia PDF Downloads 1759526 Shark Detection and Classification with Deep Learning
Authors: Jeremy Jenrette, Z. Y. C. Liu, Pranav Chimote, Edward Fox, Trevor Hastie, Francesco Ferretti
Abstract:
Suitable shark conservation depends on well-informed population assessments. Direct methods such as scientific surveys and fisheries monitoring are adequate for defining population statuses, but species-specific indices of abundance and distribution coming from these sources are rare for most shark species. We can rapidly fill these information gaps by boosting media-based remote monitoring efforts with machine learning and automation. We created a database of shark images by sourcing 24,546 images covering 219 species of sharks from the web application spark pulse and the social network Instagram. We used object detection to extract shark features and inflate this database to 53,345 images. We packaged object-detection and image classification models into a Shark Detector bundle. We developed the Shark Detector to recognize and classify sharks from videos and images using transfer learning and convolutional neural networks (CNNs). We applied these models to common data-generation approaches of sharks: boosting training datasets, processing baited remote camera footage and online videos, and data-mining Instagram. We examined the accuracy of each model and tested genus and species prediction correctness as a result of training data quantity. The Shark Detector located sharks in baited remote footage and YouTube videos with an average accuracy of 89\%, and classified located subjects to the species level with 69\% accuracy (n =\ eight species). The Shark Detector sorted heterogeneous datasets of images sourced from Instagram with 91\% accuracy and classified species with 70\% accuracy (n =\ 17 species). Data-mining Instagram can inflate training datasets and increase the Shark Detector’s accuracy as well as facilitate archiving of historical and novel shark observations. Base accuracy of genus prediction was 68\% across 25 genera. The average base accuracy of species prediction within each genus class was 85\%. The Shark Detector can classify 45 species. All data-generation methods were processed without manual interaction. As media-based remote monitoring strives to dominate methods for observing sharks in nature, we developed an open-source Shark Detector to facilitate common identification applications. Prediction accuracy of the software pipeline increases as more images are added to the training dataset. We provide public access to the software on our GitHub page.Keywords: classification, data mining, Instagram, remote monitoring, sharks
Procedia PDF Downloads 1259525 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 1009524 Cement Mortar Lining as a Potential Source of Water Contamination
Authors: M. Zielina, W. Dabrowski, E. Radziszewska-Zielina
Abstract:
Several different cements have been tested to evaluate their potential to leach calcium, chromium and aluminum ions in soft water environment. The research allows comparing some different cements in order to the potential risk of water contamination. This can be done only in the same environment. To reach the results in reasonable short time intervals and to make heavy metals measurements with high accuracy, demineralized water was used. In this case the conditions of experiments are far away from the water supply practice, but short time experiments and measurably high concentrations of elements in the water solution are an important advantage. Moreover leaching mechanisms can be recognized, our experiments reported here refer to this kind of cements evaluation.Keywords: concrete corrosion, hydrogen sulfide, odors, reinforced concrete sewers, sewerage
Procedia PDF Downloads 2109523 Prioritizing The Evaluation factors of Hospital Information System with The Analytical Hierarchy Process
Authors: F.Sadoughi, A. Sarsarshahi, L, Eerfannia, S.M.A. Khatami
Abstract:
Hospital information systems with lots of ability would lead to health care quality improvement. Evaluation of this system has done according different method and criteria. The main goal of present study is to prioritize the most important factors which are influence these systems evaluation. At the first step, according relevant literature, three main factor and 29 subfactors extracted. Then, study framework was designed. Based on analytical hierarchical process (AHP), 28 paired comparisons with Saaty range, in a questionnaire format obtained. Questionnaires were filled by 10 experts in health information management and medical informatics field. Human factors with weight of 0.55 were ranked as the most important. Organization (0.25) and technology (0.14) were in next place. It seems MADM methods such as AHP have enough potential to use in health research and provide positive opportunities for health domain decision makers.Keywords: Analytical hierarchy process, Multiple criteria decision-making (MCDM), Hospital information system, Evaluation factors
Procedia PDF Downloads 4569522 Implementation of the Recursive Formula for Evaluation of the Strength of Daniels' Bundle
Authors: Vaclav Sadilek, Miroslav Vorechovsky
Abstract:
The paper deals with the classical fiber bundle model of equal load sharing, sometimes referred to as the Daniels' bundle or the democratic bundle. Daniels formulated a multidimensional integral and also a recursive formula for evaluation of the strength cumulative distribution function. This paper describes three algorithms for evaluation of the recursive formula and also their implementations with source codes in high-level programming language Python. A comparison of the algorithms are provided with respect to execution time. Analysis of orders of magnitudes of addends in the recursion is also provided.Keywords: equal load sharing, mpmath, python, strength of Daniels' bundle
Procedia PDF Downloads 4079521 The Effect of Information vs. Reasoning Gap Tasks on the Frequency of Conversational Strategies and Accuracy in Speaking among Iranian Intermediate EFL Learners
Authors: Hooriya Sadr Dadras, Shiva Seyed Erfani
Abstract:
Speaking skills merit meticulous attention both on the side of the learners and the teachers. In particular, accuracy is a critical component to guarantee the messages to be conveyed through conversation because a wrongful change may adversely alter the content and purpose of the talk. Different types of tasks have served teachers to meet numerous educational objectives. Besides, negotiation of meaning and the use of different strategies have been areas of concern in socio-cultural theories of SLA. Negotiation of meaning is among the conversational processes which have a crucial role in facilitating the understanding and expression of meaning in a given second language. Conversational strategies are used during interaction when there is a breakdown in communication that leads to the interlocutor attempting to remedy the gap through talk. Therefore, this study was an attempt to investigate if there was any significant difference between the effect of reasoning gap tasks and information gap tasks on the frequency of conversational strategies used in negotiation of meaning in classrooms on one hand, and on the accuracy in speaking of Iranian intermediate EFL learners on the other. After a pilot study to check the practicality of the treatments, at the outset of the main study, the Preliminary English Test was administered to ensure the homogeneity of 87 out of 107 participants who attended the intact classes of a 15 session term in one control and two experimental groups. Also, speaking sections of PET were used as pretest and posttest to examine their speaking accuracy. The tests were recorded and transcribed to estimate the percentage of the number of the clauses with no grammatical errors in the total produced clauses to measure the speaking accuracy. In all groups, the grammatical points of accuracy were instructed and the use of conversational strategies was practiced. Then, different kinds of reasoning gap tasks (matchmaking, deciding on the course of action, and working out a time table) and information gap tasks (restoring an incomplete chart, spot the differences, arranging sentences into stories, and guessing game) were manipulated in experimental groups during treatment sessions, and the students were required to practice conversational strategies when doing speaking tasks. The conversations throughout the terms were recorded and transcribed to count the frequency of the conversational strategies used in all groups. The results of statistical analysis demonstrated that applying both the reasoning gap tasks and information gap tasks significantly affected the frequency of conversational strategies through negotiation. In the face of the improvements, the reasoning gap tasks had a more significant impact on encouraging the negotiation of meaning and increasing the number of conversational frequencies every session. The findings also indicated both task types could help learners significantly improve their speaking accuracy. Here, applying the reasoning gap tasks was more effective than the information gap tasks in improving the level of learners’ speaking accuracy.Keywords: accuracy in speaking, conversational strategies, information gap tasks, reasoning gap tasks
Procedia PDF Downloads 3139520 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 1379519 Study on Ecological Water Demand Evaluation of Typical Mountainous Rivers in Zhejiang Province: Taking Kaihua River as an Example
Authors: Kaiping Xu, Aiju You, Lei Hua
Abstract:
In view of the ecological environmental problems and protection needs of mountainous rivers in Zhejiang province, a suitable ecological water demand evaluation system was established based on investigation and monitoring. Taking the Kaihua river as an example, the research on ecological water demand and the current situation evaluation were carried out. The main types of ecological water demand in Majin River are basic ecological flow and lake wetland outside the river, and instream flow and water demands for water quality in Zhongcun river. In the wet season, each ecological water demand is 18.05m3/s and 2.56m3 / s, and in the dry season is 3.00m3/s and 0.61m3/s. Three indexes of flow, duration and occurrence time are used to evaluate the ecological water demand. The degree of ecological water demand in the past three years is low level of satisfaction. Meanwhile, the existing problems are analyzed, and put forward reasonable and operable safeguards and suggestions.Keywords: Zhejiang province, mountainous river, ecological water demand, Kaihua river, evaluation
Procedia PDF Downloads 2479518 Evaluation of the Digitalization in Graphic Design in Turkey
Authors: Veysel Seker
Abstract:
Graphic designing and virtual reality have been affected by digital development and technological development for the last decades. This study aims to compare and evaluate digitalization and virtual reality evaluation in traditional and classical methods of the graphic designing sector in Turkey. The qualitative and quantitative studies and research were discussed and identified according to the evaluated results of the literature surveys. Moreover, the study showed that the competency gap between graphic design schools and the field should be determined and well-studied. The competencies of traditional graphic designers will have a big challenge for the purpose of the transition into the developed and evaluated digital graphic design world.Keywords: digitalization, evaluation, graphic designing, virtual reality
Procedia PDF Downloads 1479517 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images
Authors: Ravija Gunawardana, Banuka Athuraliya
Abstract:
Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine
Procedia PDF Downloads 1609516 Impact of a Virtual Reality-Training on Real-World Hockey Skill: An Intervention Trial
Authors: Matthew Buns
Abstract:
Training specificity is imperative for successful performance of the elite athlete. Virtual reality (VR) has been successfully applied to a broad range of training domains. However, to date there is little research investigating the use of VR for sport training. The purpose of this study was to address the question of whether virtual reality (VR) training can improve real world hockey shooting performance. Twenty four volunteers were recruited and randomly selected to complete the virtual training intervention or enter a control group with no training. Four primary types of data were collected: 1) participant’s experience with video games and hockey, 2) participant’s motivation toward video game use, 3) participants technical performance on real-world hockey, and 4) participant’s technical performance in virtual hockey. One-way multivariate analysis of variance (ANOVA) indicated that that the intervention group demonstrated significantly more real-world hockey accuracy [F(1,24) =15.43, p <.01, E.S. = 0.56] while shooting on goal than their control group counterparts [intervention M accuracy = 54.17%, SD=12.38, control M accuracy = 46.76%, SD=13.45]. One-way multivariate analysis of variance (MANOVA) repeated measures indicated significantly higher outcome scores on real-world accuracy (35.42% versus 54.17%; ES = 1.52) and velocity (51.10 mph versus 65.50 mph; ES=0.86) of hockey shooting on goal. This research supports the idea that virtual training is an effective tool for increasing real-world hockey skill.Keywords: virtual training, hockey skills, video game, esports
Procedia PDF Downloads 1509515 Using of Particle Swarm Optimization for Loss Minimization of Vector-Controlled Induction Motors
Authors: V. Rashtchi, H. Bizhani, F. R. Tatari
Abstract:
This paper presents a new online loss minimization for an induction motor drive. Among the many loss minimization algorithms (LMAs) for an induction motor, a particle swarm optimization (PSO) has the advantages of fast response and high accuracy. However, the performance of the PSO and other optimization algorithms depend on the accuracy of the modeling of the motor drive and losses. In the development of the loss model, there is always a trade off between accuracy and complexity. This paper presents a new online optimization to determine an optimum flux level for the efficiency optimization of the vector-controlled induction motor drive. An induction motor (IM) model in d-q coordinates is referenced to the rotor magnetizing current. This transformation results in no leakage inductance on the rotor side, thus the decomposition into d-q components in the steady-state motor model can be utilized in deriving the motor loss model. The suggested algorithm is simple for implementation.Keywords: induction machine, loss minimization, magnetizing current, particle swarm optimization
Procedia PDF Downloads 6389514 A Proposal for Developing a Post Occupancy Evaluation Sustainability Assessment Tool for Refurbished Historic Government Buildings
Authors: Hasnizan Aksah, Adi Irfan Che Ani
Abstract:
Refurbished historic government buildings should perform as intended to support the organization’s goals that enhance occupant satisfaction. However, these buildings may have issues associated with functional performance evaluation. The aim of this study is to develop a Post Occupancy Evaluation (POE) sustainability assessment tool for functional performance evaluation of refurbished historic government buildings. Developing an assessment tool requires a strategic methodology for a logical and cohesive tool that incorporating relevant theories and practical experiences. In this study, mixed method approaches use to collect all necessary data to achieve the objectives of this study. The design of sampling involves are interviews and survey questionnaires to relevant professionals in order to evaluate the criteria and problem encircled in functional performance evaluation. Then, the involvement of expert panels is required in establishing the assessment tool. During the process of investigation on the functional performance criteria, it was discovered that is seen to be critical in aspects of comfort, safety, and services. The proposed assessment tool has a significant role in providing opportunities for the improvement of building performance especially on functional performance for the future historic government building refurbishment project. It is hoped that the tool developed from this study will give benefits to related professionals, public agencies, local municipality, and relevant interested parties in historic building management.Keywords: refurbished historic government buildings, functional performance, Post Occupancy Evaluation, sustainability
Procedia PDF Downloads 2119513 Insight-Based Evaluation of a Map-Based Dashboard
Authors: Anna Fredriksson Häägg, Charlotte Weil, Niklas Rönnberg
Abstract:
Map-based dashboards are used for data exploration every day. The present study used an insight-based methodology for evaluating a map-based dashboard that presents research findings of water management and ecosystem services in the Amazon. In addition to analyzing the insights gained from using the dashboard, the evaluation method was compared to standardized questionnaires and task-based evaluations. The result suggests that the dashboard enabled the participants to gain domain-relevant, complex insights regarding the topic presented. Furthermore, the insight-based analysis highlighted unexpected insights and hypotheses regarding causes and potential adaptation strategies for remediation. Although time- and resource-consuming, the insight-based methodology was shown to have the potential of thoroughly analyzing how end users can utilize map-based dashboards for data exploration and decision making. Finally, the insight-based methodology is argued to evaluate tools in scenarios more similar to real-life usage compared to task-based evaluation methods.Keywords: visual analytics, dashboard, insight-based evaluation, geographic visualization
Procedia PDF Downloads 1199512 Evaluation of External Costs of Traffic Accident in Slovak Republic
Authors: Anna Dolinayova, Jozef Danis, Juraj Camaj
Abstract:
The report deals with comparison of traffic accidents in Slovak republic in road and rail transport since year 2009 until 2014, with evaluation of external costs and consequently with the possibilities of their internalization. The results of road traffic accidents analysis are realized in line with after-effects they have caused; in line with main cause, place of origin (within or out of town) and in accordance to age of people they were killed or hard, eventually easy injured in traffic accidents. Evaluation of individual after-effects is carried in terms of probability of traffic accidents occurrence.Keywords: external costs, traffic accident, rail transport, road transport
Procedia PDF Downloads 5999511 Performance Evaluation of Acoustic-Spectrographic Voice Identification Method in Native and Non-Native Speech
Authors: E. Krasnova, E. Bulgakova, V. Shchemelinin
Abstract:
The paper deals with acoustic-spectrographic voice identification method in terms of its performance in non-native language speech. Performance evaluation is conducted by comparing the result of the analysis of recordings containing native language speech with recordings that contain foreign language speech. Our research is based on Tajik and Russian speech of Tajik native speakers due to the character of the criminal situation with drug trafficking. We propose a pilot experiment that represents a primary attempt enter the field.Keywords: speaker identification, acoustic-spectrographic method, non-native speech, performance evaluation
Procedia PDF Downloads 4489510 Verification of Dosimetric Commissioning Accuracy of Flattening Filter Free Intensity Modulated Radiation Therapy and Volumetric Modulated Therapy Delivery Using Task Group 119 Guidelines
Authors: Arunai Nambi Raj N., Kaviarasu Karunakaran, Krishnamurthy K.
Abstract:
The purpose of this study was to create American Association of Physicist in Medicine (AAPM) Task Group 119 (TG 119) benchmark plans for flattening filter free beam (FFF) deliveries of intensity modulated radiation therapy (IMRT) and volumetric arc therapy (VMAT) in the Eclipse treatment planning system. The planning data were compared with the flattening filter (FF) IMRT & VMAT plan data to verify the dosimetric commissioning accuracy of FFF deliveries. AAPM TG 119 proposed a set of test cases called multi-target, mock prostate, mock head and neck, and C-shape to ascertain the overall accuracy of IMRT planning, measurement, and analysis. We used these test cases to investigate the performance of the Eclipse Treatment planning system for the flattening filter free beam deliveries. For these test cases, we generated two sets of treatment plans, the first plan using 7–9 IMRT fields and a second plan utilizing two arc VMAT technique for both the beam deliveries (6 MV FF, 6MV FFF, 10 MV FF and 10 MV FFF). The planning objectives and dose were set as described in TG 119. The dose prescriptions for multi-target, mock prostate, mock head and neck, and C-shape were taken as 50, 75.6, 50 and 50 Gy, respectively. The point dose (mean dose to the contoured chamber volume) at the specified positions/locations was measured using compact (CC‑13) ion chamber. The composite planar dose and per-field gamma analysis were measured with IMatriXX Evaluation 2D array with OmniPro IMRT Software (version 1.7b). FFF beam deliveries of IMRT and VMAT plans were comparable to flattening filter beam deliveries. Our planning and quality assurance results matched with TG 119 data. AAPM TG 119 test cases are useful to generate FFF benchmark plans. From the obtained data in this study, we conclude that the commissioning of FFF IMRT and FFF VMAT delivery were found within the limits of TG-119 and the performance of the Eclipse treatment planning system for FFF plans were found satisfactorily.Keywords: flattening filter free beams, intensity modulated radiation therapy, task group 119, volumetric modulated arc therapy
Procedia PDF Downloads 1489509 Neural Network-based Risk Detection for Dyslexia and Dysgraphia in Sinhala Language Speaking Children
Authors: Budhvin T. Withana, Sulochana Rupasinghe
Abstract:
The problem of Dyslexia and Dysgraphia, two learning disabilities that affect reading and writing abilities, respectively, is a major concern for the educational system. Due to the complexity and uniqueness of the Sinhala language, these conditions are especially difficult for children who speak it. The traditional risk detection methods for Dyslexia and Dysgraphia frequently rely on subjective assessments, making it difficult to cover a wide range of risk detection and time-consuming. As a result, diagnoses may be delayed and opportunities for early intervention may be lost. The project was approached by developing a hybrid model that utilized various deep learning techniques for detecting risk of Dyslexia and Dysgraphia. Specifically, Resnet50, VGG16 and YOLOv8 were integrated to detect the handwriting issues, and their outputs were fed into an MLP model along with several other input data. The hyperparameters of the MLP model were fine-tuned using Grid Search CV, which allowed for the optimal values to be identified for the model. This approach proved to be effective in accurately predicting the risk of Dyslexia and Dysgraphia, providing a valuable tool for early detection and intervention of these conditions. The Resnet50 model achieved an accuracy of 0.9804 on the training data and 0.9653 on the validation data. The VGG16 model achieved an accuracy of 0.9991 on the training data and 0.9891 on the validation data. The MLP model achieved an impressive training accuracy of 0.99918 and a testing accuracy of 0.99223, with a loss of 0.01371. These results demonstrate that the proposed hybrid model achieved a high level of accuracy in predicting the risk of Dyslexia and Dysgraphia.Keywords: neural networks, risk detection system, Dyslexia, Dysgraphia, deep learning, learning disabilities, data science
Procedia PDF Downloads 1269508 Developing a Web-Based Tender Evaluation System Based on Fuzzy Multi-Attributes Group Decision Making for Nigerian Public Sector Tendering
Authors: Bello Abdullahi, Yahaya M. Ibrahim, Ahmed D. Ibrahim, Kabir Bala
Abstract:
Public sector tendering has traditionally been conducted using manual paper-based processes which are known to be inefficient, less transparent and more prone to manipulations and errors. The advent of the Internet and the World Wide Web has led to the development of numerous e-Tendering systems that addressed some of the problems associated with the manual paper-based tendering system. However, most of these systems rarely support the evaluation of tenders and where they do it is mostly based on the single decision maker which is not suitable in public sector tendering, where for the sake of objectivity, transparency, and fairness, it is required that the evaluation is conducted through a tender evaluation committee. Currently, in Nigeria, the public tendering process in general and the evaluation of tenders, in particular, are largely conducted using manual paper-based processes. Automating these manual-based processes to digital-based processes can help in enhancing the proficiency of public sector tendering in Nigeria. This paper is part of a larger study to develop an electronic tendering system that supports the whole tendering lifecycle based on Nigerian procurement law. Specifically, this paper presents the design and implementation of part of the system that supports group evaluation of tenders based on a technique called fuzzy multi-attributes group decision making. The system was developed using Object-Oriented methodologies and Unified Modelling Language and hypothetically applied in the evaluation of technical and financial proposals submitted by bidders. The system was validated by professionals with extensive experiences in public sector procurement. The results of the validation showed that the system called NPS-eTender has an average rating of 74% with respect to correct and accurate modelling of the existing manual tendering domain and an average rating of 67.6% with respect to its potential to enhance the proficiency of public sector tendering in Nigeria. Thus, based on the results of the validation, the automation of the evaluation process to support tender evaluation committee is achievable and can lead to a more proficient public sector tendering system.Keywords: e-Tendering, e-Procurement, group decision making, tender evaluation, tender evaluation committee, UML, object-oriented methodologies, system development
Procedia PDF Downloads 2679507 Similar Script Character Recognition on Kannada and Telugu
Authors: Gurukiran Veerapur, Nytik Birudavolu, Seetharam U. N., Chandravva Hebbi, R. Praneeth Reddy
Abstract:
This work presents a robust approach for the recognition of characters in Telugu and Kannada, two South Indian scripts with structural similarities in characters. To recognize the characters exhaustive datasets are required, but there are only a few publicly available datasets. As a result, we decided to create a dataset for one language (source language),train the model with it, and then test it with the target language.Telugu is the target language in this work, whereas Kannada is the source language. The suggested method makes use of Canny edge features to increase character identification accuracy on pictures with noise and different lighting. A dataset of 45,150 images containing printed Kannada characters was created. The Nudi software was used to automatically generate printed Kannada characters with different writing styles and variations. Manual labelling was employed to ensure the accuracy of the character labels. The deep learning models like CNN (Convolutional Neural Network) and Visual Attention neural network (VAN) are used to experiment with the dataset. A Visual Attention neural network (VAN) architecture was adopted, incorporating additional channels for Canny edge features as the results obtained were good with this approach. The model's accuracy on the combined Telugu and Kannada test dataset was an outstanding 97.3%. Performance was better with Canny edge characteristics applied than with a model that solely used the original grayscale images. The accuracy of the model was found to be 80.11% for Telugu characters and 98.01% for Kannada words when it was tested with these languages. This model, which makes use of cutting-edge machine learning techniques, shows excellent accuracy when identifying and categorizing characters from these scripts.Keywords: base characters, modifiers, guninthalu, aksharas, vattakshara, VAN
Procedia PDF Downloads 559506 A Comparison of Clinical and Pathological TNM Staging in a COVID-19 Era
Authors: Sophie Mills, Leila L. Touil, Richard Sisson
Abstract:
Introduction: The TNM classification is the global standard for the staging of head and neck cancers. Accurate clinical-radiological staging of tumours (cTNM) is essential to predict prognosis, facilitate surgical planning and determine the need for other therapeutic modalities. This study aims to determine the accuracy of pre-operative cTNM staging using pathological TNM (pTNM) and consider possible causes of TNM stage migration, noting any variation throughout the COVID-19 pandemic. Materials and Methods: A retrospective cohort study examined records of patients with surgical management of head and neck cancer at a tertiary head and neck centre from November 2019 to November 2020. Data was extracted from Somerset Cancer Registry and histopathology reports. cTNM and pTNM were compared before and during the first wave of COVID-19, as well as with other potential prognostic factors such as tumour site and tumour stage. Results: 119 cases were identified, of which 52.1% (n=62) were male, and 47.9% (n=57) were female with a mean age of 67 years. Clinical and pathological staging differed in 54.6% (n=65) of cases. Of the patients with stage migration, 40.4% (n=23) were up-staged and 59.6% (n=34) were down-staged compared with pTNM. There was no significant difference in the accuracy of cTNM staging compared with age, sex, or tumour site. There was a statistically highly significant (p < 0.001) correlation between cTNM accuracy and tumour stage, with the accuracy of cTNM staging decreasing with the advancement of pTNM staging. No statistically significant variation was noted between patients staged prior to and during COVID-19. Conclusions: Discrepancies in staging can impact management and outcomes for patients. This study found that the higher the pTNM, the more likely stage migration will occur. These findings are concordant with the oncology literature, which highlights the need to improve the accuracy of cTNM staging for more advanced tumours.Keywords: COVID-19, head and neck cancer, stage migration, TNM staging
Procedia PDF Downloads 1139505 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 779504 Proposal Evaluation of Critical Success Factors (CSF) in Lean Manufacturing Projects
Authors: Guilherme Gorgulho, Carlos Roberto Camello Lima
Abstract:
Critical success factors (CSF) are used to design the practice of project management that can lead directly or indirectly to the success of the project. This management includes many elements that have to be synchronized in order to ensure the project on-time delivery, quality and the lowest possible cost. The objective of this work is to develop a proposal for evaluation of the FCS in lean manufacturing projects, and apply the evaluation in a pilot project. The results show that the use of continuous improvement programs in organizations brings benefits as the process cost reduction and improve productivity.Keywords: continuous improvement, critical success factors (csf), lean thinking, project management
Procedia PDF Downloads 368