Search results for: mobile sensor node
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3345

Search results for: mobile sensor node

105 Tele-Rehabilitation for Multiple Sclerosis: A Case Study

Authors: Sharon Harel, Rachel Kizony, Yoram Feldman, Gabi Zeilig, Mordechai Shani

Abstract:

Multiple Sclerosis (MS) is a neurological disease that may cause restriction in participation in daily activities of young adults. Main symptoms include fatigue, weakness and cognitive decline. The appearance of symptoms, their severity and deterioration rate, change between patients. The challenge of health services is to provide long-term rehabilitation services to people with MS. The objective of this presentation is to describe a course of tele-rehabilitation service of a woman with MS. Methods; R is a 48 years-old woman, diagnosed with MS when she was 22. She started to suffer from weakness of her non-dominant left upper extremity about ten years after the diagnosis. She was referred to the tele-rehabilitation service by her rehabilitation team, 16 years after diagnosis. Her goals were to improve ability to use her affected upper extremity in daily activities. On admission her score in the Mini-Mental State Exam was 30/30. Her Fugl-Meyer Assessment (FMA) score of the left upper extremity was 48/60, indicating mild weakness and she had a limitation of her shoulder abduction (90 degrees). In addition, she reported little use of her arm in daily activities as shown in her responses to the Motor Activity Log (MAL) that were equal to 1.25/5 in amount and 1.37 in quality of use. R. received two 30 minutes on-line sessions per week in the tele-rehabilitation service, with the CogniMotion system. These were complemented by self-practice with the system. The CogniMotion system provides a hybrid (synchronous-asynchronous), the home-based tele-rehabilitation program to improve the motor, cognitive and functional status of people with neurological deficits. The system consists of a computer, large monitor, and the Microsoft’s Kinect 3D sensor. This equipment is located in the client’s home and connected to a clinician’s computer setup in a remote clinic via WiFi. The client sits in front of the monitor and uses his body movements to interact with games and tasks presented on the monitor. The system provides feedback in the form of ‘knowledge of results’ (e.g., the success of a game) and ‘knowledge of performance’ (e.g., alerts for compensatory movements) to enhance motor learning. The games and tasks were adapted for R. motor abilities and level of difficulty was gradually increased according to her abilities. The results of her second assessment (after 35 on-line sessions) showed improvement in her FMA score to 52 and shoulder abduction to 140 degrees. Moreover, her responses to the MAL indicated an increased amount (2.4) and quality (2.2) of use of her left upper extremity in daily activities. She reported high level of enjoyment from the treatments (5/5), specifically the combination of cognitive challenges while moving her body. In addition, she found the system easy to use as reflected by her responses to the System Usability Scale (85/100). To-date, R. continues to receive treatments in the tele-rehabilitation service. To conclude, this case report shows the potential of using tele-rehabilitation for people with MS to provide strategies to enhance the use of the upper extremity in daily activities as well as for maintaining motor function.

Keywords: motor function, multiple-sclerosis, tele-rehabilitation, daily activities

Procedia PDF Downloads 182
104 Organic Rankine Cycles (ORC) for Mobile Applications: Economic Feasibility in Different Transportation Sectors

Authors: Roberto Pili, Alessandro Romagnoli, Hartmut Spliethoff, Christoph Wieland

Abstract:

Internal combustion engines (ICE) are today the most common energy system to drive vehicles and transportation systems. Numerous studies state that 50-60% of the fuel energy content is lost to the ambient as sensible heat. ORC offers a valuable alternative to recover such waste heat from ICE, leading to fuel energy savings and reduced emissions. In contrast, the additional weight of the ORC affects the net energy balance of the overall system and the ORC occupies additional volume that competes with vehicle transportation capacity. Consequently, a lower income from delivered freight or passenger tickets can be achieved. The economic feasibility of integrating an ORC into an ICE and the resulting economic impact of weight and volume have not been analyzed in open literature yet. This work intends to define such a benchmark for ORC applications in the transportation sector and investigates the current situation on the market. The applied methodology refers to the freight market, but it can be extended to passenger transportation as well. The economic parameter X is defined as the ratio between the variation of the freight revenues and the variation of fuel costs when an ORC is installed as a bottoming cycle for an ICE with respect to a reference case without ORC. A good economic situation is obtained when the reduction in fuel costs is higher than the reduction of revenues for the delivered freight, i.e. X<1. Through this constraint, a maximum allowable change of transport capacity for a given relative reduction in fuel consumption is determined. The specific fuel consumption is influenced by the ORC in two ways. Firstly because the transportable freight is reduced and secondly because the total weight of the vehicle is increased. Note, that the generated electricity of the ORC influences the size of the ICE and the fuel consumption as well. Taking the above dependencies into account, the limiting condition X = 1 results in a second order equation for the relative change in transported cargo. The described procedure is carried out for a typical city bus, a truck of 24-40 t of payload capacity, a middle-size freight train (1000 t), an inland water vessel (Va RoRo, 2500 t) and handysize-like vessel (25000 t). The maximum allowable mass and volume of the ORC are calculated in dependence of its efficiency in order to satisfy X < 1. Subsequently, these values are compared with weight and volume of commercial ORC products. For ships of any size, the situation appears already highly favorable. A different result is obtained for road and rail vehicles. For trains, the mass and the volume of common ORC products have to be reduced at least by 50%. For trucks and buses, the situation looks even worse. The findings of the present study show a theoretical and practical approach for the economic application of ORC in the transportation sector. In future works, the potential for volume and mass reduction of the ORC will be addressed, together with the integration of an economic assessment for the ORC.

Keywords: ORC, transportation, volume, weight

Procedia PDF Downloads 229
103 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry

Authors: Dhanuj M. Gandikota

Abstract:

Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.

Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry

Procedia PDF Downloads 104
102 Material Handling Equipment Selection Using Fuzzy AHP Approach

Authors: Priyanka Verma, Vijaya Dixit, Rishabh Bajpai

Abstract:

This research paper is aimed at selecting appropriate material handling equipment among the given choices so that the automation level in material handling can be enhanced. This work is a practical case scenario of material handling systems in consumer electronic appliances manufacturing organization. The choices of material handling equipment among which the decision has to be made are Automated Guided Vehicle’s (AGV), Autonomous Mobile Robots (AMR), Overhead Conveyer’s (OC) and Battery Operated Trucks/Vehicle’s (BOT). There is a need of attaining a certain level of automation in order to reduce human interventions in the organization. This requirement of achieving certain degree of automation can be attained by material handling equipment’s mentioned above. The main motive for selecting above equipment’s for study was solely based on corporate financial strategy of investment and return obtained through that investment made in stipulated time framework. Since the low cost automation with respect to material handling devices has to be achieved hence these equipment’s were selected. Investment to be done on each unit of this equipment is less than 20 lakh rupees (INR) and the recovery period is less than that of five years. Fuzzy analytic hierarchic process (FAHP) is applied here for selecting equipment where the four choices are evaluated on basis of four major criteria’s and 13 sub criteria’s, and are prioritized on the basis of weight obtained. The FAHP used here make use of triangular fuzzy numbers (TFN). The inability of the traditional AHP in order to deal with the subjectiveness and impreciseness in the pair-wise comparison process has been improved in the FAHP. The range of values for general rating purposes for all decision making parameters is kept between 0 and 1 on the basis of expert opinions captured on shop floor. These experts were familiar with operating environment and shop floor activity control. Instead of generating exact value the FAHP generates the ranges of values to accommodate the uncertainty in decision-making process. The four major criteria’s selected for the evaluation of choices of material handling equipment’s available are materials, technical capabilities, cost and other features. The thirteen sub criteria’s listed under these following four major criteria’s are weighing capacity, load per hour, material compatibility, capital cost, operating cost and maintenance cost, speed, distance moved, space required, frequency of trips, control required, safety and reliability issues. The key finding shows that among the four major criteria selected, cost is emerged as the most important criteria and is one of the key decision making aspect on the basis of which material equipment selection is based on. While further evaluating the choices of equipment available for each sub criteria it is found that AGV scores the highest weight in most of the sub-criteria’s. On carrying out complete analysis the research shows that AGV is the best material handling equipment suiting all decision criteria’s selected in FAHP and therefore it is beneficial for the organization to carry out automated material handling in the facility using AGV’s.

Keywords: fuzzy analytic hierarchy process (FAHP), material handling equipment, subjectiveness, triangular fuzzy number (TFN)

Procedia PDF Downloads 434
101 Graphene Supported Nano Cerium Oxides Hybrid as an Electrocatalyst for Oxygen Reduction Reactions

Authors: Siba Soren, Purnendu Parhi

Abstract:

Today, the world is facing a severe challenge due to depletion of traditional fossil fuels. Scientists across the globe are working for a solution that involves a dramatic shift to practical and environmentally sustainable energy sources. High-capacity energy systems, such as metal-air batteries, fuel cells, are highly desirable to meet the urgent requirement of sustainable energies. Among the fuel cells, Direct methanol fuel cells (DMFCs) are recognized as an ideal power source for mobile applications and have received considerable attention in recent past. In this advanced electrochemical energy conversion technologies, Oxygen Reduction Reaction (ORR) is of utmost importance. However, the poor kinetics of cathodic ORR in DMFCs significantly hampers their possibilities of commercialization. The oxygen is reduced in alkaline medium either through a 4-electron (equation i) or a 2-electron (equation ii) reduction pathway at the cathode ((i) O₂ + 2H₂O + 4e⁻ → 4OH⁻, (ii) O₂ + H₂O + 2e⁻ → OH⁻ + HO₂⁻ ). Due to sluggish ORR kinetics the ability to control the reduction of molecular oxygen electrocatalytically is still limited. The electrocatalytic ORR starts with adsorption of O₂ on the electrode surface followed by O–O bond activation/cleavage and oxide removal. The reaction further involves transfer of 4 electrons and 4 protons. The sluggish kinetics of ORR, on the one hand, demands high loading of precious metal-containing catalysts (e.g., Pt), which unfavorably increases the cost of these electrochemical energy conversion devices. Therefore, synthesis of active electrocatalyst with an increase in ORR performance is need of the hour. In the recent literature, there are many reports on transition metal oxide (TMO) based ORR catalysts for their high activity TMOs are also having drawbacks like low electrical conductivity, which seriously affects the electron transfer process during ORR. It was found that 2D graphene layer is having high electrical conductivity, large surface area, and excellent chemical stability, appeared to be an ultimate choice as support material to enhance the catalytic performance of bare metal oxide. g-C₃N₄ is also another candidate that has been used by the researcher for improving the ORR performance of metal oxides. This material provides more active reaction sites than other N containing carbon materials. Rare earth oxide like CeO₂ is also a good candidate for studying the ORR activity as the metal oxide not only possess unique electronic properties but also possess catalytically active sites. Here we will discuss the ORR performance (in alkaline medium) of N-rGO/C₃N₄ supported nano Cerium Oxides hybrid synthesized by microwave assisted Solvothermal method. These materials exhibit superior electrochemical stability and methanol tolerance capability to that of commercial Pt/C.

Keywords: oxygen reduction reaction, electrocatalyst, cerium oxide, graphene

Procedia PDF Downloads 198
100 Cinema Reception in a Digital World: A Study of Cinema Audiences in India

Authors: Sanjay Ranade

Abstract:

Traditional film theory assumes the cinema audience in a darkened room where cinema is projected on to a white screen, and the audience suspends their sense of reality. Shifts in audiences due to changes in cultural tastes or trends have been studied for decades. In the past two decades, however, the audience, especially the youth, has shifted to digital media for the consumption of cinema. As a result, not only are audiences watching cinema on different devices, they are also consuming cinema in places and ways never imagined before. Public transport often crowded to the brim with a lot of ambient content, and a variety of workplaces have become sites for cinema viewing. Cinema is watched piecemeal and at different times of the day. Audiences use devices such as mobile phones and tablets to watch cinema. The cinema viewing experience is getting redesigned by the user. The emerging design allows the spectator to not only consume images and narratives but also produce, reproduce, and manipulate existing images and narratives, thereby participating in the process and influencing it. Spectatorship studies stress on the importance of subjectivity when dealing with the structure of the film text and the cultural and psychological implications in the engagement between the spectator and the film text. Indian cinema has been booming and contributing to global movie production significantly. In 2005 film production was 1000 films a year and doubled to 2000 by 2016. Digital technology helped push this growth in 2012. Film studies in India have had a decided Euro-American bias. The studies have chiefly analysed the content for ideological leanings or myth or as reflections of society, societal changes, or articulation of identity or presented retrospectives of directors, actors, music directors, etc. The one factor relegated to the background has been the spectator. If they have been addressed, they are treated as a collective of class or gender. India has a performative tradition going back several centuries. How Indians receive cinema is an important aspect to study with respect to film studies. This exploratory and descriptive study looked at 162 young media students studying cinema at the undergraduate and postgraduate levels. The students, speaking as many as 20 languages amongst them, were drawn from across the country’s media schools. The study looked at nine film societies registered with the Federation of Film Societies of India. A structured questionnaire was made and distributed online through media teachers for the students. The film societies were approached through the regional office of the FFSI in Mumbai. Lastly, group discussions were held in Mumbai with students and teachers of media. A group consisted of between five and twelve student participants, along with one or two teachers. All the respondents looked at themselves as spectators and shared their experiences of spectators of cinema, providing a very rich insight into Indian conditions of viewing cinema and challenges for cinema ahead.

Keywords: audience, digital, film studies, reception, reception spectatorship

Procedia PDF Downloads 131
99 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 282
98 Adopting Data Science and Citizen Science to Explore the Development of African Indigenous Agricultural Knowledge Platform

Authors: Steven Sam, Ximena Schmidt, Hugh Dickinson, Jens Jensen

Abstract:

The goal of this study is to explore the potential of data science and citizen science approaches to develop an interactive, digital, open infrastructure that pulls together African indigenous agriculture and food systems data from multiple sources, making it accessible and reusable for policy, research and practice in modern food production efforts. The World Bank has recognised that African Indigenous Knowledge (AIK) is innovative and unique among local and subsistent smallholder farmers, and it is central to sustainable food production and enhancing biodiversity and natural resources in many poor, rural societies. AIK refers to tacit knowledge held in different languages, cultures and skills passed down from generation to generation by word of mouth. AIK is a key driver of food production, preservation, and consumption for more than 80% of citizens in Africa, and can therefore assist modern efforts of reducing food insecurity and hunger. However, the documentation and dissemination of AIK remain a big challenge confronting librarians and other information professionals in Africa, and there is a risk of losing AIK owing to urban migration, modernisation, land grabbing, and the emergence of relatively small-scale commercial farming businesses. There is also a clear disconnect between the AIK and scientific knowledge and modern efforts for sustainable food production. The study combines data science and citizen science approaches through active community participation to generate and share AIK for facilitating learning and promoting knowledge that is relevant for policy intervention and sustainable food production through a curated digital platform based on FAIR principles. The study adopts key informant interviews along with participatory photo and video elicitation approach, where farmers are given digital devices (mobile phones) to record and document their every practice involving agriculture, food production, processing, and consumption by traditional means. Data collected are analysed using the UK Science and Technology Facilities Council’s proven methodology of citizen science (Zooniverse) and data science. Outcomes are presented in participatory stakeholder workshops, where the researchers outline plans for creating the platform and developing the knowledge sharing standard framework and copyrights agreement. Overall, the study shows that learning from AIK, by investigating what local communities know and have, can improve understanding of food production and consumption, in particular in times of stress or shocks affecting the food systems and communities. Thus, the platform can be useful for local populations, research, and policy-makers, and it could lead to transformative innovation in the food system, creating a fundamental shift in the way the North supports sustainable, modern food production efforts in Africa.

Keywords: Africa indigenous agriculture knowledge, citizen science, data science, sustainable food production, traditional food system

Procedia PDF Downloads 83
97 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality

Authors: Heichia Wang, Yalan Chao

Abstract:

Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.

Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network

Procedia PDF Downloads 129
96 Characterizing the Rectification Process for Designing Scoliosis Braces: Towards Digital Brace Design

Authors: Inigo Sanz-Pena, Shanika Arachchi, Dilani Dhammika, Sanjaya Mallikarachchi, Jeewantha S. Bandula, Alison H. McGregor, Nicolas Newell

Abstract:

The use of orthotic braces for adolescent idiopathic scoliosis (AIS) patients is the most common non-surgical treatment to prevent deformity progression. The traditional method to create an orthotic brace involves casting the patient’s torso to obtain a representative geometry, which is then rectified by an orthotist to the desired geometry of the brace. Recent improvements in 3D scanning technologies, rectification software, CNC, and additive manufacturing processes have given the possibility to compliment, or in some cases, replace manual methods with digital approaches. However, the rectification process remains dependent on the orthotist’s skills. Therefore, the rectification process needs to be carefully characterized to ensure that braces designed through a digital workflow are as efficient as those created using a manual process. The aim of this study is to compare 3D scans of patients with AIS against 3D scans of both pre- and post-rectified casts that have been manually shaped by an orthotist. Six AIS patients were recruited from the Ragama Rehabilitation Clinic, Colombo, Sri Lanka. All patients were between 10 and 15 years old, were skeletally immature (Risser grade 0-3), and had Cobb angles between 20-45°. Seven spherical markers were placed at key anatomical locations on each patient’s torso and on the pre- and post-rectified molds so that distances could be reliably measured. 3D scans were obtained of 1) the patient’s torso and pelvis, 2) the patient’s pre-rectification plaster mold, and 3) the patient’s post-rectification plaster mold using a Structure Sensor Mark II 3D scanner (Occipital Inc., USA). 3D stick body models were created for each scan to represent the distances between anatomical landmarks. The 3D stick models were used to analyze the changes in position and orientation of the anatomical landmarks between scans using Blender open-source software. 3D Surface deviation maps represented volume differences between the scans using CloudCompare open-source software. The 3D stick body models showed changes in the position and orientation of thorax anatomical landmarks between the patient and the post-rectification scans for all patients. Anatomical landmark position and volume differences were seen between 3D scans of the patient’s torsos and the pre-rectified molds. Between the pre- and post-rectified molds, material removal was consistently seen on the anterior side of the thorax and the lateral areas below the ribcage. Volume differences were seen in areas where the orthotist planned to place pressure pads (usually at the trochanter on the side to which the lumbar curve was tilted (trochanter pad), at the lumbar apical vertebra (lumbar pad), on the rib connected to the apical vertebrae at the mid-axillary line (thoracic pad), and on the ribs corresponding to the upper thoracic vertebra (axillary extension pad)). The rectification process requires the skill and experience of an orthotist; however, this study demonstrates that the brace shape, location, and volume of material removed from the pre-rectification mold can be characterized and quantified. Results from this study can be fed into software that can accelerate the brace design process and make steps towards the automated digital rectification process.

Keywords: additive manufacturing, orthotics, scoliosis brace design, sculpting software, spinal deformity

Procedia PDF Downloads 146
95 A Study of the Carbon Footprint from a Liquid Silicone Rubber Compounding Facility in Malaysia

Authors: Q. R. Cheah, Y. F. Tan

Abstract:

In modern times, the push for a low carbon footprint entails achieving carbon neutrality as a goal for future generations. One possible step towards carbon footprint reduction is the use of more durable materials with longer lifespans, for example, silicone data cableswhich show at least double the lifespan of similar plastic products. By having greater durability and longer lifespans, silicone data cables can reduce the amount of trash produced as compared to plastics. Furthermore, silicone products don’t produce micro contamination harmful to the ocean. Every year the electronics industry produces an estimated 5 billion data cables for USB type C and lightning data cables for tablets and mobile phone devices. Material usage for outer jacketing is 6 to 12 grams per meter. Tests show that the product lifespan of a silicone data cable over plastic can be doubled due to greater durability. This can save at least 40,000 tonnes of material a year just on the outer jacketing of the data cable. The facility in this study specialises in compounding of liquid silicone rubber (LSR) material for the extrusion process in jacketing for the silicone data cable. This study analyses the carbon emissions from the facility, which is presently capable of producing more than 1,000 tonnes of LSR annually. This study uses guidelines from the World Business Council for Sustainable Development (WBCSD) and World Resources Institute (WRI) to define the boundaries of the scope. The scope of emissions is defined as 1. Emissions from operations owned or controlled by the reporting company, 2. Emissions from the generation of purchased or acquired energy such as electricity, steam, heating, or cooling consumed by the reporting company, and 3. All other indirect emissions occurring in the value chain of the reporting company, including both upstream and downstream emissions. As the study is limited to the compounding facility, the system boundaries definition according to GHG protocol is cradle-to-gate instead of cradle-to-grave exercises. Malaysia’s present electricity generation scenario was also used, where natural gas and coal constitute the bulk of emissions. Calculations show the LSR produced for the silicone data cable with high fire retardant capability has scope 1 emissions of 0.82kg CO2/kg, scope 2 emissions of 0.87kg CO2/kg, and scope 3 emissions of 2.76kg CO2/kg, with a total product carbon footprint of 4.45kg CO2/kg. This total product carbon footprint (Cradle-to-gate) is comparable to the industry and to plastic materials per tonne of material. Although per tonne emission is comparable to plastic material, due to greater durability and longer lifespan, there can be significantly reduced use of LSR material. Suggestions to reduce the calculated product carbon footprint in the scope of emissions involve 1. Incorporating the recycling of factory silicone waste into operations, 2. Using green renewable energy for external electricity sources and 3. Sourcing eco-friendly raw materials with low GHG emissions.

Keywords: carbon footprint, liquid silicone rubber, silicone data cable, Malaysia facility

Procedia PDF Downloads 97
94 We Have Never Seen a Dermatologist. Reaching the Unreachable Through Teledermatology

Authors: Innocent Atuhe, Babra Nalwadda, Grace Mulyowa Kitunzi, Annabella Haninka Ejiri

Abstract:

Background: Atopic Dermatitis (AD) is one of the most prevalent and growing chronic inflammatory skin diseases in African prisons. AD care is limited in African due to lack of information about the disease amongst primary care workers, limited access to dermatologists, lack of proper training of healthcare workers, and shortage of appropriate treatments. We designed and implemented the Prisons Telederma project based on the recommendations of the International Society of Atopic Dermatitis. Our overall goal was to increase access to dermatologist-led care for prisoners with AD through teledermatology in Uganda. We aimed to; i) to increase awareness and understanding of teledermatology among prison health workers; and ii) to improve treatment outcomes of prisoners with atopic dermatitis through increased access to and utilization of consultant dermatologists through teledermatology in Uganda prisons: Approach: We used Store-and-forward Teledermatology (SAF-TD) to increase access to dermatologist-led care for prisoners and prisons staff with AD. We conducted a five days training for prison health workers using an adapted WHO training guide on recognizing neglected tropical diseases through changes on the skin together with an adapted American Academy of Dermatology (AAD) Childhood AD Basic Dermatology Curriculum designed to help trainees develop a clinical approach to the evaluation and initial management of patients with AD. This training was followed by blended e-learning, webinars facilitated by consultant Dermatologists with local knowledge of medication and local practices, apps adjusted for pigmented skin, WhatsApp group discussions, and sharing pigmented skin AD pictures and treatment via zoom meetings. We hired a team of Ugandan Senior Consultant dermatologists to draft an iconographic atlas of the main dermatoses in pigmented African skin and shared this atlas with prison health staff for use as a job aid. We had planned to use MySkinSelfie mobile phone application to take and share skin pictures of prisoners with AD with Consultant Dermatologists, who would review the pictures and prescribe appropriate treatment. Unfortunately, the National Health Service withdrew the app from the market due to technical issues. We monitored and evaluated treatment outcomes using the Patient Oriented Eczema Measure (POEM) tool. We held four advocacy meetings to persuade relevant stakeholders to increase supplies and availability of first-line AD treatments such as emollients in prison health facilities. Results: Draft iconographic atlas of the main dermatoses in pigmented African skin Increased proportion of prison health staff with adequate knowledge of AD and teledermatology from 20% to 80% Increased proportion of prisoners with AD reporting improvement in disease severity (POEM scores) from 25% to 35% in one year. Increased proportion of prisoners with AD seen by consultant dermatologist through teledermatology from 0% to 20% in one year. Increased the availability of AD recommended treatments in prisons health facilities from 5% to 10% in one year

Keywords: teledermatology, prisoners, reaching, un-reachable

Procedia PDF Downloads 117
93 Quality Characteristics of Road Runoff in Coastal Zones: A Case Study in A25 Highway, Portugal

Authors: Pedro B. Antunes, Paulo J. Ramísio

Abstract:

Road runoff is a linear source of diffuse pollution that can cause significant environmental impacts. During rainfall events, pollutants from both stationary and mobile sources, which have accumulated on the road surface, are dragged through the superficial runoff. Road runoff in coastal zones may present high levels of salinity and chlorides due to the proximity of the sea and transported marine aerosols. Appearing to be correlated to this process, organic matter concentration may also be significant. This study assesses this phenomenon with the purpose of identifying the relationships between monitored water quality parameters and intrinsic site variables. To achieve this objective, an extensive monitoring program was conducted on a Portuguese coastal highway. The study included thirty rainfall events, in different weather, traffic and salt deposition conditions in a three years period. The evaluations of various water quality parameters were carried out in over 200 samples. In addition, the meteorological, hydrological and traffic parameters were continuously measured. The salt deposition rates (SDR) were determined by means of a wet candle device, which is an innovative feature of the monitoring program. The SDR, variable throughout the year, appears to show a high correlation with wind speed and direction, but mostly with wave propagation, so that it is lower in the summer, in spite of the favorable wind direction in the case study. The distance to the sea, topography, ground obstacles and the platform altitude seems to be also relevant. It was confirmed the high salinity in the runoff, increasing the concentration of the water quality parameters analyzed, with significant amounts of seawater features. In order to estimate the correlations and patterns of different water quality parameters and variables related to weather, road section and salt deposition, the study included exploratory data analysis using different techniques (e.g. Pearson correlation coefficients, Cluster Analysis and Principal Component Analysis), confirming some specific features of the investigated road runoff. Significant correlations among pollutants were observed. Organic matter was highlighted as very dependent of salinity. Indeed, data analysis showed that some important water quality parameters could be divided into two major clusters based on their correlations to salinity (including organic matter associated parameters) and total suspended solids (including some heavy metals). Furthermore, the concentrations of the most relevant pollutants seemed to be very dependent on some meteorological variables, particularly the duration of the antecedent dry period prior to each rainfall event and the average wind speed. Based on the results of a monitoring case study, in a coastal zone, it was proven that SDR, associated with the hydrological characteristics of road runoff, can contribute for a better knowledge of the runoff characteristics, and help to estimate the specific nature of the runoff and related water quality parameters.

Keywords: coastal zones, monitoring, road runoff pollution, salt deposition

Procedia PDF Downloads 239
92 Assessment and Characterization of Dual-Hardening Adhesion Promoter for Self-Healing Mechanisms in Metal-Plastic Hybrid System

Authors: Anas Hallak, Latifa Seblini, Juergen Wilde

Abstract:

In mechatronics or sensor technology, plastic housings are used to protect sensitive components from harmful environmental influences, such as moisture, media, or reactive substances. Connections, preferably in the form of metallic lead-frame structures, through the housing wall are required for their electrical supply or control. In this system, an insufficient connection between the plastic component, e.g., Polyamide66, and the metal surface, e.g., copper, due to the incompatibility is dominating. As a result, leakage paths can occur along with the plastic-metal interface. Since adhesive bonding has been established as one of the most important joining processes and its use has expanded significantly, driven by the development of improved high-performance adhesives and bonding techniques, this technology has been involved in metal-plastic hybrid structures. In this study, an epoxy bonding agent from DELO (DUALBOND LT2266) has been used to improve the mechanical and chemical binding between the metal and the polymer. It is an adhesion promoter with two reaction stages. In these, the first stage provides fixation to the lead frame directly after the coating step, which can be done by UV-Exposure for a few seconds. In the second stage, the material will be thermally hardened during injection molding. To analyze the two reaction stages of the primer, dynamic DSC experiments were carried out and correlated with Fourier-transform infrared spectroscopy measurements. Furthermore, the number of crosslinking bonds formed in the system in each reaction stage has also been estimated by a rheological characterization. Those investigations have been performed with different times of UV exposure: 12, 96 s and in an industrial preferred temperature range from -20 to 175°C. The shear viscosity values of primer have been measured as a function of temperature and exposure times. For further interpretation, the storage modulus values have been calculated, and the so-called Booij–Palmen plot has been sketched. The next approach in this study is the self-healing mechanisms in the hydride system in which the primer should flow into micro-damage such as interface, cracks, inhibit them from growing, and close them. The ability of the primer to flow in and penetrate defined capillaries made in Ultramid was investigated. Holes with a diameter of 0.3 mm were produced in injection-molded A3EG7 plates with 4 mm thickness. A copper substrate coated with the DUALBOND was placed on the A3EG7 plate and pressed with a certain force. Metallographic analyses were carried out to verify the filling grade, which showed an almost 95% filling ratio of the capillaries. Finally, to estimate the self-healing mechanism in metal-plastic hybrid systems, characterizations have been done on a simple geometry with a metal inlay developed by the Institute of Polymer Technology in Friedrich-Alexander-University. The specimens have been modified with tungsten wire which was to be pulled out after the injection molding to create a micro-hole in the specimen at the interface between the primer and the polymer. The capability of the primer to heal those micro-cracks upon heating, pressing, and thermal aging has been characterized through metallographic analyses.

Keywords: hybrid structures, self-healing, thermoplastic housing, adhesive

Procedia PDF Downloads 195
91 The Effect of Artificial Intelligence on Mobile Phones and Communication Systems

Authors: Ibram Khalafalla Roshdy Shokry

Abstract:

This paper gives service feel multiple get entry to (CSMA) verbal exchange model based totally totally on SoC format method. Such model can be used to guide the modelling of the complex c084d04ddacadd4b971ae3d98fecfb2a communique systems, consequently use of such communication version is an crucial method in the creation of excessive general overall performance conversation. SystemC has been selected as it gives a homogeneous format drift for complicated designs (i.e. SoC and IP based format). We use a swarm device to validate CSMA designed version and to expose how advantages of incorporating communication early within the layout process. The wireless conversation created via the modeling of CSMA protocol that may be used to attain conversation among all of the retailers and to coordinate get proper of entry to to the shared medium (channel).The device of automobiles with wi-fiwireless communique abilities is expected to be the important thing to the evolution to next era intelligent transportation systems (ITS). The IEEE network has been continuously operating at the development of an wireless vehicular communication protocol for the enhancement of wi-fi get admission to in Vehicular surroundings (WAVE). Vehicular verbal exchange systems, known as V2X, help car to car (V2V) and automobile to infrastructure (V2I) communications. The wi-ficiencywireless of such communication systems relies upon on several elements, amongst which the encircling surroundings and mobility are prominent. as a result, this observe makes a speciality of the evaluation of the actual performance of vehicular verbal exchange with unique cognizance on the effects of the actual surroundings and mobility on V2X verbal exchange. It begins by wi-fi the actual most range that such conversation can guide and then evaluates V2I and V2V performances. The Arada LocoMate OBU transmission device changed into used to check and evaluate the effect of the transmission range in V2X verbal exchange. The evaluation of V2I and V2V communique takes the real effects of low and excessive mobility on transmission under consideration.Multiagent systems have received sizeable attention in numerous wi-fields, which include robotics, independent automobiles, and allotted computing, where a couple of retailers cooperate and speak to reap complicated duties. wi-figreen communication among retailers is a critical thing of these systems, because it directly influences their usual performance and scalability. This scholarly work gives an exploration of essential communication factors and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of those protocols across diverse situations. The studies additionally sheds light on rising tendencies within verbal exchange protocols for multiagent systems, together with the incorporation of device mastering strategies and the adoption of blockchain-based totally solutions to make sure comfy communique. those developments offer valuable insights into the evolving landscape of multiagent structures and their verbal exchange protocols.

Keywords: communication, multi-agent systems, protocols, consensussystemC, modelling, simulation, CSMA

Procedia PDF Downloads 28
90 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs

Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.

Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox

Procedia PDF Downloads 378
89 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors

Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs

Abstract:

Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.

Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors

Procedia PDF Downloads 121
88 Quantifying Impairments in Whiplash-Associated Disorders and Association with Patient-Reported Outcomes

Authors: Harpa Ragnarsdóttir, Magnús Kjartan Gíslason, Kristín Briem, Guðný Lilja Oddsdóttir

Abstract:

Introduction: Whiplash-Associated Disorder (WAD) is a health problem characterized by motor, neurological and psychosocial symptoms, stressing the need for a multimodal treatment approach. To achieve individualized multimodal approach, prognostic factors need to be identified early using validated patient-reported and objective outcome measures. The aim of this study is to demonstrate the degree of association between patient-reported and clinical outcome measures of WAD patients in the subacute phase. Methods: Individuals (n=41) with subacute (≥1, ≤3 months) WAD (I-II), medium to high-risk symptoms, or neck pain rating ≥ 4/10 on the Visual Analog Scale (VAS) were examined. Outcome measures included measurements for movement control (Butterfly test) and cervical active range of motion (cAROM) using the NeckSmart system, a computer system using an inertial measurement unit (IMU) that connects to a computer. The IMU sensor is placed on the participant’s head, who receives visual feedback about the movement of the head. Patient-reported neck disability, pain intensity, general health, self-perceived handicap, central sensitization, and difficulties due to dizziness were measured using questionnaires. Excel and R statistical software were used for statistical analyses. Results: Forty-one participants, 15 males (37%), 26 females (63%), mean (SD) age 36.8 (±12.7), underwent data collection. Mean amplitude accuracy (AA) (SD) in the Butterfly test for easy, medium, and difficult paths were 2.4mm (0.9), 4.4mm (1.8), and 6.8mm (2.7), respectively. Mean cAROM (SD) for flexion, extension, left-, and right rotation were 46.3° (18.5), 48.8° (17.8), 58.2° (14.3), and 58.9° (15.0), respectively. Mean scores on the Neck Disability Index (NDI), VAS, Dizziness Handicap Inventory (DHI), Central Sensitization Inventory (CSI), and 36-Item Short Form Survey RAND version (RAND) were 43% (17.4), 7 (1.7), 37 (25.4), 51 (17.5), and 39.2 (17.7) respectively. Females showed significantly greater deviation for AA compared to males for easy and medium Butterfly paths (p<0.05). Statistically significant moderate to strong positive correlation was found between the DHI and easy (r=0.6, p=0.05), medium (r=0.5, p=0.05)) and difficult (r=0.5, p<0.05) Butterfly paths, between the total RAND score and all cAROMs (r between 0.4-0.7, p≤0.05) except flexion (r=0.4, p=0.7), and between the NDI score and CSI (r=0.7, p<0.01), VAS (r=0.5, p<0.01), and DHI (r=0.7, p<0.01) scores respectively. Discussion: All patient-reported and objective measures were found to be outside the reference range. Results suggest females have worse movement control in the neck in the subacute WAD phase. However, no statistical difference based on gender was found in patient-reported measures. Suggesting females might have worse movement control than males in general in this phase. The correlation found between DHI and the Butterfly test can be explained because the DHI measures proprioceptive symptoms like dizziness and eye movement disorders that can affect the outcome of movement control tests. A correlation was found between the total RAND score and cAROM, suggesting that a reduced range of motion affects the quality of life. Significance: The NeckSmart system can detect abnormalities in cAROM, fine movement control, and kinesthesia of the neck. Results suggest females have worse movement control than males. Results show a moderate to a high correlation between several patient-reported and objective measurements.

Keywords: whiplash associated disorders, car-collision, neck, trauma, subacute

Procedia PDF Downloads 70
87 Application of Laser-Induced Breakdown Spectroscopy for the Evaluation of Concrete on the Construction Site and in the Laboratory

Authors: Gerd Wilsch, Tobias Guenther, Tobias Voelker

Abstract:

In view of the ageing of vital infrastructure facilities, a reliable condition assessment of concrete structures is becoming of increasing interest for asset owners to plan timely and appropriate maintenance and repair interventions. For concrete structures, reinforcement corrosion induced by penetrating chlorides is the dominant deterioration mechanism affecting the serviceability and, eventually, structural performance. The determination of the quantitative chloride ingress is required not only to provide valuable information on the present condition of a structure, but the data obtained can also be used for the prediction of its future development and associated risks. At present, wet chemical analysis of ground concrete samples by a laboratory is the most common test procedure for the determination of the chloride content. As the chloride content is expressed by the mass of the binder, the analysis should involve determination of both the amount of binder and the amount of chloride contained in a concrete sample. This procedure is laborious, time-consuming, and costly. The chloride profile obtained is based on depth intervals of 10 mm. LIBS is an economically viable alternative providing chloride contents at depth intervals of 1 mm or less. It provides two-dimensional maps of quantitative element distributions and can locate spots of higher concentrations like in a crack. The results are correlated directly to the mass of the binder, and it can be applied on-site to deliver instantaneous results for the evaluation of the structure. Examples for the application of the method in the laboratory for the investigation of diffusion and migration of chlorides, sulfates, and alkalis are presented. An example for the visualization of the Li transport in concrete is also shown. These examples show the potential of the method for a fast, reliable, and automated two-dimensional investigation of transport processes. Due to the better spatial resolution, more accurate input parameters for model calculations are determined. By the simultaneous detection of elements such as carbon, chlorine, sodium, and potassium, the mutual influence of the different processes can be determined in only one measurement. Furthermore, the application of a mobile LIBS system in a parking garage is demonstrated. It uses a diode-pumped low energy laser (3 mJ, 1.5 ns, 100 Hz) and a compact NIR spectrometer. A portable scanner allows a two-dimensional quantitative element mapping. Results show the quantitative chloride analysis on wall and floor surfaces. To determine the 2-D distribution of harmful elements (Cl, C), concrete cores were drilled, split, and analyzed directly on-site. Results obtained were compared and verified with laboratory measurements. The results presented show that the LIBS method is a valuable addition to the standard procedures - the wet chemical analysis of ground concrete samples. Currently, work is underway to develop a technical code of practice for the application of the method for the determination of chloride concentration in concrete.

Keywords: chemical analysis, concrete, LIBS, spectroscopy

Procedia PDF Downloads 105
86 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 131
85 Isoflavonoid Dynamic Variation in Red Clover Genotypes

Authors: Andrés Quiroz, Emilio Hormazábal, Ana Mutis, Fernando Ortega, Loreto Méndez, Leonardo Parra

Abstract:

Red clover root borer, Hylastinus obscurus Marsham (Coleoptera: Curculionidae), is the main insect pest associated to red clover, Trifolium pratense L. An average of 1.5 H. obscurus per plant can cause 5.5% reduction in forage yield in pastures of two to three years old. Moreover, insect attack can reach 70% to 100% of the plants. To our knowledge, there is no a chemical strategy for controlling this pest. Therefore alternative strategies for controlling H. obscurus are a high priority for red clover producers. One of this alternative is related to the study of secondary metabolites involved in intrinsic chemical defenses developed by plants, such as isoflavonoids. The isoflavonoids formononetin and daidzein have elicited an antifeedant and phagostimult effect on H. obscurus respectively. However, we do not know how is the dynamic variation of these isoflavonoids under field conditions. The main objective of this work was to evaluate the variation of the antifeedant isoflavonoids formononetin, the phagostimulant isoflavonoids daidzein, and their respective glycosides over time in different ecotypes of red clover. Fourteen red clover ecotypes (8 cultivars and 6 experimental lines), were collected at INIA-Carillanca (La Araucanía, Chile). These plants were established in October 2015 under irrigated conditions. The cultivars were distributed in a randomized complete block with three replicates. The whole plants were sampled in four times: 15th October 2016, 12th December 2016, 27th January 2017 and 16th March 2017 with sufficient amount of soil to avoid root damage. A polar fraction of isoflavonoid was obtained from 20 mg of lyophilized root tissue extracted with 2 mL of 80% MeOH for 16 h using an orbital shaker in the dark at room temperature. After, an aliquot of 1.4 mL of the supernatant was evaporated, and the residue was resuspended in 300 µL of 45% MeOH. The identification and quantification of isoflavonoid root extracts were performed by the injection of 20 µL into a Shimadzu HPLC equipped with a C-18 column. The sample was eluted with a mobile phase composed of AcOH: H₂O (1:9 v/v) as solvent A and CH₃CN as solvent B. The detection was performed at 260 nm. The results showed that the amount of aglycones was higher than the respective glycosides. This result is according to the biosynthetic pathway of flavonoids, where the formation of glycoside is further to the glycosides biosynthesis. The amount of formononetin was higher than daidzein. In roots, where H. obscurus spent the most part of its live cycle, the highest content of formononetin was found in G 27, Pawera, Sabtoron High, Redqueli-INIA and Superqueli-INIA cvs. (2.1, 1.8, 1.8, 1.6 and 1.0 mg g⁻¹ respectively); and the lowest amount of daidzein were found Superqueli-INIA (0.32 mg g⁻¹) and in the experimental line Sel Syn Int4 (0.24 mg g⁻¹). This ecotype showed a high content of formononetin (0.9 mg g⁻¹). This information, associated with cultural practices, could help farmers and breeders to reduce H. obscurus in grassland, selecting ecotypes with high content of formononetin and low amount of daidzein in the roots of red clover plants. Acknowledgements: FONDECYT 1141245 and 11130715.

Keywords: daidzein, formononetin, isoflavonoid glycosides, trifolium pratense

Procedia PDF Downloads 219
84 Coil-Over Shock Absorbers Compared to Inherent Material Damping

Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major

Abstract:

Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.

Keywords: damper structures, material damping, PDMS, TPU

Procedia PDF Downloads 115
83 Mycophenolate-Induced Disseminated TB in a PPD-Negative Patient

Authors: Megan L. Srinivas

Abstract:

Individuals with underlying rheumatologic diseases such as dermatomyositis may not adequately respond to tuberculin (PPD) skin tests, creating false negative results. These illnesses are frequently treated with immunosuppressive therapy making proper identification of TB infection imperative. A 59-year-old Filipino man was diagnosed with dermatomyositis on the basis of rash, electromyography, and muscle biopsy. He was initially treated with IVIG infusions and transitioned to oral prednisone and mycophenolate. The patient’s symptoms improved on this regimen. Six months after starting mycophenolate, the patient began having fevers, night sweats, and productive cough without hemoptysis. He moved from the Philippines 5 years prior to dermatomyositis diagnosis, denied sick contacts, and was PPD negative both at immigration and immediately prior to starting mycophenolate treatment. A third PPD was negative following the onset of these new symptoms. He was treated for community-acquired pneumonia, but symptoms worsened over 10 days and he developed watery diarrhea and a growing non-tender, non-mobile mass on the left side of his neck. A chest x-ray demonstrated a cavitary lesion in right upper lobe suspicious for TB that had not been present one month earlier. Chest CT corroborated this finding also exhibiting necrotic hilar and paratracheal lymphadenopathy. Neck CT demonstrated the left-sided mass as cervical chain lymphadenopathy. Expectorated sputum and stool samples contained acid-fast bacilli (AFB), cultures showing TB bacteria. Fine-needle biopsy of the neck mass (scrofula) also exhibited AFB. An MRI brain showed nodular enhancement suspected to be a tuberculoma. Mycophenolate was discontinued and dermatomyositis treatment was switched to oral prednisone with a 3-day course of IVIG. The patient’s infection showed sensitivity to standard RIPE (rifampin, isoniazid, pyrazinamide, and ethambutol) treatment. Within a week of starting RIPE, the patient’s diarrhea subsided, scrofula diminished, and symptoms significantly improved. By the end of treatment week 3, the patient’s sputum no longer contained AFB; he was removed from isolation, and was discharged to continue RIPE at home. He was discharged on oral prednisone, which effectively addressed his dermatomyositis. This case illustrates the unreliability of PPD tests in patients with long-term inflammatory diseases such as dermatomyositis. Other immunosuppressive therapies (adalimumab, etanercept, and infliximab) have been affiliated with conversion of latent TB to disseminated TB. Mycophenolate is another immunosuppressive agent with similar mechanistic properties. Thus, it is imperative that patients with long-term inflammatory diseases and high-risk TB factors initiating immunosuppressive therapy receive a TB blood test (such as a quantiferon gold assay) prior to the initiation of therapy to ensure that latent TB is unmasked before it can evolve into a disseminated form of the disease.

Keywords: dermatomyositis, immunosuppressant medications, mycophenolate, disseminated tuberculosis

Procedia PDF Downloads 208
82 An eHealth Intervention Using Accelerometer- Smart Phone-App Technology to Promote Physical Activity and Health among Employees in a Military Setting

Authors: Emilia Pietiläinen, Heikki Kyröläinen, Tommi Vasankari, Matti Santtila, Tiina Luukkaala, Kai Parkkola

Abstract:

Working in the military sets special demands on physical fitness, however, reduced physical activity levels among employees in the Finnish Defence Forces (FDF), a trend also being seen among the working-age population in Finland, is leading to reduced physical fitness levels and increased risk of cardiovascular and metabolic diseases, something which also increases human resource costs. Therefore, the aim of the present study was to develop an eHealth intervention using accelerometer- smartphone app feedback technique, telephone counseling and physical activity recordings to increase physical activity of the personnel and thereby improve their health. Specific aims were to reduce stress, improve quality of sleep and mental and physical performance, ability to work and reduce sick leave absences. Employees from six military brigades around Finland were invited to participate in the study, and finally, 260 voluntary participants were included (66 women, 194 men). The participants were randomized into intervention (156) and control groups (104). The eHealth intervention group used accelerometers measuring daily physical activity and duration and quality of sleep for six months. The accelerometers transmitted the data to smartphone apps while giving feedback about daily physical activity and sleep. The intervention group participants were also encouraged to exercise for two hours a week during working hours, a benefit that was already offered to employees following existing FDF guidelines. To separate the exercise done during working hours from the accelerometer data, the intervention group marked this exercise into an exercise diary. The intervention group also participated in telephone counseling about their physical activity. On the other hand, the control group participants continued with their normal exercise routine without the accelerometer and feedback. They could utilize the benefit of being able to exercise during working hours, but they were not separately encouraged for it, nor was the exercise diary used. The participants were measured at baseline, after the entire intervention period, and six months after the end of the entire intervention. The measurements included accelerometer recordings, biochemical laboratory tests, body composition measurements, physical fitness tests, and a wide questionnaire focusing on sociodemographic factors, physical activity and health. In terms of results, the primary indicators of effectiveness are increased physical activity and fitness, improved health status, and reduced sick leave absences. The evaluation of the present scientific reach is based on the data collected during the baseline measurements. Maintenance of the studied outcomes is assessed by comparing the results of the control group measured at the baseline and a year follow-up. Results of the study are not yet available but will be presented at the conference. The present findings will help to develop an easy and cost-effective model to support the health and working capability of employees in the military and other workplaces.

Keywords: accelerometer, health, mobile applications, physical activity, physical performance

Procedia PDF Downloads 197
81 Sentinel-2 Based Burn Area Severity Assessment Tool in Google Earth Engine

Authors: D. Madhushanka, Y. Liu, H. C. Fernando

Abstract:

Fires are one of the foremost factors of land surface disturbance in diverse ecosystems, causing soil erosion and land-cover changes and atmospheric effects affecting people's lives and properties. Generally, the severity of the fire is calculated as the Normalized Burn Ratio (NBR) index. This is performed manually by comparing two images obtained afterward. Then by using the bitemporal difference of the preprocessed satellite images, the dNBR is calculated. The burnt area is then classified as either unburnt (dNBR<0.1) or burnt (dNBR>= 0.1). Furthermore, Wildfire Severity Assessment (WSA) classifies burnt areas and unburnt areas using classification levels proposed by USGS and comprises seven classes. This procedure generates a burn severity report for the area chosen by the user manually. This study is carried out with the objective of producing an automated tool for the above-mentioned process, namely the World Wildfire Severity Assessment Tool (WWSAT). It is implemented in Google Earth Engine (GEE), which is a free cloud-computing platform for satellite data processing, with several data catalogs at different resolutions (notably Landsat, Sentinel-2, and MODIS) and planetary-scale analysis capabilities. Sentinel-2 MSI is chosen to obtain regular processes related to burnt area severity mapping using a medium spatial resolution sensor (15m). This tool uses machine learning classification techniques to identify burnt areas using NBR and to classify their severity over the user-selected extent and period automatically. Cloud coverage is one of the biggest concerns when fire severity mapping is performed. In WWSAT based on GEE, we present a fully automatic workflow to aggregate cloud-free Sentinel-2 images for both pre-fire and post-fire image compositing. The parallel processing capabilities and preloaded geospatial datasets of GEE facilitated the production of this tool. This tool consists of a Graphical User Interface (GUI) to make it user-friendly. The advantage of this tool is the ability to obtain burn area severity over a large extent and more extended temporal periods. Two case studies were carried out to demonstrate the performance of this tool. The Blue Mountain national park forest affected by the Australian fire season between 2019 and 2020 is used to describe the workflow of the WWSAT. This site detected more than 7809 km2, using Sentinel-2 data, giving an error below 6.5% when compared with the area detected on the field. Furthermore, 86.77% of the detected area was recognized as fully burnt out, of which high severity (17.29%), moderate-high severity (19.63%), moderate-low severity (22.35%), and low severity (27.51%). The Arapaho and Roosevelt National Forest Park, California, the USA, which is affected by the Cameron peak fire in 2020, is chosen for the second case study. It was found that around 983 km2 had burned out, of which high severity (2.73%), moderate-high severity (1.57%), moderate-low severity (1.18%), and low severity (5.45%). These spots also can be detected through the visual inspection made possible by cloud-free images generated by WWSAT. This tool is cost-effective in calculating the burnt area since satellite images are free and the cost of field surveys is avoided.

Keywords: burnt area, burnt severity, fires, google earth engine (GEE), sentinel-2

Procedia PDF Downloads 238
80 Agri-Food Transparency and Traceability: A Marketing Tool to Satisfy Consumer Awareness Needs

Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli

Abstract:

The link between man and food plays, in the social and economic system, a central role where cultural and multidisciplinary aspects intertwine: food is not only nutrition, but also communication, culture, politics, environment, science, ethics, fashion. This multi-dimensionality has many implications in the food economy. In recent years, the consumer became more conscious about his food choices, involving a consistent change in consumption models. This change concerns several aspects: awareness of food system issues, employment of socially and environmentally conscious decision-making, food choices based on different characteristics than nutritional ones i.e. origin of food, how it’s produced, and who’s producing it. In this frame the ‘consumption choices’ and the ‘interests of the citizen’ become one part of the others. The figure of the ‘Citizen Consumer’ is born, a responsible and ethically motivated individual to change his lifestyle, achieving the goal of sustainable consumption. Simultaneously the branding, that before was guarantee of the product quality, today is questioned. In order to meet these needs, Agri-Food companies are developing specific product lines that follow two main philosophies: ‘Back to basics’ and ‘Less is more’. However, the issue of ethical behavior does not seem to find an adequate on market offer. Most likely due to a lack of attention on the communication strategy used, very often based on market logic and rarely on ethical one. The label in its classic concept of ‘clean labeling’ can no longer be the only instrument through which to convey product information and its evolution towards a concept of ‘clear label’ is necessary to embrace ethical and transparent concepts in progress the process of democratization of the Food System. The implementation of a voluntary traceability path, relying on the technological models of the Internet of Things or Industry 4.0, would enable the Agri-Food Supply Chain to collect data that, if properly treated, could satisfy the information need of consumers. A change of approach is therefore proposed towards Agri-Food traceability that is no longer intended as a tool to be used to respond to the legislator, but rather as a promotional tool useful to tell the company in a transparent manner and then reach the slice of the market of food citizens. The use of mobile technology can also facilitate this information transfer. However, in order to guarantee maximum efficiency, an appropriate communication model based on the ethical communication principles should be used, which aims to overcome the pipeline communication model, to offer the listener a new way of telling the food product, based on real data collected through processes traceability. The Citizen Consumer is therefore placed at the center of the new model of communication in which he has the opportunity to choose what to know and how. The new label creates a virtual access point capable of telling the product according to different point of views, following the personal interests and offering the possibility to give several content modalities to support different situations and usability.

Keywords: agri food traceability, agri-food transparency, clear label, food system, internet of things

Procedia PDF Downloads 159
79 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect

Authors: Jagmeet S. Kanwal, Julia F. Langley

Abstract:

Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.

Keywords: acoustics, brain, music healing, pressure receptors

Procedia PDF Downloads 167
78 Geodynamic Evolution of the Tunisian Dorsal Backland (Central Mediterranean) from the Cenozoic to Present

Authors: Aymen Arfaoui, Abdelkader Soumaya, Noureddine Ben Ayed

Abstract:

The study region is located in the Tunisian Dorsal Backland (Central Mediterranean), which is the easternmost part of the Saharan Atlas mountain range, trending southwest-northeast. Based on our fieldwork, seismic tomography images, seismicity, and previous studies, we propose an interpretation of the relationship between the surface deformation and fault kinematics in the study area and the internal dynamic processes acting in the Central Mediterranean from the Cenozoic to the present. The subduction and dynamics of internal forces beneath the complicated Maghrebides mobile belt have an impact on the Tertiary and Quaternary tectonic regimes in the Pelagian and Atlassic foreland that is part of our study region. The left lateral reactivation of the major "Tunisian N-S Axis fault" and the development of a compressional relay between the Hammamet Korbous and Messella-Ressas faults are possibly a result of tectonic stresses due to the slab roll-back following the Africa/Eurasia convergence. After the slab segmentation and its eastward migration (5–4 Ma) and the formation of the Strait of Sicily "rift zone" further east, a transtensional tectonic regime has been installed in this area. According to seismic tomography images, the STEP fault of the "North-South Axis" at Hammamet-Korbous coincides with the western edge of the "Slab windows" of the Sicilian Channel and the eastern boundary of the positive anomalies attributed to the residual Slab of Tunisia. On the other hand, significant E-W Plio-Quaternary tectonic activity may be observed along the eastern portion of this STEP fault system in the Grombalia zone as a result of recent vertical lithospheric motion in response to the lateral slab migration eastward to Sicily Channel. According to SKS fast splitting directions, the upper mantle flow pattern beneath Tunisian Dorsal is parallel to the NE-SW to E-W orientation of the Shmin identified in the study area, similar to the Plio-Quaternary extensional orientation in the Central Mediterranean. Additionally, the removal of the lithosphere and the subsequent uplift of the sub-lithospheric mantle beneath the topographic highs of the Dorsal and its surroundings may be the cause of the dominant extensional to transtensional Quaternary regime. The occurrence of strike-slip and extensional seismic events in the Pelagian block reveals that the regional transtensional tectonic regime persists today. Finally, we believe that the geodynamic history of the study area since the Cenozoic is primarily influenced by the preexisting weak zones, the African slab detachment, and the upper mantle flow pattern in the central Mediterranean.

Keywords: Tunisia, lithospheric discontinuity (STEP fault), geodynamic evolution, Tunisian dorsal backland, strike-slip fault, seismic tomography, seismicity, central Mediterranean

Procedia PDF Downloads 80
77 Intelligent Materials and Functional Aspects of Shape Memory Alloys

Authors: Osman Adiguzel

Abstract:

Shape-memory alloys are a new class of functional materials with a peculiar property known as shape memory effect. These alloys return to a previously defined shape on heating after deformation in low temperature product phase region and take place in a class of functional materials due to this property. The origin of this phenomenon lies in the fact that the material changes its internal crystalline structure with changing temperature. Shape memory effect is based on martensitic transitions, which govern the remarkable changes in internal crystalline structure of materials. Martensitic transformation, which is a solid state phase transformation, occurs in thermal manner in material on cooling from high temperature parent phase region. This transformation is governed by changes in the crystalline structure of the material. Shape memory alloys cycle between original and deformed shapes in bulk level on heating and cooling, and can be used as a thermal actuator or temperature-sensitive elements due to this property. Martensitic transformations usually occur with the cooperative movement of atoms by means of lattice invariant shears. The ordered parent phase structures turn into twinned structures with this movement in crystallographic manner in thermal induced case. The twinned martensites turn into the twinned or oriented martensite by stressing the material at low temperature martensitic phase condition. The detwinned martensite turns into the parent phase structure on first heating, first cycle, and parent phase structures turn into the twinned and detwinned structures respectively in irreversible and reversible memory cases. On the other hand, shape memory materials are very important and useful in many interdisciplinary fields such as medicine, pharmacy, bioengineering, metallurgy and many engineering fields. The choice of material as well as actuator and sensor to combine it with the host structure is very essential to develop main materials and structures. Copper based alloys exhibit this property in metastable beta-phase region, which has bcc-based structures at high temperature parent phase field, and these structures martensitically turn into layered complex structures with lattice twinning following two ordered reactions on cooling. Martensitic transition occurs as self-accommodated martensite with inhomogeneous shears, lattice invariant shears which occur in two opposite directions, <110 > -type directions on the {110}-type plane of austenite matrix which is basal plane of martensite. This kind of shear can be called as {110}<110> -type mode and gives rise to the formation of layered structures, like 3R, 9R or 18R depending on the stacking sequences on the close-packed planes of the ordered lattice. In the present contribution, x-ray diffraction and transmission electron microscopy (TEM) studies were carried out on two copper based alloys which have the chemical compositions in weight; Cu-26.1%Zn 4%Al and Cu-11%Al-6%Mn. X-ray diffraction profiles and electron diffraction patterns reveal that both alloys exhibit super lattice reflections inherited from parent phase due to the displacive character of martensitic transformation. X-ray diffractograms taken in a long time interval show that locations and intensities of diffraction peaks change with the aging time at room temperature. In particular, some of the successive peak pairs providing a special relation between Miller indices come close each other.

Keywords: Shape memory effect, martensite, twinning, detwinning, self-accommodation, layered structures

Procedia PDF Downloads 428
76 Multifield Problems in 3D Structural Analysis of Advanced Composite Plates and Shells

Authors: Salvatore Brischetto, Domenico Cesare

Abstract:

Major improvements in future aircraft and spacecraft could be those dependent on an increasing use of conventional and unconventional multilayered structures embedding composite materials, functionally graded materials, piezoelectric or piezomagnetic materials, and soft foam or honeycomb cores. Layers made of such materials can be combined in different ways to obtain structures that are able to fulfill several structural requirements. The next generation of aircraft and spacecraft will be manufactured as multilayered structures under the action of a combination of two or more physical fields. In multifield problems for multilayered structures, several physical fields (thermal, hygroscopic, electric and magnetic ones) interact each other with different levels of influence and importance. An exact 3D shell model is here proposed for these types of analyses. This model is based on a coupled system including 3D equilibrium equations, 3D Fourier heat conduction equation, 3D Fick diffusion equation and electric and magnetic divergence equations. The set of partial differential equations of second order in z is written using a mixed curvilinear orthogonal reference system valid for spherical and cylindrical shell panels, cylinders and plates. The order of partial differential equations is reduced to the first one thanks to the redoubling of the number of variables. The solution in the thickness z direction is obtained by means of the exponential matrix method and the correct imposition of interlaminar continuity conditions in terms of displacements, transverse stresses, electric and magnetic potentials, temperature, moisture content and transverse normal multifield fluxes. The investigated structures have simply supported sides in order to obtain a closed form solution in the in-plane directions. Moreover, a layerwise approach is proposed which allows a 3D correct description of multilayered anisotropic structures subjected to field loads. Several results will be proposed in tabular and graphical formto evaluate displacements, stresses and strains when mechanical loads, temperature gradients, moisture content gradients, electric potentials and magnetic potentials are applied at the external surfaces of the structures in steady-state conditions. In the case of inclusions of piezoelectric and piezomagnetic layers in the multilayered structures, so called smart structures are obtained. In this case, a free vibration analysis in open and closed circuit configurations and a static analysis for sensor and actuator applications will be proposed. The proposed results will be useful to better understand the physical and structural behaviour of multilayered advanced composite structures in the case of multifield interactions. Moreover, these analytical results could be used as reference solutions for those scientists interested in the development of 3D and 2D numerical shell/plate models based, for example, on the finite element approach or on the differential quadrature methodology. The correct impositions of boundary geometrical and load conditions, interlaminar continuity conditions and the zigzag behaviour description due to transverse anisotropy will be also discussed and verified.

Keywords: composite structures, 3D shell model, stress analysis, multifield loads, exponential matrix method, layer wise approach

Procedia PDF Downloads 68