Search results for: time series fractal analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 40659

Search results for: time series fractal analysis

37449 Synthesis and Characterization of Some Mono Chloro-S-Triazine Vinyl Sulphone Reactive Dyes

Authors: Nuradeen Abdullahi Nadabo, Kasali Adewale Bello, Chindo Istifanus

Abstract:

A series of ten bi functional mono-chloro-s-triazine vinyl sulphone reactive dyes were synthesized based on H-acid with varied substituents coded as (BRD). These dyes were characterized by IR spectroscopy. The results revealed an incorporation of various substituents. The visible absorption spectra of these dyes were examined in various solvents and results shows positive and negative salvatochromism as the solvent polarity; changes, melting point, percentage yield and molar extinction co-efficient of these dyes were also evaluated and the results obtained are within a reasonable range acceptable for commercial dyeing.

Keywords: bifunctional, characterization, reactive dyes, synthesis

Procedia PDF Downloads 426
37448 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings

Authors: Sergei Aleinik, Mikhail Stolbov

Abstract:

In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.

Keywords: cross-correlation, delay estimation, signal envelope, signal processing

Procedia PDF Downloads 473
37447 Self-Organization-Based Approach for Embedded Real-Time System Design

Authors: S. S. Bendib, L. W. Mouss, S. Kalla

Abstract:

This paper proposes a self-organization-based approach for real-time systems design. The addressed issue is the mapping of an application onto an architecture of heterogeneous processors while optimizing both makespan and reliability. Since this problem is NP-hard, a heuristic algorithm is used to obtain efficiently approximate solutions. The proposed approach takes into consideration the quality as well as the diversity of solutions. Indeed, an alternate treatment of the two objectives allows to produce solutions of good quality while a self-organization approach based on the neighborhood structure is used to reorganize solutions and consequently to enhance their diversity. Produced solutions make different compromises between the makespan and the reliability giving the user the possibility to select the solution suited to his (her) needs.

Keywords: embedded real-time systems design, makespan, reliability, self-organization, compromises

Procedia PDF Downloads 130
37446 Determinants for Transportation Services in Addis Ababa City

Authors: Yared Yitagesu Tilahun

Abstract:

Every nation, developed or developing, relies on transportation, but Addis Abeba City's transportation service is impacted by a number of variables. The current study's objectives are to determine the factors that influence transportation and gauge consumer satisfaction with such services in Addis Abeba. Customers and employees of Addis Ababa's transportation service authority would be the study's target group. 40 workers of the authority would be counted as part of the 310 000 clients that make up the population of the searcher service. Using a straightforward random selection technique, the researcher only chose 99 customers and 28 staff from this enormous group due to the considerable cost and time involved. Data gathering and analysis options included both quantitative and qualitative approaches. The results of this poll show that young people between the ages of 18 and 25 make up the majority of respondents (51.6%). The majority of employees and customers indicated that they are not satisfied with Addis Ababa's overall transportation system. The Addis Abeba Transportation Authority prioritizes client happiness by providing fair service. The company should have a system in place for managing time, resources, and people effectively. It should also provide employees the opportunity to contribute to client handling policies.

Keywords: customer satisfaction, transportation, services, determinants

Procedia PDF Downloads 71
37445 A Comparative Study on South-East Asian Leading Container Ports: Jawaharlal Nehru Port Trust, Chennai, Singapore, Dubai, and Colombo Ports

Authors: Jonardan Koner, Avinash Purandare

Abstract:

In today’s globalized world international business is a very key area for the country's growth. Some of the strategic areas for holding up a country’s international business to grow are in the areas of connecting Ports, Road Network, and Rail Network. India’s International Business is booming both in Exports as well as Imports. Ports play a very central part in the growth of international trade and ensuring competitive ports is of critical importance. India has a long coastline which is a big asset for the country as it has given the opportunity for development of a large number of major and minor ports which will contribute to the maritime trades’ development. The National Economic Development of India requires a well-functioning seaport system. To know the comparative strength of Indian ports over South-east Asian similar ports, the study is considering the objectives of (I) to identify the key parameters of an international mega container port, (II) to compare the five selected container ports (JNPT, Chennai, Singapore, Dubai, and Colombo Ports) according to user of the ports and iii) to measure the growth of selected five container ports’ throughput over time and their comparison. The study is based on both primary and secondary databases. The linear time trend analysis is done to show the trend in quantum of exports, imports and total goods/services handled by individual ports over the years. The comparative trend analysis is done for the selected five ports of cargo traffic handled in terms of Tonnage (weight) and number of containers (TEU’s). The comparative trend analysis is done between containerized and non-containerized cargo traffic in the five selected five ports. The primary data analysis is done comprising of comparative analysis of factor ratings through bar diagrams, statistical inference of factor ratings for the selected five ports, consolidated comparative line charts of factor rating for the selected five ports, consolidated comparative bar charts of factor ratings of the selected five ports and the distribution of ratings (frequency terms). The linear regression model is used to forecast the container capacities required for JNPT Port and Chennai Port by the year 2030. Multiple regression analysis is carried out to measure the impact of selected 34 explanatory variables on the ‘Overall Performance of the Port’ for each of the selected five ports. The research outcome is of high significance to the stakeholders of Indian container handling ports. Indian container port of JNPT and Chennai are benchmarked against international ports such as Singapore, Dubai, and Colombo Ports which are the competing ports in the neighbouring region. The study has analysed the feedback ratings for the selected 35 factors regarding physical infrastructure and services rendered to the port users. This feedback would provide valuable data for carrying out improvements in the facilities provided to the port users. These installations would help the ports’ users to carry out their work in more efficient manner.

Keywords: throughput, twenty equivalent units, TEUs, cargo traffic, shipping lines, freight forwarders

Procedia PDF Downloads 127
37444 Student Diversity in Higher Education: The Impact of Digital Elements on Student Learning Behavior and Subject-Specific Preferences

Authors: Pia Kastl

Abstract:

By combining face-to-face sessions with digital selflearning units, the learning process can be enhanced and learning success improved. Potentials of blended learning are the flexibility and possibility to get in touch with lecturers and fellow students face-toface. It also offers the opportunity to individualize and self-regulate the learning process. Aim of this article is to analyse how different learning environments affect students’ learning behavior and how digital tools can be used effectively. The analysis also considers the extent to which the field of study affects the students’ preferences. Semi-structured interviews were conducted with students from different disciplines at two German universities (N= 60). The questions addressed satisfaction and perception of online, faceto-face and blended learning courses. In addition, suggestions for improving learning experience and the use of digital tools in the different learning environments were surveyed. The results show that being present on campus has a positive impact on learning success and online teaching facilitates flexible learning. Blended learning can combine the respective benefits, although one challenge is to keep the time investment within reasonable limits. The use of digital tools differs depending on the subject. Medical students are willing to use digital tools to improve their learning success and voluntarily invest more time. Students of the humanities and social sciences, on the other hand, are reluctant to invest additional time. They do not see extra study material as an additional benefit their learning success. This study illustrates how these heterogenous demands on learning environments can be met. In addition, potential for improvement will be identified in order to foster both learning process and learning success. Learning environments can be meaningfully enriched with digital elements to address student diversity in higher education.

Keywords: blended learning, higher education, diversity, learning styles

Procedia PDF Downloads 62
37443 Optimization of Titanium Leaching Process Using Experimental Design

Authors: Arash Rafiei, Carroll Moore

Abstract:

Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.

Keywords: titanium leaching, optimization, experimental design, performance analysis

Procedia PDF Downloads 364
37442 Microbial and SARS-CoV-2 Efficiency Analysis of Froumann HEPA Filter Air Cleaner Brand

Authors: Serap Gedikli, Hakan Çakmak, M. Buğra Güldiken, Duygu Yalnızoğlu

Abstract:

Air, which is necessary for living things to survive; while it carries some useful substances in it, it can also carry foreign particles of different sizes that may be harmful to the health. All airborne organic substances of biological origin, including bacteria, fungi, fungal spores, viruses, pollen, and their components, are called "bioaerosols". Nowadays, everyone spends most of their time in closed areas such as home, workplace, school, etc. Although it is known that outdoor air pollution affects health, it is not known that indoor air pollution has harmful effects in terms of health. In this study, indoor air microbial load and SARS-CoV-2 virus cleaning efficiency of Froumann brand air cleaners were studied. This work in 300 m³, 600 m³, and 1000 m³ completely closed areas without any air circulation with Froumann N80, N90, and N100 air-cleaning devices. Analyzes were performed for both areas at 60 minutes before and after the device was operated using a particle measuring device (Particles Plus 7302) and an air sampler (Mas-100 ECO). The measurements were taken by placing the test equipment 1.5-2 m away from the air cleaner. At the same time, the efficiency of the HEPA filter was evaluated by taking samples from the air outlet point of the HEPA filter using the air sampling device (Mas-100 ECO) after the device was started. Nutrient agar and malt agar are used as total mesophilic bacteria and total fungi. The number of colony-forming units per m³ (cfu/m³) was calculated by counting colonies in Petri dishes after incubation for 48 hours at 37°C for bacteria and 72 hours at 30°C for fungi. The change in the number of colonies and the decrease in the microbial load was calculated as a percentage value. SARS-CoV-2 activity analysis studies were carried out by İnönü University Microbiology Department in accordance with the World Health Organization regulations. Finally, the HEPA filter in the devices used was taken and kept under a certain temperature and humidity, and the change in the microbial load on it was monitored over a 6-month period. At the end of the studies, a 91%-94% reduction was determined in the total mesophilic bacteria count of Frouman brand N80, N90, and N100 model air cleaners. A decrease of 94%-96% was detected in the total number of yeast/molds. HEPA filter efficiency was evaluated, and at the end of the analysis, 98% of the bacterial load and approximately 100% of yeast/mold load at the HEPA filter air outlet point were decreased. According to the SARS- CoV-2 analysis results, when the device is operating at the medium airflow level 3, it can filter virus-carrying aerosols by 99%. As a result, it was determined that the Froumann model air cleaner was effective in controlling and reducing the microbial load in the indoor air.

Keywords: HEPA filter, indoor air quality, microbial load, SARS-CoV-2

Procedia PDF Downloads 200
37441 Study of Aging Behavior of Parallel-Series Connection Batteries

Authors: David Chao, John Lai, Alvin Wu, Carl Wang

Abstract:

For lithium-ion batteries with multiple cell configurations, some use scenarios can cause uneven aging effects to each cell within the battery because of uneven current distribution. Hence the focus of the study is to explore the aging effect(s) on batteries with different construction designs. In order to systematically study the influence of various factors in some key battery configurations, a detailed analysis of three key battery construction factors is conducted. And those key factors are (1) terminal position; (2) cell alignment matrix; and (3) interconnect resistance between cells. In this study, the 2S2P circuitry has been set as a model multi-cell battery to set up different battery samples, and the aging behavior is studied by a cycling test to analyze the current distribution and recoverable capacity. According to the outcome of aging tests, some key findings are: (I) different cells alignment matrices can have an impact on the cycle life of the battery; (II) symmetrical structure has been identified as a critical factor that can influence the battery cycle life, and unbalanced resistance can lead to inconsistent cell aging status; (III) the terminal position has been found to contribute to the uneven current distribution, that can cause an accelerated battery aging effect; and (IV) the internal connection resistance increase can actually result in cycle life increase; however, it is noteworthy that such increase in cycle life is accompanied by a decline in battery performance. In summary, the key findings from the study can help to identify the key aging factor of multi-cell batteries, and it can be useful to effectively improve the accuracy of battery capacity predictions.

Keywords: multiple cells battery, current distribution, battery aging, cell connection

Procedia PDF Downloads 70
37440 Stability of Hybrid Systems

Authors: Kreangkri Ratchagit

Abstract:

This paper is concerned with exponential stability of switched linear systems with interval time-varying delays. The time delay is any continuous function belonging to a given interval, in which the lower bound of delay is not restricted to zero. By constructing a suitable augmented Lyapunov-Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the exponential stability of switched linear systems with interval time-varying delays and new delay-dependent sufficient conditions for the exponential stability of the systems are first established in terms of LMIs. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.

Keywords: exponential stability, hybrid systems, timevarying delays, Lyapunov-Krasovskii functional, Leibniz-Newton’s formula

Procedia PDF Downloads 451
37439 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach

Authors: Geraldine G. Granados Vazquez

Abstract:

Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.

Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability

Procedia PDF Downloads 221
37438 A Comprehensive Study of a Hybrid System Integrated Solid Oxide Fuel cell, Gas Turbine, Organic Rankine Cycle with Compressed air Energy Storage

Authors: Taiheng Zhang, Hongbin Zhao

Abstract:

Compressed air energy storage become increasingly vital for solving intermittency problem of some renewable energies. In this study, a new hybrid system on a combination of compressed air energy storage (CAES), solid oxide fuel cell (SOFC), gas turbine (GT), and organic Rankine cycle (ORC) is proposed. In the new system, excess electricity during off-peak time is utilized to compress air. Then, the compressed air is stored in compressed air storage tank. During peak time, the compressed air enters the cathode of SOFC directly instead of combustion chamber of traditional CAES. There is no air compressor consumption of SOFC-GT in peak demand, so SOFC- GT can generate power with high-efficiency. In addition, the waste heat of exhaust from GT is recovered by applying an ORC. Three different organic working fluid (R123, R601, R601a) of ORC are chosen to evaluate system performance. Based on Aspen plus and Engineering Equation Solver (EES) software, energy and exergoeconomic analysis are used to access the viability of the combined system. Besides, the effect of two parameters (fuel flow and ORC turbine inlet pressure) on energy efficiency is studied. The effect of low-price electricity at off-peak hours on thermodynamic criteria (total unit exergy cost of products and total cost rate) is also investigated. Furthermore, for three different organic working fluids, the results of round-trip efficiency, exergy efficiency, and exergoeconomic factors are calculated and compared. Based on thermodynamic performance and exergoeconomic performance of different organic working fluids, the best suitable working fluid will be chosen. In conclusion, this study can provide important guidance for system efficiency improvement and viability.

Keywords: CAES, SOFC, ORC, energy and exergoeconomic analysis, organic working fluids

Procedia PDF Downloads 116
37437 Analysis of the Gait Characteristics of Soldier between the Normal and Loaded Gait

Authors: Ji-il Park, Min Kyu Yu, Jong-woo Lee, Sam-hyeon Yoo

Abstract:

The purpose of this research is to analyze the gait strategy between the normal and loaded gait. To this end, five male participants satisfied two conditions: the normal and loaded gait (backpack load 25.2 kg). As expected, results showed that additional loads elicited not a proportional increase in vertical and shear ground reaction force (GRF) parameters but also increase of the impulse, momentum and mechanical work. However, in case of the loaded gait, the time duration of the double support phase was increased unexpectedly. It is because the double support phase which is more stable than the single support phase can reduce instability of the loaded gait. Also, the directions of the pre-collision and after-collision were moved upward and downward compared to the normal gait. As a result, regardless of the additional backpack load, the impulse-momentum diagram during the step-to-step transition was maintained such as the normal gait. It means that human walk efficiently to keep stability and minimize total net works in case of the loaded gait.

Keywords: normal gait, loaded gait, impulse, collision, gait analysis, mechanical work, backpack load

Procedia PDF Downloads 285
37436 Testing for Endogeneity of Foreign Direct Investment: Implications for Economic Policy

Authors: Liwiusz Wojciechowski

Abstract:

Research background: The current knowledge does not give a clear answer to the question of the impact of FDI on productivity. Results of the empirical studies are still inconclusive, no matter how extensive and diverse in terms of research approaches or groups of countries analyzed they are. It should also take into account the possibility that FDI and productivity are linked and that there is a bidirectional relationship between them. This issue is particularly important because on one hand FDI can contribute to changes in productivity in the host country, but on the other hand its level and dynamics may imply that FDI should be undertaken in a given country. As already mentioned, a two-way relationship between the presence of foreign capital and productivity in the host country should be assumed, taking into consideration the endogenous nature of FDI. Purpose of the article: The overall objective of this study is to determine the causality between foreign direct investment and total factor productivity in host county in terms of different relative absorptive capacity across countries. In the classic sense causality among variables is not always obvious and requires for testing, which would facilitate proper specification of FDI models. The aim of this article is to study endogeneity of selected macroeconomic variables commonly being used in FDI models in case of Visegrad countries: main recipients of FDI in CEE. The findings may be helpful in determining the structure of the actual relationship between variables, in appropriate models estimation and in forecasting as well as economic policymaking. Methodology/methods: Panel and time-series data techniques including GMM estimator, VEC models and causality tests were utilized in this study. Findings & Value added: The obtained results allow to confirm the hypothesis states the bi-directional causality between FDI and total factor productivity. Although results differ from among countries and data level of aggregation implications may be useful for policymakers in case of providing foreign capital attracting policy.

Keywords: endogeneity, foreign direct investment, multi-equation models, total factor productivity

Procedia PDF Downloads 194
37435 Comparison between Two Software Packages GSTARS4 and HEC-6 about Prediction of the Sedimentation Amount in Dam Reservoirs and to Estimate Its Efficient Life Time in the South of Iran

Authors: Fatemeh Faramarzi, Hosein Mahjoob

Abstract:

Building dams on rivers for utilization of water resources causes problems in hydrodynamic equilibrium and results in leaving all or part of the sediments carried by water in dam reservoir. This phenomenon has also significant impacts on water and sediment flow regime and in the long term can cause morphological changes in the environment surrounding the river, reducing the useful life of the reservoir which threatens sustainable development through inefficient management of water resources. In the past, empirical methods were used to predict the sedimentation amount in dam reservoirs and to estimate its efficient lifetime. But recently the mathematical and computational models are widely used in sedimentation studies in dam reservoirs as a suitable tool. These models usually solve the equations using finite element method. This study compares the results from tow software packages, GSTARS4 & HEC-6, in the prediction of the sedimentation amount in Dez dam, southern Iran. The model provides a one-dimensional, steady-state simulation of sediment deposition and erosion by solving the equations of momentum, flow and sediment continuity and sediment transport. GSTARS4 (Generalized Sediment Transport Model for Alluvial River Simulation) which is based on a one-dimensional mathematical model that simulates bed changes in both longitudinal and transverse directions by using flow tubes in a quasi-two-dimensional scheme to calibrate a period of 47 years and forecast the next 47 years of sedimentation in Dez Dam, Southern Iran. This dam is among the highest dams all over the world (with its 203 m height), and irrigates more than 125000 square hectares of downstream lands and plays a major role in flood control in the region. The input data including geometry, hydraulic and sedimentary data, starts from 1955 to 2003 on a daily basis. To predict future river discharge, in this research, the time series data were assumed to be repeated after 47 years. Finally, the obtained result was very satisfactory in the delta region so that the output from GSTARS4 was almost identical to the hydrographic profile in 2003. In the Dez dam due to the long (65 km) and a large tank, the vertical currents are dominant causing the calculations by the above-mentioned method to be inaccurate. To solve this problem, we used the empirical reduction method to calculate the sedimentation in the downstream area which led to very good answers. Thus, we demonstrated that by combining these two methods a very suitable model for sedimentation in Dez dam for the study period can be obtained. The present study demonstrated successfully that the outputs of both methods are the same.

Keywords: Dez Dam, prediction, sedimentation, water resources, computational models, finite element method, GSTARS4, HEC-6

Procedia PDF Downloads 309
37434 Gan Nanowire-Based Sensor Array for the Detection of Cross-Sensitive Gases Using Principal Component Analysis

Authors: Ashfaque Hossain Khan, Brian Thomson, Ratan Debnath, Abhishek Motayed, Mulpuri V. Rao

Abstract:

Though the efforts had been made, the problem of cross-sensitivity for a single metal oxide-based sensor can’t be fully eliminated. In this work, a sensor array has been designed and fabricated comprising of platinum (Pt), copper (Cu), and silver (Ag) decorated TiO2 and ZnO functionalized GaN nanowires using industry-standard top-down fabrication approach. The metal/metal-oxide combinations within the array have been determined from prior molecular simulation study using first principle calculations based on density functional theory (DFT). The gas responses were obtained for both single and mixture of NO2, SO2, ethanol, and H2 in the presence of H2O and O2 gases under UV light at room temperature. Each gas leaves a unique response footprint across the array sensors by which precise discrimination of cross-sensitive gases has been achieved. An unsupervised principal component analysis (PCA) technique has been implemented on the array response. Results indicate that each gas forms a distinct cluster in the score plot for all the target gases and their mixtures, indicating a clear separation among them. In addition, the developed array device consumes very low power because of ultra-violet (UV) assisted sensing as compared to commercially available metal-oxide sensors. The nanowire sensor array, in combination with PCA, is a potential approach for precise real-time gas monitoring applications.

Keywords: cross-sensitivity, gas sensor, principle component analysis (PCA), sensor array

Procedia PDF Downloads 103
37433 Wireless Integrated Switched Oscillator Impulse Generator with Application in Wireless Passive Electric Field Sensors

Authors: S. Mohammadzamani, B. Kordi

Abstract:

Wireless electric field sensors are in high demand in the number of applications that requires measuring electric field such as investigations of high power systems and testing the high voltage apparatus. Passive wireless electric field sensors are most desired since they do not require a source of power and are interrogated wirelessly. A passive wireless electric field sensor has been designed and fabricated by our research group. In the wireless interrogation system of the sensor, a wireless radio frequency impulse generator needs to be employed. A compact wireless impulse generator composed of an integrated resonant switched oscillator (SWO) and a pulse-radiating antenna has been designed and fabricated in this research. The fundamental of Switched Oscillators was introduced by C.E.Baum. A Switched Oscillator consists of a low impedance transmission line charged by a DC source, through large impedance at desired frequencies and terminated to a high impedance antenna at one end and a fast closing switch at the other end. Once the line is charged, the switch will close and short-circuit the transmission line. Therefore, a fast transient wave will be generated and travels along the transmission line. Because of the mismatch between the antenna and the transmission line, only a part of fast transient wave will be radiated, and a portion of the fast-transient wave will reflect back. At the other end of the transmission line, there is a closed switch. Consequently, a second reflection with a reversed sign will propagate towards the antenna and the wave continues back and forth. hence, at the terminal of the antenna, there will be a series of positive and negative pulses with descending amplitude. In this research a single ended quarter wavelength Switched Oscillator has been designed and simulated at 800MHz. The simulation results show that the designed Switched Oscillator generates pulses with decreasing amplitude at the frequency of 800MHz with the maximum amplitude of 10V and bandwidth of about 10MHz at the antenna end. The switched oscillator has been fabricated using a 6cm long coaxial cable transmission line which is charged by a DC source and an 8cm monopole antenna as the pulse radiating antenna. A 90V gas discharge switch has been employed as the fast closing switch. The Switched oscillator sends a series of pulses with decreasing amplitude at the frequency of 790MHz with the maximum amplitude of 0.3V in the distance of 30 cm.

Keywords: electric field measurement, impulse radiating antenna, switched oscillator, wireless impulse generator

Procedia PDF Downloads 179
37432 Antioxidant Activity Studies of Novel Schiff and Mannich Bases

Authors: D. J. Madhu Kumar, D. Jagadeesh Prasad, Sana Sheik, E. P. Rejeesh

Abstract:

A series of Mannich bases derived from 1,2,4-triazole(3a-k and 4a-k) are synthesized by treating a Schiff base with various substituted primary/secondary amines and formaldehyde. The Schiff base is prepared by treating 3-methyl-4-amino-5-mercapto-1,2,4-triazole with 3,4-dimethoxybenzaldehyde in the presence of acid catalyst. The triazole is prepared by treating acetic acid with thiocarbohydrazide at reflux temperature. All the synthesized samples are characterised by FT-IR, 1H-NMR, and LC-MASS spectral studies and screened for their anti-oxidant activity.

Keywords: mannich bases, anti-oxidant activity, schiff base, triazole

Procedia PDF Downloads 508
37431 Antidiabetic Evaluation of Pig (Sus scrofa) Bile on Alloxan-Induced BALB/c Mice

Authors: John Lyndon C. Lunnay

Abstract:

This study discerns to evaluate the antidiabetic efficacy of pig bile on alloxan-induced BALB/c mice. The experimental animals were divided and selected using RCBD into 5 groups (n= 4): T1 (negative control), T2 (1ml/kg), T3 (2ml/kg), T4 (3ml/kg) and T5 (Glibenclamide). Hyperglycemia was induced by injecting 1% alloxan monohydrate intraperitoneally. A glucose tolerance test was performed using a 2g/kg glucose solution, and blood glucose levels were measured at different time intervals. 14 days of monitoring was also done to ensure effectivity and efficacy of the different treatments. Bodyweight was also determined. Results show that administration of treatments on test animals significantly reverted the blood glucose levels of mice in 60 minutes and 120 minutes using an oral glucose tolerance test. After 14 days of monitoring, normal blood glucose levels were seen significantly on T2 (1ml/kg), T3 (2ml/kg), T4 (3ml/kg), and T5 (Glibenclamide), which only suggests the efficacy of pig bile on lowering glucose levels on alloxan-induced diabetic mice. Bodyweight analysis shows no significant difference. Duncan’s multiple range test (DMRT) shows comparable efficacy and effectivity between T4 (3ml/kg) and T5 (Glibenclamide) on lowering BGL at different day and time intervals.

Keywords: pig bile, BALB/c mice, blood glucose, Gllibenclamide

Procedia PDF Downloads 143
37430 Molecular Identification and Genotyping of Human Brucella Strains Isolated in Kuwait

Authors: Abu Salim Mustafa

Abstract:

Brucellosis is a zoonotic disease endemic in Kuwait. Human brucellosis can be caused by several Brucella species with Brucella melitensis causing the most severe and Brucella abortus the least severe disease. Furthermore, relapses are common after successful chemotherapy of patients. The classical biochemical methods of culture and serology for identification of Brucellae provide information about the species and serotypes only. However, to differentiate between relapse and reinfection/epidemiological investigations, the identification of genotypes using molecular methods is essential. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-16] were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. The 16S rRNA gene sequencing suggested that all the strains were B. melitensis and real-time PCR confirmed their species identity as B. melitensis. The ERIC-PCR band profiles produced a dendrogram of 75 branches suggesting each strain to be of a unique type. The cluster classification, based on ~ 80% similarity, divided all the ERIC genotypes into two clusters, A and B. Cluster A consisted of 9 ERIC genotypes (A1-A9) corresponding to 9 individual strains. Cluster B comprised of 13 ERIC genotypes (B1-B13) with B5 forming the largest cluster of 51 strains. MLVA-16 identified all isolates as B. melitensis and divided them into 71 MLVA-types. The cluster analysis of MLVA-16-types suggested that most of the strains in Kuwait originated from the East Mediterranean Region, a few from the African group and one new genotype closely matched with the West Mediterranean region. In conclusion, this work demonstrates that B. melitensis, the most pathogenic species of Brucella, is prevalent in Kuwait. Furthermore, MLVA-16 is the best molecular method, which can identify the Brucella species and genotypes as well as determine their origin in the global context. Supported by Kuwait University Research Sector grants MI04/15 and SRUL02/13.

Keywords: Brucella, ERIC-PCR, MLVA-16, RT-PCR, 16S rRNA gene sequencing

Procedia PDF Downloads 385
37429 Performance Study of Experimental Ferritic Alloy with High Content of Molybdenum in Corrosive Environment of Soybean Methyl Biodiesel

Authors: Maurício N. Kleinberg, Ana P. R. N. Barroso, Frederico R. Silva, Natasha l. Gomes, Rodrigo F. Guimarães, Marcelo M. V. Parente, Jackson Q. Malveira

Abstract:

Increased production of biofuels, especially biodiesel, as an option to replace the diesel derived from oil is already a reality in countries seeking a renewable and environmentally friendly fuel, as is the case in Brazil. However, it is known that the use of fuels, renewable or not, implies that it is in contact with various metallic materials which may cause corrosion. In the search for more corrosion resistant materials has been experimentally observed that the addition of molybdenum in ferritic steels increases their protective character without significantly burdening the cost of production. In order to evaluate the effect of adding molybdenum, samples of commercial steel (austenitic, ferritic and carbon steel) and the experimental ferritic alloy with a high molybdenum content (5.3%) were immersed separately into biodiesel derived from transesterification of soy oil to monitor the corrosion process of these metal samples, and in parallel to analyze the oxidative degradation of biodiesel itself. During the immersion time of 258 days, biodiesel samples were taken for analysis of acidity, kinematic viscosity, density and refraction. Likewise, the metal samples were taken from the biodiesel to be weighed and microstructurally analyzed by light microscopy. The results obtained at the end of 258 days shown that biodiesel presented a considerable increase on the values of the studied parameters for all the samples. However, this increase was not able to produce significant mass loss in metallic samples. As regards the microstructural analysis, it showed the onset of surface oxidation on the carbon steel sample. As for the other samples, no significant surface changes were shown. These results are consistent with literature for short immersion times. It is concluded that the increase in the values of the studied parameters is not significant yet, probably due to the low time of immersion and exposure of the samples. Thus, it is necessary to continue the tests so that the objectives of this work are achieved.

Keywords: biodiesel, corrosion, immersion, experimental alloy

Procedia PDF Downloads 433
37428 FISCEAPP: FIsh Skin Color Evaluation APPlication

Authors: J. Urban, Á. S. Botella, L. E. Robaina, A. Bárta, P. Souček, P. Císař, Š. Papáček, L. M. Domínguez

Abstract:

Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process.

Keywords: color distribution, fish skin color, piecewise transformation, object to background segmentation

Procedia PDF Downloads 255
37427 Intrusion Detection in SCADA Systems

Authors: Leandros A. Maglaras, Jianmin Jiang

Abstract:

The protection of the national infrastructures from cyberattacks is one of the main issues for national and international security. The funded European Framework-7 (FP7) research project CockpitCI introduces intelligent intrusion detection, analysis and protection techniques for Critical Infrastructures (CI). The paradox is that CIs massively rely on the newest interconnected and vulnerable Information and Communication Technology (ICT), whilst the control equipment, legacy software/hardware, is typically old. Such a combination of factors may lead to very dangerous situations, exposing systems to a wide variety of attacks. To overcome such threats, the CockpitCI project combines machine learning techniques with ICT technologies to produce advanced intrusion detection, analysis and reaction tools to provide intelligence to field equipment. This will allow the field equipment to perform local decisions in order to self-identify and self-react to abnormal situations introduced by cyberattacks. In this paper, an intrusion detection module capable of detecting malicious network traffic in a Supervisory Control and Data Acquisition (SCADA) system is presented. Malicious data in a SCADA system disrupt its correct functioning and tamper with its normal operation. OCSVM is an intrusion detection mechanism that does not need any labeled data for training or any information about the kind of anomaly is expecting for the detection process. This feature makes it ideal for processing SCADA environment data and automates SCADA performance monitoring. The OCSVM module developed is trained by network traces off line and detects anomalies in the system real time. The module is part of an IDS (intrusion detection system) developed under CockpitCI project and communicates with the other parts of the system by the exchange of IDMEF messages that carry information about the source of the incident, the time and a classification of the alarm.

Keywords: cyber-security, SCADA systems, OCSVM, intrusion detection

Procedia PDF Downloads 542
37426 Multi-Criteria Evaluation of IDS Architectures in Cloud Computing

Authors: Elmahdi Khalil, Saad Enniari, Mostapha Zbakh

Abstract:

Cloud computing promises to increase innovation and the velocity with witch applications are deployed, all while helping any enterprise meet most IT service needs at a lower total cost of ownership and higher return investment. As the march of cloud continues, it brings both new opportunities and new security challenges. To take advantages of those opportunities while minimizing risks, we think that Intrusion Detection Systems (IDS) integrated in the cloud is one of the best existing solutions nowadays in the field. The concept of intrusion detection was known since past and was first proposed by a well-known researcher named Anderson in 1980's. Since that time IDS's are evolving. Although, several efforts has been made in the area of Intrusion Detection systems for cloud computing environment, many attacks still prevail. Therefore, the work presented in this paper proposes a multi criteria analysis and a comparative study between several IDS architectures designated to work in a cloud computing environments. To achieve this objective, in the first place we will search in the state of the art of several consistent IDS architectures designed to work in a cloud environment. Whereas, in a second step we will establish the criteria that will be useful for the evaluation of architectures. Later, using the approach of multi criteria decision analysis Mac Beth (Measuring Attractiveness by a Categorical Based Evaluation Technique we will evaluate the criteria and assign to each one the appropriate weight according to their importance in the field of IDS architectures in cloud computing. The last step is to evaluate architectures against the criteria and collecting results of the model constructed in the previous steps.

Keywords: cloud computing, cloud security, intrusion detection/prevention system, multi-criteria decision analysis

Procedia PDF Downloads 465
37425 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics

Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.

Keywords: perovskite, dielectric, ceramics, high-energy milling

Procedia PDF Downloads 315
37424 Field Performance of Cement Treated Bases as a Reflective Crack Mitigation Technique for Flexible Pavements

Authors: Mohammad R. Bhuyan, Mohammad J. Khattak

Abstract:

Deterioration of flexible pavements due to crack reflection from its soil-cement base layer is a major concern around the globe. The service life of flexible pavement diminishes significantly because of the reflective cracks. Highway agencies are struggling for decades to prevent or mitigate these cracks in order to increase pavement service lives. The root cause of reflective cracks is the shrinkage crack which occurs in the soil-cement bases during the cement hydration process. The primary factor that causes the shrinkage is the cement content of the soil-cement mixture. With the increase of cement content, the soil-cement base gains strength and durability, which is necessary to withstand the traffic loads. But at the same time, higher cement content creates more shrinkage resulting in more reflective cracks in pavements. Historically, various states of USA have used the soil-cement bases for constructing flexile pavements. State of Louisiana (USA) had been using 8 to 10 percent of cement content to manufacture the soil-cement bases. Such traditional soil-cement bases yield 2.0 MPa (300 psi) 7-day compressive strength and are termed as cement stabilized design (CSD). As these CSD bases generate significant reflective cracks, another design of soil-cement base has been utilized by adding 4 to 6 percent of cement content called cement treated design (CTD), which yields 1.0 MPa (150 psi) 7-day compressive strength. The reduction of cement content in the CTD base is expected to minimize shrinkage cracks thus increasing pavement service lives. Hence, this research study evaluates the long-term field performance of CTD bases with respect to CSD bases used in flexible pavements. Pavement Management System of the state of Louisiana was utilized to select flexible pavement projects with CSD and CTD bases that had good historical record and time-series distress performance data. It should be noted that the state collects roughness and distress data for 1/10th mile section every 2-year period. In total, 120 CSD and CTD projects were analyzed in this research, where more than 145 miles (CTD) and 175 miles (CSD) of roadways data were accepted for performance evaluation and benefit-cost analyses. Here, the service life extension and area based on distress performance were considered as benefits. It was found that CTD bases increased 1 to 5 years of pavement service lives based on transverse cracking as compared to CSD bases. On the other hand, the service lives based on longitudinal and alligator cracking, rutting and roughness index remain the same. Hence, CTD bases provide some service life extension (2.6 years, on average) to the controlling distress; transverse cracking, but it was inexpensive due to its lesser cement content. Consequently, CTD bases become 20% more cost-effective than the traditional CSD bases, when both bases were compared by net benefit-cost ratio obtained from all distress types.

Keywords: cement treated base, cement stabilized base, reflective cracking , service life, flexible pavement

Procedia PDF Downloads 162
37423 Mechanism of Cathodic Protection to Minimize Corrosion Caused by Chloride in Reinforcement Concrete

Authors: Mohamed A. Deyab, Omnia El-Shamy

Abstract:

The main objective of this case study is to integrate the advantages of cathodic protection technologies in order to lessen chloride-induced corrosion in reinforced concrete. This research employs potentiodynamic polarisation, impedance spectroscopy (EIS), and surface characteristics. The results showed how effectively the new cathodic control strategy is preventing corrosion of the concrete iron rods. Over time, the protective system becomes more reliable and effective. The potentials of the zinc electrode persist still more negative after 30 days, implying that the zinc electrode can maintain powerful electrocatalytic behavior for a long period of time. As per the electrochemical impedance spectroscopy (EIS), using the CP technique reduces the rate of corrosion of rebar iron in cementitious materials over time.

Keywords: cathodic protection, corrosion, reinforced concrete, chloride

Procedia PDF Downloads 76
37422 Societal Stakes for Small Cruise Ships: A Recurrent Issue of Our Time

Authors: Maud Tixier

Abstract:

Societal issues are at stake for cruises anywhere, whatever the size of the ships and their destinations are. However, the Mediterranean sea is the main region where many operate and the challenges are both social and environmental. The presentation focuses on small ships, accounting for market niches, aimed at more specific cruise passengers and calling at less visited areas. How they cope with the benefit of all stakeholders is a persistent issue of our time.

Keywords: environment, management, social, societal, safety

Procedia PDF Downloads 326
37421 The Effect of Grading Characteristics on the Shear Strength and Mechanical Behavior of Granular Classes of Sand-Silt

Authors: Youssouf Benmeriem

Abstract:

Shear strength of sandy soils has been considered as the important parameter to study the stability of different civil engineering structures when subjected to monotonic, cyclic and earthquake loading conditions. The proposed research investigated the effect of grading characteristics on the shear strength and mechanical behavior of granular classes of sands mixed with silt in loose and dense states (Dr = 15% and 90%). The laboratory investigation aimed at understanding the extent or degree at which shear strength of sand-silt mixture soil is affected by its gradation under static loading conditions. For the purpose of clarifying and evaluating the shear strength characteristics of sandy soils, a series of Casagrande shear box tests were carried out on different reconstituted samples of sand-silt mixtures with various gradations. The soil samples were tested under different normal stresses (100, 200 and 300 kPa). The results from this laboratory investigation were used to develop insight into the shear strength response of sand and sand-silt mixtures under monotonic loading conditions. The analysis of the obtained data revealed that the grading characteristics (D10, D50, Cu, ESR, and MGSR) have significant influence on the shear strength response. It was found that shear strength can be correlated to the grading characteristics for the sand-silt mixture. The effective size ratio (ESR) and mean grain size ratio (MGSR) appear as pertinent parameters to predict the shear strength response of the sand-silt mixtures for soil gradation under study.

Keywords: grading characteristics, granular classes of sands, mechanical behavior, sand-silt, shear strength

Procedia PDF Downloads 380
37420 The Use of AI to Measure Gross National Happiness

Authors: Riona Dighe

Abstract:

This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.

Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness

Procedia PDF Downloads 104