Search results for: pseudo-operational matrix of integration
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4825

Search results for: pseudo-operational matrix of integration

1585 Challenges of Sustainable Development of Small and Medium-Sized Enterprises in Georgia

Authors: Kharaishvili Eteri

Abstract:

The article highlights the importance of small and medium-sized enterprises in achieving the goals of sustainable development of the economy and increasing the well-being of the population. The opinion is put forward that it is necessary to adapt the activities of small and medium-sized firms in Georgia to sustainable business models. Therefore, it is important to identify the challenges that will ensure compliance with the goals and requirements of sustainable development of small and mediumsized enterprises. Objectives. The goal of the study is to reveal the challenges of sustainable development in small and medium-sized enterprises in Georgia and to develop recommendations for strategic development opportunities. Methodologies The challenges of sustainable development of small and medium-sized enterprises are investigated with the following methodology: bibliographic research of scientific works and reports of organizations is carried out; Based on the grouping of sustainable development goals, the performance indicators of these goals are studied; Differences with respect to the corresponding indicators of European countries are determined by the comparison method; The matrix scheme establishes the conditions and tools for sustainable development; Challenges of sustainable development are identified by factor analysis. Contributions Trends in the sustainable development of small and medium-sized enterprises are studied from the point of view of economic, social and environmental factors; To ensure sustainability, the conditions and tools for sustainable development are established (certified supply chains and global markets, allocation of financial resources necessary for sustainable development, proper public procurement, highly qualified workforce, etc.); Several main challenges have been identified in the sustainable development of small and medium-sized enterprises, including: limited internal resources; Institutional factors, especially vague and imperfect regulations, bureaucracy; low level of investments; Low level of qualification of human capital and others.

Keywords: small and medium-sized enterprises, sustainable development, conditions of sustainable development, strategic directions of sustainable development.

Procedia PDF Downloads 107
1584 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties

Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa

Abstract:

Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensing

Keywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing

Procedia PDF Downloads 124
1583 Research on “Three Ports in One” Comprehensive Transportation System of Sea, Land and Airport in Nantong City under the Background of a New Round of Territorial Space Planning

Authors: Ying Sun, Yuxuan Lei

Abstract:

Based on the analysis of the current situation of Nantong's comprehensive transportation system, the interactive relationship between the transportation system and the economy and society is clarified, and then the development strategy for the planning and implementation of the "three ports in one" comprehensive transportation system of ocean, land, and airport is proposed for this round of territorial spatial planning. The research findings are as follows: (1) The comprehensive transportation network system of Nantong City is beginning to take shape, but the lack of a unified and complete system planning makes it difficult to establish a "multi-port integration" pattern with transportation hubs. (2) At the Yangtze River Delta level and Nantong City level, a connected transport node integrating ocean, land, and airport should be built in the transportation construction planning to effectively meet the guidance of the overall territorial space planning of Nantong City. (3) Nantong's comprehensive transportation system and economic society have experienced three interactive development relations in different stages: mutual promotion, geographical separation, and high-level driving. Therefore, the current planning of Nantong's comprehensive transportation system needs to be optimized. The four levels of Nantong city, Shanghai metropolitan area, Yangtze River Delta, and each district, county, and city should be comprehensively considered, and the four development strategies of accelerating construction, dislocation development, active docking, and innovative implementation should be adopted.

Keywords: master plan for territorial space, Integrated transportation system, Nantong, sea, land and air, "Three ports in one"

Procedia PDF Downloads 146
1582 Using Building Information Modelling to Mitigate Risks Associated with Health and Safety in the Construction and Maintenance of Infrastructure Assets

Authors: Mohammed Muzafar, Darshan Ruikar

Abstract:

BIM, an acronym for Building Information Modelling relates to the practice of creating a computer generated model which is capable of displaying the planning, design, construction and operation of a structure. The resulting simulation is a data-rich, object-oriented, intelligent and parametric digital representation of the facility, from which views and data, appropriate to various users needs can be extracted and analysed to generate information that can be used to make decisions and to improve the process of delivering the facility. BIM also refers to a shift in culture that will influence the way the built environment and infrastructure operates and how it is delivered. One of the main issues of concern in the construction industry at present in the UK is its record on Health & Safety (H&S). It is, therefore, important that new technologies such as BIM are developed to help improve the quality of health and safety. Historically the H&S record of the construction industry in the UK is relatively poor as compared to the manufacturing industries. BIM and the digital environment it operates within now allow us to use design and construction data in a more intelligent way. It allows data generated by the design process to be re-purposed and contribute to improving efficiencies in other areas of a project. This evolutionary step in design is not only creating exciting opportunities for the designers themselves but it is also creating opportunity for every stakeholder in any given project. From designers, engineers, contractors through to H&S managers, BIM is accelerating a cultural change. The paper introduces the concept behind a research project that mitigates the H&S risks associated with the construction, operation and maintenance of assets through the adoption of BIM.

Keywords: building information modeling, BIM levels, health, safety, integration

Procedia PDF Downloads 255
1581 Characteristics and Flight Test Analysis of a Fixed-Wing UAV with Hover Capability

Authors: Ferit Çakıcı, M. Kemal Leblebicioğlu

Abstract:

In this study, characteristics and flight test analysis of a fixed-wing unmanned aerial vehicle (UAV) with hover capability is analyzed. The base platform is chosen as a conventional airplane with throttle, ailerons, elevator and rudder control surfaces, that inherently allows level flight. Then this aircraft is mechanically modified by the integration of vertical propellers as in multi rotors in order to provide hover capability. The aircraft is modeled using basic aerodynamical principles and linear models are constructed utilizing small perturbation theory for trim conditions. Flight characteristics are analyzed by benefiting from linear control theory’s state space approach. Distinctive features of the aircraft are discussed based on analysis results with comparison to conventional aircraft platform types. A hybrid control system is proposed in order to reveal unique flight characteristics. The main approach includes design of different controllers for different modes of operation and a hand-over logic that makes flight in an enlarged flight envelope viable. Simulation tests are performed on mathematical models that verify asserted algorithms. Flight tests conducted in real world revealed the applicability of the proposed methods in exploiting fixed-wing and rotary wing characteristics of the aircraft, which provide agility, survivability and functionality.

Keywords: flight test, flight characteristics, hybrid aircraft, unmanned aerial vehicle

Procedia PDF Downloads 329
1580 Towards Printed Green Time-Temperature Indicator

Authors: Mariia Zhuldybina, Ahmed Moulay, Mirko Torres, Mike Rozel, Ngoc-Duc Trinh, Chloé Bois

Abstract:

To reduce the global waste of perishable goods, a solution for monitoring and traceability of their environmental conditions is needed. Temperature is the most controllable environmental parameter determining the kinetics of physical, chemical, and microbial spoilage in food products. To store the time-temperature information, time-temperature indicator (TTI) is a promising solution. Printed electronics (PE) has shown a great potential to produce customized electronic devices using flexible substrates and inks with different functionalities. We propose to fabricate a hybrid printed TTI using environmentally friendly materials. The real-time TTI profile can be stored and transmitted to the smartphone via Near Field Communication (NFC). To ensure environmental performance, Canadian Green Electronics NSERC Network is developing green materials for the ink formulation with different functionalities. In terms of substrate, paper-based electronics has gained the great interest for utilization in a wide area of electronic systems because of their low costs in setup and methodology, as well as their eco-friendly fabrication technologies. The main objective is to deliver a prototype of TTI using small-scale printed techniques under typical printing conditions. All sub-components of the smart labels, including a memristor, a battery, an antenna compatible with NFC protocol, and a circuit compatible with integration performed by an offsite supplier will be fully printed with flexography or flat-bed screen printing.

Keywords: NFC, printed electronics, time-temperature indicator, hybrid electronics

Procedia PDF Downloads 165
1579 Alternative of Lead-Based Ionization Radiation Shielding Property: Epoxy-Based Composite Design

Authors: Md. Belal Uudin Rabbi, Sakib Al Montasir, Saifur Rahman, Niger Nahid, Esmail Hossain Emon

Abstract:

The practice of radiation shielding protects against the detrimental effects of ionizing radiation. Radiation shielding depletes radiation by inserting a shield of absorbing material between any radioactive source. It is a primary concern when building several industrial fields, so using potent (high activity) radioisotopes in food preservation, cancer treatment, and particle accelerator facilities is significant. Radiation shielding is essential for radiation-emitting equipment users to reduce or mitigate radiation damage. Polymer composites (especially epoxy based) with high atomic number fillers can replace toxic Lead in ionizing radiation shielding applications because of their excellent mechanical properties, superior solvent and chemical resistance, good dimensional stability, adhesive, and less toxic. Due to being lightweight, good neutron shielding ability in almost the same order as concrete, epoxy-based radiation shielding can be the next big thing. Micro and nano-particles for the epoxy resin increase the epoxy matrix's radiation shielding property. Shielding is required to protect users of such facilities from ionizing radiation as recently, and considerable attention has been paid to polymeric composites as a radiation shielding material. This research will examine the radiation shielding performance of epoxy-based nano-WO3 reinforced composites, exploring the performance of epoxy-based nano-WO3 reinforced composites. The samples will be prepared using the direct pouring method to block radiation. The practice of radiation shielding protects against the detrimental effects of ionizing radiation.

Keywords: radiation shielding materials, ionizing radiation, epoxy resin, Tungsten oxide, polymer composites

Procedia PDF Downloads 117
1578 Conditionality in the European Union as a New Instrument to Guarantee the Principle of Separation of Powers

Authors: Ana Neves

Abstract:

The European Union’s multi-level constitutionalism is grounded in an intricate network of vertical and horizontal legal relationships among different levels and types of public authorities. In a very significant way since the 2008 crisis, evolving institutional arrangements and institutional dynamics in the European Union have been progressively impacting Member States and the terms under which national public authorities are organised, interact and exercise their powers. This impact occurs in both macro and micro dimensions. Several examples are relevant here, such as the involvement of national Parliaments in the activities of the European Union, the enhanced integration of public administrations, the side effects of the Council framework decision on the European Arrest Warrant, the European Union Justice Scoreboard, the protection of whistle-blowers regulation, the enhanced cooperation on the establishment of the European Public Prosecutor’s Office, the regime for the protection of the Union budget and the European Rule of Law Mechanism. A common trend or denominator underlies the deepening of institutional interdependence and the increased interactions between the European Union, Member States, and public authorities at different levels. This seems to be conditionality as a general principle. The European multi-level constitutionalism must be considered in the light of this conditionality principle, which does not “imply a relationship of command and obedience”. Nevertheless, it might be more effective or be a very compelling principle. It is as if the extension of the shared rule is being accompanied by a contrapuntal dialogue. The different public authorities at various levels are being called to rethink and readjust themselves within a broader and more plural framework concerning understanding the limitation of power.

Keywords: european union -, multi-level hierarchy, conditionality, separation of powers

Procedia PDF Downloads 108
1577 Modeling Operating Theater Scheduling and Configuration: An Integrated Model in Health-Care Logistics

Authors: Sina Keyhanian, Abbas Ahmadi, Behrooz Karimi

Abstract:

We present a multi-objective binary programming model which considers surgical cases are scheduling among operating rooms and the configuration of surgical instruments in limited capacity hospital trays, simultaneously. Many mathematical models have been developed previously in the literature addressing different challenges in health-care logistics such as assigning operating rooms, leveling beds, etc. But what happens inside the operating rooms along with the inventory management of required instruments for various operations, and also their integration with surgical scheduling have been poorly discussed. Our model considers the minimization of movements between trays during a surgery which recalls the famous cell formation problem in group technology. This assumption can also provide a major potential contribution to robotic surgeries. The tray configuration problem which consumes surgical instruments requirement plan (SIRP) and sequence of surgical procedures based on required instruments (SIRO) is nested inside the bin packing problem. This modeling approach helps us understand that most of the same-output solutions will not be necessarily identical when it comes to the rearrangement of surgeries among rooms. A numerical example has been dealt with via a proposed nested simulated annealing (SA) optimization approach which provides insights about how various configurations inside a solution can alter the optimal condition.

Keywords: health-care logistics, hospital tray configuration, off-line bin packing, simulated annealing optimization, surgical case scheduling

Procedia PDF Downloads 282
1576 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites

Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal

Abstract:

Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.

Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures

Procedia PDF Downloads 276
1575 Investigating Potential Pest Management Strategies for Citrus Gall Wasp in Australia

Authors: M. Yazdani, J. F. Carragher

Abstract:

Citrus gall wasp (CGW), Bruchophagus fellis (Hym: Eurytomidae), is an Australian native insect pest. CGW has now become a problem of national concern, threatening the viability of the entire Australian citrus industry. However, CGW appears to exhibit a preference for certain citrus species; growers report that grapefruit and lemons are most severely infested, with oranges and mandarins affected to a lesser extent. Given the specificity of the host plant-insect interactions, it is speculated that plant volatiles may play a significant role in host recognition. To address whether plant volatiles is involved in host plant preference by CGW we tested the behavioral response of CGW to plants in a wind tunnel. The result showed that CGW had significantly higher preference to grapefruit and lemon than other cultivars and the least preference was recorded to mandarin (Chi-square test, P<0.001). Because CGW exhibited a detectable choice further studies were undertaken to identify the components of the volatiles from each species. We trapped the volatile chemicals emitted by a 30 cm tip of each plant onto a solid Porapak matrix. Eluted extracts were then analysed by Gas Chromatography-Mass Spectrometry (GCMS) and the presumptive identity of the major compounds from each species inferred from the MS library. Although the same major compounds existed in all of the cultivars, the relative ratios of them differed between species. Next, we will validate the identity of the key volatiles using authentic standards and establish their ability to elicit olfactory responses in CGW in wind tunnel and field experiments. Identification of semiochemicals involved in host location by CGW is of interest not only from an ecological perspective but also for the development of novel pest control strategies.

Keywords: Citrus gall wasp, Bruchophagus fellis, volatiles, semiochemicals, IPM

Procedia PDF Downloads 233
1574 Green Design Study of Prefabricated Community Control Measures in Response to Public Health Emergencies

Authors: Enjia Zhang

Abstract:

During the prevention and control of the COVID-19 pandemic, all communities in China were gated and under strict management, which was highly effective in preventing the spread of the epidemic from spreading. Based on the TRIZ theory, this paper intends to propose green design strategies of community control in response to public health emergencies and to optimize community control facilities according to the principle of minimum transformation. Through the questionnaire method, this paper investigates and summarizes the situation and problems of community control during the COVID-19 pandemic. Based on these problems, the TRIZ theory is introduced to figure out the problems and associates them with prefabricated facilities. Afterward, the innovation points and solutions of prefabricated community control measures are proposed by using the contradiction matrix. This paper summarizes the current situation of community control under public health emergencies and concludes the problems such as simple forms of temporary roadblocks, sudden increase of community traffic pressure, and difficulties to access public spaces. The importance of entrance and exit control in community control is emphasized. Therefore, the community control measures are supposed to focus on traffic control, and the external access control measures, including motor vehicles, non-motor vehicles, residents and non-residents access control, and internal public space access control measures, including public space control shared with the society or adjacent communities, are proposed in order to make the community keep the open characteristics and have the flexibility to deal with sudden public health emergencies in the future.

Keywords: green design, community control, prefabricated structure, public health emergency

Procedia PDF Downloads 130
1573 Challenges for Adopting Circular Economy Toward Business Innovation and Supply Chain

Authors: Kapil Khanna, Swee Kuik, Joowon Ban

Abstract:

The current linear economic system is unsustainable due to its dependence on the uncontrolled exploitation of diminishing natural resources. The integration of business innovation and supply chain management has brought about the redesign of business processes through the implementation of a closed-loop approach. The circular economy (CE) offers a sustainable solution to improve business opportunities in the near future by following the principles of rejuvenation and reuse inspired by nature. Those business owners start to rethink and consider using waste as raw material to make new products for consumers. The implementation of CE helps organisations to incorporate new strategic plans for decreasing the use of virgin materials and nature resources. Supply chain partners that are geographically dispersed rely heavily on innovative approaches to support supply chain management. Presently, numerous studies have attempted to establish the concept of supply chain management (SCM) by integrating CE principles, which are commonly denoted as circular SCM. While many scholars have recognised the challenges of transitioning to CE, there is still a lack of consensus on business best practices that can facilitate companies in embracing CE across the supply chain. Hence, this paper strives to scrutinize the SCM practices utilised for CE, identify the obstacles, and recommend best practices that can enhance a company's ability to incorporate CE principles toward business innovation and supply chain performance. Further, the paper proposes future research in the field of using specific technologies such as artificial intelligence, Internet of Things, and blockchain as business innovation tools for supply chain management and CE adoption.

Keywords: business innovation, challenges, circular supply chain, supply chain management, technology

Procedia PDF Downloads 102
1572 Durability of Cement Bonded Particleboards Produced from Terminalia superba and Gmelina arborea against Subterranean Termite Attack

Authors: Amos Olajide Oluyege, Emmanuel Uchechukwu Opara, Sunday Adeniyi Adedutan, Joseph Adeola Fuwape

Abstract:

This study was conducted to determine the durability of wood-cement particleboards when exposed to attack by subterranean termites, Macrotermes subhylinus. The boards were made from Terminalia superba and Gmelina arborea wood sawdust at nominal board densities (BD) of 1000, 900, and 800 kg/m³ using wood-cement mixing ratios (MR) of 3:1, 2.5:1, 2:1, and 1:1. Above ground durability tests against termite attack were carried out according to ASTM D 2017 for 14 weeks. Results of visual assessment of the wood cement particleboards show that all the board samples had a visual rating that was not less than 7 (i.e., moderate attack) for both species irrespective of the MR and BD. T. superba boards were found to have higher resistance to termite attack compared to their G. arborea counterparts. The mean values for weight loss following exposure ranged from 1.93 to 6.13% and 3.24 to 12.44%. Analysis of variance (ANOVA) results of the weight loss assessment revealed a significant (p < 0.05) effect of species and mixing ratio on the weight loss of the boards due to termite attack with F(₁,₇₂) = 92.890 and P = 0.000 and F(₃,₇₂) = 8.318 and p = 0.000, while board density did not have any significant effect (p > 0.05) with F (₂,₇₂) = 1.307 and p = 0.277. Thus, boards made from a higher mixing ratio had better resistance against termite attacks. Thus, it can be concluded that the durability of cement-bonded particleboards when exposed to subterranean termite attack is not only dependent on the quality of the wood raw material (species) but also on the enhanced protection imparted by the cement matrix; the protection increased with increase in cement/wood mixing ratio.

Keywords: cement-bonded particleboard, mixing ratio, board density, Gmelina arborea, Terminalia superba

Procedia PDF Downloads 218
1571 Stress-Strain Relation for Human Trabecular Bone Based on Nanoindentation Measurements

Authors: Marek Pawlikowski, Krzysztof Jankowski, Konstanty Skalski, Anna Makuch

Abstract:

Nanoindentation or depth-sensing indentation (DSI) technique has proven to be very useful to measure mechanical properties of various tissues at a micro-scale. Bone tissue, both trabecular and cortical one, is one of the most commonly tested tissues by means of DSI. Most often such tests on bone samples are carried out to compare the mechanical properties of lamellar and interlamellar bone, osteonal bone as well as compact and cancellous bone. In the paper, a relation between stress and strain for human trabecular bone is presented. The relation is based on the results of nanoindentation tests. The formulation of a constitutive model for human trabecular bone is based on nanoindentation tests. In the study, the approach proposed by Olivier-Pharr is adapted. The tests were carried out on samples of trabecular tissue extracted from human femoral heads. The heads were harvested during surgeries of artificial hip joint implantation. Before samples preparation, the heads were kept in 95% alcohol in temperature 4 Celsius degrees. The cubic samples cut out of the heads were stored in the same conditions. The dimensions of the specimens were 25 mm x 25 mm x 20 mm. The number of 20 samples have been tested. The age range of donors was between 56 and 83 years old. The tests were conducted with the indenter spherical tip of the diameter 0.200 mm. The maximum load was P = 500 mN and the loading rate 500 mN/min. The data obtained from the DSI tests allows one only to determine bone behoviour in terms of nanoindentation force vs. nanoindentation depth. However, it is more interesting and useful to know the characteristics of trabecular bone in the stress-strain domain. This allows one to simulate trabecular bone behaviour in a more realistic way. The stress-strain curves obtained in the study show relation between the age and the mechanical behaviour of trabecular bone. It was also observed that the bone matrix of trabecular tissue indicates an ability of energy absorption.

Keywords: constitutive model, mechanical behaviour, nanoindentation, trabecular bone

Procedia PDF Downloads 222
1570 Quartz Crystal Microbalance Based Hydrophobic Nanosensor for Lysozyme Detection

Authors: F. Yılmaz, Y. Saylan, A. Derazshamshir, S. Atay, A. Denizli

Abstract:

Quartz crystal microbalance (QCM), high-resolution mass-sensing technique, measures changes in mass on oscillating quartz crystal surface by measuring changes in oscillation frequency of crystal in real time. Protein adsorption techniques via hydrophobic interaction between protein and solid support, called hydrophobic interaction chromatography (HIC), can be favorable in many cases. Some nanoparticles can be effectively applied for HIC. HIC takes advantage of the hydrophobicity of proteins by promoting its separation on the basis of hydrophobic interactions between immobilized hydrophobic ligands and nonpolar regions on the surface of the proteins. Lysozyme is found in a variety of vertebrate cells and secretions, such as spleen, milk, tears, and egg white. Its common applications are as a cell-disrupting agent for extraction of bacterial intracellular products, as an antibacterial agent in ophthalmologic preparations, as a food additive in milk products and as a drug for treatment of ulcers and infections. Lysozyme has also been used in cancer chemotherapy. The aim of this study is the synthesis of hydrophobic nanoparticles for Lysozyme detection. For this purpose, methacryoyl-L-phenylalanine was chosen as a hydrophobic matrix. The hydrophobic nanoparticles were synthesized by micro-emulsion polymerization method. Then, hydrophobic QCM nanosensor was characterized by Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM) and zeta size analysis. Hydrophobic QCM nanosensor was tested for real-time detection of Lysozyme from aqueous solution. The kinetic and affinity studies were determined by using Lysozyme solutions with different concentrations. The responses related to a mass (Δm) and frequency (Δf) shifts were used to evaluate adsorption properties.

Keywords: nanosensor, HIC, lysozyme, QCM

Procedia PDF Downloads 349
1569 Textual Analysis of Media Coverage on Women’s Employment during Covid-19 Recovery: Personal Choice versus Systemic Insufficiencies

Authors: Rania Al Namara

Abstract:

During the Covid-19 pandemic, women disproportionately left the workforce compared to men, and many remained outside of the labor market during the Covid-19 recovery period—a phenomenon referred to as the “she-recession” or “shecession.” While the number of women returning to work has increased, long-standing systemic inequalities interfere with women's equal participation in the workforce. Previous research on media framing has explored the importance of news coverage of women’s issues in print and magazines to shaping the public’s views on an issue and the national response. This study adopts textual analysis to examine how 50 news stories published on CNN and CBS in March 2023 frame women’s employment challenges as a matter of choice or as a matter of insufficient systems and analyzes the narratives portrayed to understand how this discourse affects national policies regarding women’s equality in the workforce. Findings suggest that media coverage centers on four themes: unequal wages at work, work-life integration, experiences of minority women, and the struggle to acquire leadership positions. Media coverage gives space to women to tell personal stories about facing these four societal challenges. However, little coverage is devoted to the political figures and institutions that either reinforce gender inequalities or advance women’s rights in these areas. These findings highlight the need for media stories that discuss policies and reforms that broaden the choices available to women in the first place.

Keywords: Covid-19 recovery, media coverage, shecession, women’s employment

Procedia PDF Downloads 95
1568 Climate Change, Agriculture and Food Security in Sub-Saharan Africa: What Effects and What Answers?

Authors: Abdoulahad Allamine

Abstract:

The objective of this study is to assess the impact of climate variability on agriculture and food security in 43 countries of sub-Saharan Africa. We use for this purpose the data from BADC bases, UNCTAD, and WDI FAOSTAT to estimate a VAR model on panel data. The sample is divided into three (03) agro-climatic zones, more explicitly the equatorial zone, the Sahel region and the semi-arid zone. This allows to highlight the differential impacts sustained by countries and appropriate responses to each group of countries. The results show that the sharp fluctuations in the volume of rainfall negatively affect agriculture and food security of countries in the equatorial zone, with heavy rainfall and high temperatures in the Sahel region. However, countries with low temperatures and low rainfall are the least affected. The hedging policies against the risks of climate variability must be more active in the first two groups of countries. On this basis and in general, we recommend integration of agricultural policies between countries is done to reduce the effects of climate variability on agriculture and food security. It would be logical to encourage regional and international closer collaboration on the development and dissemination of improved varieties, ecological intensification, and management of biotic and abiotic stresses facing these climate variability to sustainably increase food production. Small farmers also need training in agricultural risk hedging techniques related to climate variations; this requires an increase in state budgets allocated to agriculture.

Keywords: agro-climatic zones, climate variability, food security, Sub-Saharan Africa, VAR on panel data

Procedia PDF Downloads 391
1567 Transforming ESL Teaching and Learning with ICT

Authors: Helena Sit

Abstract:

Developing skills in using ICT in the language classroom has been discussed at all educational levels. Digital tools and learning management systems enable teachers to transform their instructional activities while giving learners the opportunity to engage with virtual communities. In the field of English as a second language (ESL) teaching and learning, the use of technology-enhanced learning and diverse pedagogical practices continues to grow. Whilst technology and multimodal learning is a way of the future for education, second language teachers now face the predicament as to whether implementing these newer ways of learning is, in fact, beneficial or disadvantageous to learners. Research has shown that integrating multimodality and technology can improve students’ engagement and participation in their English language learning. However, students can experience anxiety or misunderstanding when engaging with E-learning or digital-mediated learning. This paper aims to explore how ESL teaching and learning are transformed via the use of educational technology and what impact it has had on student teachers. Case study is employed in this research. The study reviews the growing presence of technology and multimodality in university language classrooms, discusses their impact on teachers’ pedagogical practices, and proposes scaffolding strategies to help design effective English language courses in the Australian education context. The study sheds light on how pedagogical integration today may offer a way forward for language teachers of tomorrow and provides implications to implement an evidence-informed approach that blends knowledge from research, practice and people experiencing the practice in the digital era.

Keywords: educational technology, ICT in higher education, curriculum design and innovation, teacher education, multiliteracies pedagogy

Procedia PDF Downloads 80
1566 Thermolysin Entrapment in a Gold Nanoparticles/Polymer Composite: Construction of an Efficient Biosensor for Ochratoxin a Detection

Authors: Fatma Dridi, Mouna Marrakchi, Mohammed Gargouri, Alvaro Garcia Cruz, Sergei V. Dzyadevych, Francis Vocanson, Joëlle Saulnier, Nicole Jaffrezic-Renault, Florence Lagarde

Abstract:

An original method has been successfully developed for the immobilization of thermolysin onto gold interdigitated electrodes for the detection of ochratoxin A (OTA) in olive oil samples. A mix of polyvinyl alcohol (PVA), polyethylenimine (PEI) and gold nanoparticles (AuNPs) was used. Cross-linking sensors chip was made by using a saturated glutaraldehyde (GA) vapor atmosphere in order to render the two polymers water stable. Performance of AuNPs/ (PVA/PEI) modified electrode was compared to a traditional immobilized enzymatic method using bovine serum albumin (BSA). Atomic force microscopy (AFM) experiments were employed to provide a useful insight into the structure and morphology of the immobilized thermolysin composite membranes. The enzyme immobilization method influence the topography and the texture of the deposited layer. Biosensors optimization and analytical characteristics properties were studied. Under optimal conditions AuNPs/ (PVA/PEI) modified electrode showed a higher increment in sensitivity. A 700 enhancement factor could be achieved with a detection limit of 1 nM. The newly designed OTA biosensors showed a long-term stability and good reproducibility. The relevance of the method was evaluated using commercial doped olive oil samples. No pretreatment of the sample was needed for testing and no matrix effect was observed. Recovery values were close to 100% demonstrating the suitability of the proposed method for OTA screening in olive oil.

Keywords: thermolysin, A. ochratoxin , polyvinyl alcohol, polyethylenimine, gold nanoparticles, olive oil

Procedia PDF Downloads 591
1565 Fluid-Structure Interaction Analysis of a Vertical Axis Wind Turbine Blade Made with Natural Fiber Based Composite Material

Authors: Ivan D. Ortega, Juan D. Castro, Alberto Pertuz, Manuel Martinez

Abstract:

One of the problems considered when scientists talk about climate change is the necessity of utilizing renewable sources of energy, on this category there are many approaches to the problem, one of them is wind energy and wind turbines whose designs have frequently changed along many years trying to achieve a better overall performance on different conditions. From that situation, we get the two main types known today: Vertical and Horizontal axis wind turbines, which have acronyms VAWT and HAWT, respectively. This research aims to understand how well suited a composite material, which is still in development, made with natural origin fibers is for its implementation on vertical axis wind turbines blades under certain wind loads. The study consisted on acquiring the mechanical properties of the materials to be used which where bactris guineenis, also known as pama de lata in Colombia, and adhesive that acts as the matrix which had not been previously studied to the point required for this project. Then, a simplified 3D model of the airfoil was developed and tested under some preliminary loads using finite element analysis (FEA), these loads were acquired in the Colombian Chicamocha Canyon. Afterwards, a more realistic pressure profile was obtained using computational fluid dynamics which took into account the 3D shape of the complete blade and its rotation. Finally, the blade model was subjected to the wind loads using what is known as one way fluidstructure interaction (FSI) and its behavior analyzed to draw conclusions. The observed overall results were positive since the material behaved fairly as expected. Data suggests the material would be really useful in this kind of applications in small to medium size turbines if it is given more attention and time to develop.

Keywords: CFD, FEA, FSI, natural fiber, VAWT

Procedia PDF Downloads 228
1564 Gradient-Based Reliability Optimization of Integrated Energy Systems Under Extreme Weather Conditions: A Case Study in Ningbo, China

Authors: Da LI, Peng Xu

Abstract:

Recent extreme weather events, such as the 2021 European floods and North American heatwaves, have exposed the vulnerability of energy systems to both extreme demand scenarios and potential physical damage. Current integrated energy system designs often overlook performance under these challenging conditions. This research, focusing on a regional integrated energy system in Ningbo, China, proposes a distinct design method to optimize system reliability during extreme events. A multi-scenario model was developed, encompassing various extreme load conditions and potential system damages caused by severe weather. Based on this model, a comprehensive reliability improvement scheme was designed, incorporating a gradient approach to address different levels of disaster severity through the integration of advanced technologies like distributed energy storage. The scheme's effectiveness was validated through Monte Carlo simulations. Results demonstrate significant enhancements in energy supply reliability and peak load reduction capability under extreme scenarios. The findings provide several insights for improving energy system adaptability in the face of climate-induced challenges, offering valuable references for building reliable energy infrastructure capable of withstanding both extreme demands and physical threats across a spectrum of disaster intensities.

Keywords: extreme weather events, integrated energy systems, reliability improvement, climate change adaptation

Procedia PDF Downloads 29
1563 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM

Procedia PDF Downloads 387
1562 Comparative Study of Properties of Iranian Historical Gardens by Focusing on Climate

Authors: Malihe Ahmadi

Abstract:

Nowadays, stress, tension and neural problems are among the most important concerns of the present age. The environment plays key role on improving mental health and reducing stress of citizens. Establishing balance and appropriate relationship between city and natural environment is of the most important approaches of present century. Type of approach and logical planning for urban green spaces as one of the basic sections of integration with nature, not only plays key role on quality and efficiency of comprehensive urban planning; but also it increases the system of distributing social activities and happiness and lively property of urban environments that leads to permanent urban development. The main purpose of recovering urban identity is considering culture, history and human life style in past. This is a documentary-library research that evaluates the historical properties of Iranian gardens in compliance with climate condition. Results of this research reveal that in addition to following Iranian gardens from common principles of land lot, structure of flowers and plants, water, specific buildings during different ages, the role of climate at different urban areas is among the basics of determining method of designing green spaces and different buildings located at diverse areas i.e. Iranian gardens are a space for merging natural and artificial elements that has inseparable connection with semantic principles and guarantees different functions. Some of the necessities of designing present urban gardens are including: recognition and recreation.

Keywords: historical gardens, climate, properties of Iranian gardens, Iran

Procedia PDF Downloads 398
1561 An Ultrasonic Approach to Investigate the Effect of Aeration on Rheological Properties of Soft Biological Materials with Bubbles Embedded

Authors: Hussein M. Elmehdi

Abstract:

In this paper, we present the results of our recent experiments done to examine the effect of air bubbles, which were introduced to bio-samples during preparation, on the rheological properties of soft biological materials. To effectively achieve this, we three samples each prepared with differently. Our soft biological systems comprised of three types of flour dough systems made from different flour varieties with variable protein concentrations. The samples were investigated using ultrasonic waves operated at low frequency in transmission mode. The sample investigated included dough made from bread flour, wheat flour and all-purpose flour. During mixing, the main ingredient of the samples (the flour) was transformed into cohesive dough comprised of the continuous dough matrix and air pebbles. The rheological properties of such materials determine the quality of the end cereal product. Two ultrasonic parameters, the longitudinal velocity and attenuation coefficient were found to be very sensitive to properties such as the size of the occluded bubbles, and hence have great potential of providing quantitative evaluation of the properties of such materials. The results showed that the magnitudes of the ultrasonic velocity and attenuation coefficient peaked at optimum mixing times; the latter of which is taken as an indication of the end of the mixing process. There was an agreement between the results obtained by conventional rheology and ultrasound measurements, thus showing the potential of the use of ultrasound as an on-line quality control technique for dough-based products. The results of this work are explained with respect to the molecular changes occurring in the dough system as the mixing process proceeds; particular emphasis is placed on the presence of free water and bound water.

Keywords: ultrasound, soft biological materials, velocity, attenuation

Procedia PDF Downloads 278
1560 Factors Influencing Soil Organic Carbon Storage Estimation in Agricultural Soils: A Machine Learning Approach Using Remote Sensing Data Integration

Authors: O. Sunantha, S. Zhenfeng, S. Phattraporn, A. Zeeshan

Abstract:

The decline of soil organic carbon (SOC) in global agriculture is a critical issue requiring rapid and accurate estimation for informed policymaking. While it is recognized that SOC predictors vary significantly when derived from remote sensing data and environmental variables, identifying the specific parameters most suitable for accurately estimating SOC in diverse agricultural areas remains a challenge. This study utilizes remote sensing data to precisely estimate SOC and identify influential factors in diverse agricultural areas, such as paddy, corn, sugarcane, cassava, and perennial crops. Extreme gradient boosting (XGBoost), random forest (RF), and support vector regression (SVR) models are employed to analyze these factors' impact on SOC estimation. The results show key factors influencing SOC estimation include slope, vegetation indices (EVI), spectral reflectance indices (red index, red edge2), temperature, land use, and surface soil moisture, as indicated by their averaged importance scores across XGBoost, RF, and SVR models. Therefore, using different machine learning algorithms for SOC estimation reveals varying influential factors from remote sensing data and environmental variables. This approach emphasizes feature selection, as different machine learning algorithms identify various key factors from remote sensing data and environmental variables for accurate SOC estimation.

Keywords: factors influencing SOC estimation, remote sensing data, environmental variables, machine learning

Procedia PDF Downloads 38
1559 Innovative Approaches to Water Resources Management: Addressing Challenges through Machine Learning and Remote Sensing

Authors: Abdelrahman Elsehsah, Abdelazim Negm, Eid Ashour, Mohamed Elsahabi

Abstract:

Water resources management is a critical field that encompasses the planning, development, conservation, and allocation of water resources to meet societal needs while ensuring environmental sustainability. This paper reviews the key concepts and challenges in water resources management, emphasizing the significance of a holistic approach that integrates social, economic, and environmental factors. Traditional water management practices, characterized by supply-oriented strategies and centralized control, are increasingly inadequate in addressing contemporary challenges such as water scarcity, climate change impacts, and ecosystem degradation. Emerging technologies, particularly machine learning and remote sensing, offer innovative solutions to enhance decision-making processes in water management. Machine learning algorithms facilitate accurate water demand forecasting, quality monitoring, and leak detection, while remote sensing technologies provide vital data for assessing water availability and quality. This review highlights the need for integrated water management strategies that leverage these technologies to promote sustainable practices and foster resilience in water systems. Future research should focus on improving data quality, accessibility, and the integration of diverse datasets to optimize the benefits of these technological advancements.

Keywords: water resources management, water scarcity, climate change, machine learning, remote sensing, water quality, water governance, sustainable practices, ecosystem management

Procedia PDF Downloads 15
1558 The Role of Language Strategy on International Survival of Firm: A Conceptual Framework from Resource Dependence Perspective

Authors: Sazzad Hossain Talukder

Abstract:

Survival in the competitive international market with unforeseen environmental contingencies has always been a concern of the firms that led to adopting different strategies to deal with different situations. Language strategy is considered to enhance the international performance of a firm by organizing language diversity and fostering communications within and outside the firm. Yet there is a lack of theoretical attention or model development on the role of language strategy on firm international survival. From resource dependence perspective, the adoption of language strategy and its relationship with firm survival are determined by the firm´s capability to prevent dependency concentration and/or increase relative power on the external environment. However, the impact of language strategy on firm survival is complex and multifaceted as the strategy influence firm performance indirectly through communication, coordination, learning and value creation. The evidence of various types of language strategies and different forms of firm survival also bring in complexities to understand the effects of a language strategy on the international survival of a firm. Based on language literatures and resource dependence logic, certain propositions are developed to conceptualize the relationship between language strategy and firm international survival in this conceptual paper. For the purpose of this paper, a conceptual model is proposed to examine how different kinds of language strategy foster reduction of resource dependency that lead to firm international survival in respond to local responsiveness and global integration. In this proposed model, it is theorized that language strategy has a positive relationship with the international survival of the firm, as the strategy is likely to reduce external resource dependency and increase the ability to continue independent operations both in short and long term.

Keywords: language strategy, language diversity, firm international survival, resource dependence logic

Procedia PDF Downloads 282
1557 Delamination Fracture Toughness Benefits of Inter-Woven Plies in Composite Laminates Produced through Automated Fibre Placement

Authors: Jayden Levy, Garth M. K. Pearce

Abstract:

An automated fibre placement method has been developed to build through-thickness reinforcement into carbon fibre reinforced plastic laminates during their production, with the goal of increasing delamination fracture toughness while circumventing the additional costs and defects imposed by post-layup stitching and z-pinning. Termed ‘inter-weaving’, the method uses custom placement sequences of thermoset prepreg tows to distribute regular fibre link regions in traditionally clean ply interfaces. Inter-weaving’s impact on mode I delamination fracture toughness was evaluated experimentally through double cantilever beam tests (ASTM standard D5528-13) on [±15°]9 laminates made from Park Electrochemical Corp. E-752-LT 1/4” carbon fibre prepreg tape. Unwoven and inter-woven automated fibre placement samples were compared to those of traditional laminates produced from standard uni-directional plies of the same material system. Unwoven automated fibre placement laminates were found to suffer a mostly constant 3.5% decrease in mode I delamination fracture toughness compared to flat uni-directional plies. Inter-weaving caused significant local fracture toughness increases (up to 50%), though these were offset by a matching overall reduction. These positive and negative behaviours of inter-woven laminates were respectively found to be caused by fibre breakage and matrix deformation at inter-weave sites, and the 3D layering of inter-woven ply interfaces providing numerous paths of least resistance for crack propagation.

Keywords: AFP, automated fibre placement, delamination, fracture toughness, inter-weaving

Procedia PDF Downloads 184
1556 Modeling the Human Harbor: An Equity Project in New York City, New York USA

Authors: Lauren B. Birney

Abstract:

The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.

Keywords: computer science, data science, equity, diversity and inclusion, STEM education

Procedia PDF Downloads 59