Search results for: continuous speed profile data
26871 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making
Procedia PDF Downloads 7526870 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 25326869 Random Forest Classification for Population Segmentation
Authors: Regina Chua
Abstract:
To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling
Procedia PDF Downloads 9426868 A Design Framework for an Open Market Platform of Enriched Card-Based Transactional Data for Big Data Analytics and Open Banking
Authors: Trevor Toy, Josef Langerman
Abstract:
Around a quarter of the world’s data is generated by financial with an estimated 708.5 billion global non-cash transactions reached between 2018 and. And with Open Banking still a rapidly developing concept within the financial industry, there is an opportunity to create a secure mechanism for connecting its stakeholders to openly, legitimately and consensually share the data required to enable it. Integration and data sharing of anonymised transactional data are still operated in silos and centralised between the large corporate entities in the ecosystem that have the resources to do so. Smaller fintechs generating data and businesses looking to consume data are largely excluded from the process. Therefore there is a growing demand for accessible transactional data for analytical purposes and also to support the rapid global adoption of Open Banking. The following research has provided a solution framework that aims to provide a secure decentralised marketplace for 1.) data providers to list their transactional data, 2.) data consumers to find and access that data, and 3.) data subjects (the individuals making the transactions that generate the data) to manage and sell the data that relates to themselves. The platform also provides an integrated system for downstream transactional-related data from merchants, enriching the data product available to build a comprehensive view of a data subject’s spending habits. A robust and sustainable data market can be developed by providing a more accessible mechanism for data producers to monetise their data investments and encouraging data subjects to share their data through the same financial incentives. At the centre of the platform is the market mechanism that connects the data providers and their data subjects to the data consumers. This core component of the platform is developed on a decentralised blockchain contract with a market layer that manages transaction, user, pricing, payment, tagging, contract, control, and lineage features that pertain to the user interactions on the platform. One of the platform’s key features is enabling the participation and management of personal data by the individuals from whom the data is being generated. This framework developed a proof-of-concept on the Etheruem blockchain base where an individual can securely manage access to their own personal data and that individual’s identifiable relationship to the card-based transaction data provided by financial institutions. This gives data consumers access to a complete view of transactional spending behaviour in correlation to key demographic information. This platform solution can ultimately support the growth, prosperity, and development of economies, businesses, communities, and individuals by providing accessible and relevant transactional data for big data analytics and open banking.Keywords: big data markets, open banking, blockchain, personal data management
Procedia PDF Downloads 7326867 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization
Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir
Abstract:
Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink
Procedia PDF Downloads 11026866 Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks
Authors: Ksenia Volkova, Artur Petrosyan, Ignatii Dubyshkin, Alexei Ossadtchi
Abstract:
Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution.Keywords: brain-computer interface, deep learning, ECoG, movement decoding, sensorimotor cortex
Procedia PDF Downloads 17726865 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 16026864 A Rationale to Describe Ambident Reactivity
Authors: David Ryan, Martin Breugst, Turlough Downes, Peter A. Byrne, Gerard P. McGlacken
Abstract:
An ambident nucleophile is a nucleophile that possesses two or more distinct nucleophilic sites that are linked through resonance and are effectively “in competition” for reaction with an electrophile. Examples include enolates, pyridone anions, and nitrite anions, among many others. Reactions of ambident nucleophiles and electrophiles are extremely prevalent at all levels of organic synthesis. The principle of hard and soft acids and bases (the “HSAB principle”) is most commonly cited in the explanation of selectivities in such reactions. Although this rationale is pervasive in any discussion on ambident reactivity, the HSAB principle has received considerable criticism. As a result, the principle’s supplantation has become an area of active interest in recent years. This project focuses on developing a model for rationalizing ambident reactivity. Presented here is an approach that incorporates computational calculations and experimental kinetic data to construct Gibbs energy profile diagrams. The preferred site of alkylation of nitrite anion with a range of ‘hard’ and ‘soft’ alkylating agents was established by ¹H NMR spectroscopy. Pseudo-first-order rate constants were measured directly by ¹H NMR reaction monitoring, and the corresponding second-order constants and Gibbs energies of activation were derived. These, in combination with computationally derived standard Gibbs energies of reaction, were sufficient to construct Gibbs energy wells. By representing the ambident system as a series of overlapping Gibbs energy wells, a more intuitive picture of ambident reactivity emerges. Here, previously unexplained switches in reactivity in reactions involving closely related electrophiles are elucidated.Keywords: ambident, Gibbs, nucleophile, rates
Procedia PDF Downloads 8426863 Childhood Cataract: A Socio-Clinical Study at a Public Sector Tertiary Eye Care Centre in India
Authors: Deepak Jugran, Rajesh Gill
Abstract:
Purpose: To study the demographic, sociological, gender and clinical profile of the children presented for childhood cataract at a public sector tertiary eye care centre in India. Methodology: The design of the study is retrospective, and hospital-based data is available with the Central Registration Department of the PGIMER, Chandigarh. The majority of the childhood cataract cases are being reported in this hospital, yet not each and every case of childhood cataract approaches PGI, Chandigarh. Nevertheless, this study is going to be pioneering research in India, covering five-year data of the childhood cataract patients who visited the Advanced Eye Centre, PGIMER, Chandigarh, from 1.1.2015 to 31.12.2019. The SPSS version 23 was used for all statistical calculations. Results: A Total of 354 children were presented for childhood cataract from 1.1.2015 to 31.12.2019. Out of 354 children, 248 (70%) were male, and 106 (30%) were female. In-spite of 2 flagship programmes, namely the National Programme for Control of Blindness (NPCB) and Aayushman Bharat (PM JAY) for eradication of cataract, no children received any financial assistance from these two programmes. A whopping 99% of these children belong to the poor families. In most of these families, the mothers were house-wives and did not employ anywhere. These interim results will soon be conveyed to the Govt. of India so that a suitable mechanism can be evolved to address this pertinent issue. Further, the disproportionate ratio of male and female children in this study is an area of concern as we don’t know whether the prevalence of childhood cataract is lower in female children or they are not being presented on time in the hospital by the families. Conclusion: The World Health Organization (WHO) has categorized Childhood blindness resulting from cataract as a priority area and urged all member countries to develop institutionalized mechanisms for its early detection, diagnosis and management. The childhood cataract is an emerging and major cause of preventable and avoidable childhood blindness, especially in low and middle-income countries. In the formative years, the children require a sound physical, mental and emotional state, and in the absence of either one of them, it can severely dent their future growth. The recent estimate suggests that India could suffer an economic loss of US$12 billion (Rs. 88,000 Crores) due to blindness, and almost 35% of cases of blindness are preventable and avoidable if detected at an early age. Besides reporting these results to the policy makers, synchronized efforts are needed for early detection and management of avoidable causes of childhood blindness such as childhood cataract.Keywords: childhood blindness, cataract, Who, Npcb
Procedia PDF Downloads 10626862 Predicting Data Center Resource Usage Using Quantile Regression to Conserve Energy While Fulfilling the Service Level Agreement
Authors: Ahmed I. Alutabi, Naghmeh Dezhabad, Sudhakar Ganti
Abstract:
Data centers have been growing in size and dema nd continuously in the last two decades. Planning for the deployment of resources has been shallow and always resorted to over-provisioning. Data center operators try to maximize the availability of their services by allocating multiple of the needed resources. One resource that has been wasted, with little thought, has been energy. In recent years, programmable resource allocation has paved the way to allow for more efficient and robust data centers. In this work, we examine the predictability of resource usage in a data center environment. We use a number of models that cover a wide spectrum of machine learning categories. Then we establish a framework to guarantee the client service level agreement (SLA). Our results show that using prediction can cut energy loss by up to 55%.Keywords: machine learning, artificial intelligence, prediction, data center, resource allocation, green computing
Procedia PDF Downloads 10826861 Damage of Laminated Corrugated Sandwich Panels under Inclined Impact Loading
Authors: Muhammad Kamran, Xue Pu, Naveed Ahmed
Abstract:
Sandwich foam structures are efficient in impact energy absorption and making components lightweight; however their efficient use require a detailed understanding of its mechanical response. In this study, the foam core, laminated facings’ sandwich panel with internal triangular rib configuration is impacted by a spherical steel projectile at different angles using ABAQUS finite element package and damage mechanics is studied. Laminated ribs’ structure is sub-divided into three formations; all zeros, all 45 and optimized combination of zeros and 45 degrees. Impact velocity is varied from 250 m/s to 500 m/s with an increment of 50 m/s. The impact damage can significantly demolish the structural integrity and energy absorption due to fiber breakage, matrix cracking, and de-bonding. Macroscopic fracture study of the panel and core along with load-displacement responses and failure modes are the key parameters in the design of smart ballistic resistant structures. Ballistic impact characteristics of panels are studied on different speed, different inclination angles and its dependency on the base, and core materials, ribs formation, and cross-sectional spaces among them are determined. Impact momentum, penetration and kinetic energy absorption data and curves are compiled to predict the first and proximity impact in an effort to enhance the dynamic energy absorption.Keywords: dynamic energy absorption, proximity impact, sandwich panels, impact momentum
Procedia PDF Downloads 38826860 Prosperous Digital Image Watermarking Approach by Using DCT-DWT
Authors: Prabhakar C. Dhavale, Meenakshi M. Pawar
Abstract:
In this paper, everyday tons of data is embedded on digital media or distributed over the internet. The data is so distributed that it can easily be replicated without error, putting the rights of their owners at risk. Even when encrypted for distribution, data can easily be decrypted and copied. One way to discourage illegal duplication is to insert information known as watermark, into potentially valuable data in such a way that it is impossible to separate the watermark from the data. These challenges motivated researchers to carry out intense research in the field of watermarking. A watermark is a form, image or text that is impressed onto paper, which provides evidence of its authenticity. Digital watermarking is an extension of the same concept. There are two types of watermarks visible watermark and invisible watermark. In this project, we have concentrated on implementing watermark in image. The main consideration for any watermarking scheme is its robustness to various attacksKeywords: watermarking, digital, DCT-DWT, security
Procedia PDF Downloads 42226859 Machine Learning Data Architecture
Authors: Neerav Kumar, Naumaan Nayyar, Sharath Kashyap
Abstract:
Most companies see an increase in the adoption of machine learning (ML) applications across internal and external-facing use cases. ML applications vend output either in batch or real-time patterns. A complete batch ML pipeline architecture comprises data sourcing, feature engineering, model training, model deployment, model output vending into a data store for downstream application. Due to unclear role expectations, we have observed that scientists specializing in building and optimizing models are investing significant efforts into building the other components of the architecture, which we do not believe is the best use of scientists’ bandwidth. We propose a system architecture created using AWS services that bring industry best practices to managing the workflow and simplifies the process of model deployment and end-to-end data integration for an ML application. This narrows down the scope of scientists’ work to model building and refinement while specialized data engineers take over the deployment, pipeline orchestration, data quality, data permission system, etc. The pipeline infrastructure is built and deployed as code (using terraform, cdk, cloudformation, etc.) which makes it easy to replicate and/or extend the architecture to other models that are used in an organization.Keywords: data pipeline, machine learning, AWS, architecture, batch machine learning
Procedia PDF Downloads 6426858 Performance and Limitations of Likelihood Based Information Criteria and Leave-One-Out Cross-Validation Approximation Methods
Authors: M. A. C. S. Sampath Fernando, James M. Curran, Renate Meyer
Abstract:
Model assessment, in the Bayesian context, involves evaluation of the goodness-of-fit and the comparison of several alternative candidate models for predictive accuracy and improvements. In posterior predictive checks, the data simulated under the fitted model is compared with the actual data. Predictive model accuracy is estimated using information criteria such as the Akaike information criterion (AIC), the Bayesian information criterion (BIC), the Deviance information criterion (DIC), and the Watanabe-Akaike information criterion (WAIC). The goal of an information criterion is to obtain an unbiased measure of out-of-sample prediction error. Since posterior checks use the data twice; once for model estimation and once for testing, a bias correction which penalises the model complexity is incorporated in these criteria. Cross-validation (CV) is another method used for examining out-of-sample prediction accuracy. Leave-one-out cross-validation (LOO-CV) is the most computationally expensive variant among the other CV methods, as it fits as many models as the number of observations. Importance sampling (IS), truncated importance sampling (TIS) and Pareto-smoothed importance sampling (PSIS) are generally used as approximations to the exact LOO-CV and utilise the existing MCMC results avoiding expensive computational issues. The reciprocals of the predictive densities calculated over posterior draws for each observation are treated as the raw importance weights. These are in turn used to calculate the approximate LOO-CV of the observation as a weighted average of posterior densities. In IS-LOO, the raw weights are directly used. In contrast, the larger weights are replaced by their modified truncated weights in calculating TIS-LOO and PSIS-LOO. Although, information criteria and LOO-CV are unable to reflect the goodness-of-fit in absolute sense, the differences can be used to measure the relative performance of the models of interest. However, the use of these measures is only valid under specific circumstances. This study has developed 11 models using normal, log-normal, gamma, and student’s t distributions to improve the PCR stutter prediction with forensic data. These models are comprised of four with profile-wide variances, four with locus specific variances, and three which are two-component mixture models. The mean stutter ratio in each model is modeled as a locus specific simple linear regression against a feature of the alleles under study known as the longest uninterrupted sequence (LUS). The use of AIC, BIC, DIC, and WAIC in model comparison has some practical limitations. Even though, IS-LOO, TIS-LOO, and PSIS-LOO are considered to be approximations of the exact LOO-CV, the study observed some drastic deviations in the results. However, there are some interesting relationships among the logarithms of pointwise predictive densities (lppd) calculated under WAIC and the LOO approximation methods. The estimated overall lppd is a relative measure that reflects the overall goodness-of-fit of the model. Parallel log-likelihood profiles for the models conditional on equal posterior variances in lppds were observed. This study illustrates the limitations of the information criteria in practical model comparison problems. In addition, the relationships among LOO-CV approximation methods and WAIC with their limitations are discussed. Finally, useful recommendations that may help in practical model comparisons with these methods are provided.Keywords: cross-validation, importance sampling, information criteria, predictive accuracy
Procedia PDF Downloads 39226857 Monitor Student Concentration Levels on Online Education Sessions
Authors: M. K. Wijayarathna, S. M. Buddika Harshanath
Abstract:
Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user
Procedia PDF Downloads 9926856 Role of ABC Transporters in Non-Target Site Herbicide Resistance in Black Grass (Alopecurus myosuroides)
Authors: Alina Goldberg Cavalleri, Sara Franco Ortega, Nawaporn Onkokesung, Richard Dale, Melissa Brazier-Hicks, Robert Edwards
Abstract:
Non-target site based resistance (NTSR) to herbicides in weeds is a polygenic trait associated with the upregulation of proteins involved in xenobiotic detoxification and translocation we have termed the xenome. Among the xenome proteins, ABC transporters play a key role in enhancing herbicide metabolism by effluxing conjugated xenobiotics from the cytoplasm into the vacuole. The importance of ABC transporters is emphasized by the fact that they often contribute to multidrug resistance in human cells and antibiotic resistance in bacteria. They also play a key role in insecticide resistance in major vectors of human diseases and crop pests. By surveying available databases, transcripts encoding ABCs have been identified as being enhanced in populations exhibiting NTSR in several weed species. Based on a transcriptomics data in black grass (Alopecurus myosuroides, Am), we have identified three proteins from the ABC-C subfamily that are upregulated in NTSR populations. ABC-C transporters are poorly characterized proteins in plants, but in Arabidopsis localize to the vacuolar membrane and have functional roles in transporting glutathionylated (GSH)-xenobiotic conjugates. We found that the up-regulation of AmABCs strongly correlates with the up-regulation of a glutathione transferase termed AmGSTU2, which can conjugate GSH to herbicides. The expression profile of the ABC transcripts was profiled in populations of black grass showing different degree of resistance to herbicides. This, together with a phylogenetic analysis, revealed that AmABCs cluster in different groups which might indicate different substrate and roles in the herbicide resistance phenotype in the different populationsKeywords: black grass, herbicide, resistance, transporters
Procedia PDF Downloads 15626855 A Nonlinear Parabolic Partial Differential Equation Model for Image Enhancement
Authors: Tudor Barbu
Abstract:
We present a robust nonlinear parabolic partial differential equation (PDE)-based denoising scheme in this article. Our approach is based on a second-order anisotropic diffusion model that is described first. Then, a consistent and explicit numerical approximation algorithm is constructed for this continuous model by using the finite-difference method. Finally, our restoration experiments and method comparison, which prove the effectiveness of this proposed technique, are discussed in this paper.Keywords: anisotropic diffusion, finite differences, image denoising and restoration, nonlinear PDE model, anisotropic diffusion, numerical approximation schemes
Procedia PDF Downloads 31326854 Fabrication of Electrospun Microbial Siderophore-Based Nanofibers: A Wound Dressing Material to Inhibit the Wound Biofilm Formation
Authors: Sita Lakshmi Thyagarajan
Abstract:
Nanofibers will leave no field untouched by its scientific innovations; the medical field is no exception. Electrospinning has proven to be an excellent method for the synthesis of nanofibers which, have attracted the interest for many biomedical applications. The formation of biofilms in wounds often leads to chronic infections that are difficult to treat with antibiotics. In order to minimize the biofilms and enhance the wound healing, preparation of potential nanofibers was focused. In this study, siderophore incorporated nanofibers were electrospun using biocompatible polymers onto the collagen scaffold and were fabricated into a biomaterial suitable for the inhibition of biofilm formation. The purified microbial siderophore was blended with Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO in a suitable solvent. Fabrication of siderophore blended nanofibers onto the collagen surface was done using standard protocols. The fabricated scaffold was subjected to physical-chemical characterization. The results indicated that the fabrication processing parameters of nanofiberous scaffold was found to possess the characteristics expected of the potential scaffold with nanoscale morphology and microscale arrangement. The influence of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO solution concentration, applied voltage, tip-to-collector distance, feeding rate, and collector speed were studied. The optimal parameters such as the ratio of Poly-L-lactide (PLLA) and poly (ethylene oxide) PEO concentration, applied voltage, tip-to-collector distance, feeding rate, collector speed were finalized based on the trial and error experiments. The fibers were found to have a uniform diameter with an aligned morphology. The overall study suggests that the prepared siderophore entrapped nanofibers could be used as a potent tool for wound dressing material for inhibition of biofilm formation.Keywords: biofilms, electrospinning, nano-fibers, siderophore, tissue engineering scaffold
Procedia PDF Downloads 12326853 Challenges and Opportunities in Computing Logistics Cost in E-Commerce Supply Chain
Authors: Pramod Ghadge, Swadesh Srivastava
Abstract:
Revenue generation of a logistics company depends on how the logistics cost of a shipment is calculated. Logistics cost of a shipment is a function of distance & speed of the shipment travel in a particular network, its volumetric size and dead weight. Logistics billing is based mainly on the consumption of the scarce resource (space or weight carrying capacity of a carrier). Shipment’s size or deadweight is a function of product and packaging weight, dimensions and flexibility. Hence, to arrive at a standard methodology to compute accurate cost to bill the customer, the interplay among above mentioned physical attributes along with their measurement plays a key role. This becomes even more complex for an ecommerce company, like Flipkart, which caters to shipments from both warehouse and marketplace in an unorganized non-standard market like India. In this paper, we will explore various methodologies to define a standard way of billing the non-standard shipments across a wide range of size, shape and deadweight. Those will be, usage of historical volumetric/dead weight data to arrive at a factor which can be used to compute the logistics cost of a shipment, also calculating the real/contour volume of a shipment to address the problem of irregular shipment shapes which cannot be solved by conventional bounding box volume measurements. We will also discuss certain key business practices and operational quality considerations needed to bring standardization and drive appropriate ownership in the ecosystem.Keywords: contour volume, logistics, real volume, volumetric weight
Procedia PDF Downloads 26926852 Comparison of Volume of Fluid Model: Experimental and Empirical Results for Flows over Stacked Drop Manholes
Authors: Ramin Mansouri
Abstract:
The manhole is one of the types of structures that are installed at the site of change direction or change in the pipe diameter or sewage pipes as well as in step slope areas to reduce the flow velocity. In this study, the flow characteristics of hydraulic structures in a manhole structure have been investigated with a numerical model. In this research, the types of computational grid coarse, medium, and fines have been used for simulation. In order to simulate flow, k-ε model (standard, RNG, Realizable) and k-w model (standard SST) are used. Also, in order to find the best wall conditions, two types of standard and non-equilibrium wall functions were investigated. The turbulent model k-ε has the highest correlation with experimental results or all models. In terms of boundary conditions, constant speed is set for the flow input boundary, the output pressure is set in the boundaries which are in contact with the air, and the standard wall function is used for the effect of the wall function. In the numerical model, the depth at the output of the second manhole is estimated to be less than that of the laboratory and the output jet from the span. In the second regime, the jet flow collides with the manhole wall and divides into two parts, so hydraulic characteristics are the same as large vertical shaft hydraulic characteristics. In this situation, the turbulence is in a high range since it can be seen more energy loss in it. According to the results, energy loss in numerical is estimated at 9.359%, which is more than experimental data.Keywords: manhole, energy, depreciation, turbulence model, wall function, flow
Procedia PDF Downloads 8226851 Optimal Capacitor Placement in Distribution Systems
Authors: Sana Ansari, Sirus Mohammadi
Abstract:
In distribution systems, shunt capacitors are used to reduce power losses, to improve voltage profile, and to increase the maximum flow through cables and transformers. This paper presents a new method to determine the optimal locations and economical sizing of fixed and/or switched shunt capacitors with a view to power losses reduction and voltage stability enhancement. General Algebraic Modeling System (GAMS) has been used to solve the maximization modules using the MINOS optimization software with Linear Programming (LP). The proposed method is tested on 33 node distribution system and the results show that the algorithm suitable for practical implementation on real systems with any size.Keywords: power losses, voltage stability, radial distribution systems, capacitor
Procedia PDF Downloads 64726850 Integrating Cyber-Physical System toward Advance Intelligent Industry: Features, Requirements and Challenges
Authors: V. Reyes, P. Ferreira
Abstract:
In response to high levels of competitiveness, industrial systems have evolved to improve productivity. As a consequence, a rapid increase in volume production and simultaneously, a customization process require lower costs, more variety, and accurate quality of products. Reducing time-cycle production, enabling customizability, and ensure continuous quality improvement are key features in advance intelligent industry. In this scenario, customers and producers will be able to participate in the ongoing production life cycle through real-time interaction. To achieve this vision, transparency, predictability, and adaptability are key features that provide the industrial systems the capability to adapt to customer demands modifying the manufacturing process through an autonomous response and acting preventively to avoid errors. The industrial system incorporates a diversified number of components that in advanced industry are expected to be decentralized, end to end communicating, and with the capability to make own decisions through feedback. The evolving process towards advanced intelligent industry defines a set of stages to empower components of intelligence and enhancing efficiency to achieve the decision-making stage. The integrated system follows an industrial cyber-physical system (CPS) architecture whose real-time integration, based on a set of enabler technologies, links the physical and virtual world generating the digital twin (DT). This instance allows incorporating sensor data from real to virtual world and the required transparency for real-time monitoring and control, contributing to address important features of the advanced intelligent industry and simultaneously improve sustainability. Assuming the industrial CPS as the core technology toward the latest advanced intelligent industry stage, this paper reviews and highlights the correlation and contributions of the enabler technologies for the operationalization of each stage in the path toward advanced intelligent industry. From this research, a real-time integration architecture for a cyber-physical system with applications to collaborative robotics is proposed. The required functionalities and issues to endow the industrial system of adaptability are identified.Keywords: cyber-physical systems, digital twin, sensor data, system integration, virtual model
Procedia PDF Downloads 11826849 A Comparison of Image Data Representations for Local Stereo Matching
Authors: André Smith, Amr Abdel-Dayem
Abstract:
The stereo matching problem, while having been present for several decades, continues to be an active area of research. The goal of this research is to find correspondences between elements found in a set of stereoscopic images. With these pairings, it is possible to infer the distance of objects within a scene, relative to the observer. Advancements in this field have led to experimentations with various techniques, from graph-cut energy minimization to artificial neural networks. At the basis of these techniques is a cost function, which is used to evaluate the likelihood of a particular match between points in each image. While at its core, the cost is based on comparing the image pixel data; there is a general lack of consistency as to what image data representation to use. This paper presents an experimental analysis to compare the effectiveness of more common image data representations. The goal is to determine the effectiveness of these data representations to reduce the cost for the correct correspondence relative to other possible matches.Keywords: colour data, local stereo matching, stereo correspondence, disparity map
Procedia PDF Downloads 37026848 Business-Intelligence Mining of Large Decentralized Multimedia Datasets with a Distributed Multi-Agent System
Authors: Karima Qayumi, Alex Norta
Abstract:
The rapid generation of high volume and a broad variety of data from the application of new technologies pose challenges for the generation of business-intelligence. Most organizations and business owners need to extract data from multiple sources and apply analytical methods for the purposes of developing their business. Therefore, the recently decentralized data management environment is relying on a distributed computing paradigm. While data are stored in highly distributed systems, the implementation of distributed data-mining techniques is a challenge. The aim of this technique is to gather knowledge from every domain and all the datasets stemming from distributed resources. As agent technologies offer significant contributions for managing the complexity of distributed systems, we consider this for next-generation data-mining processes. To demonstrate agent-based business intelligence operations, we use agent-oriented modeling techniques to develop a new artifact for mining massive datasets.Keywords: agent-oriented modeling (AOM), business intelligence model (BIM), distributed data mining (DDM), multi-agent system (MAS)
Procedia PDF Downloads 43226847 Introduction of Electronic Health Records to Improve Data Quality in Emergency Department Operations
Authors: Anuruddha Jagoda, Samiddhi Samarakoon, Anil Jasinghe
Abstract:
In its simplest form, data quality can be defined as 'fitness for use' and it is a concept with multi-dimensions. Emergency Departments(ED) require information to treat patients and on the other hand it is the primary source of information regarding accidents, injuries, emergencies etc. Also, it is the starting point of various patient registries, databases and surveillance systems. This interventional study was carried out to improve data quality at the ED of the National Hospital of Sri Lanka (NHSL) by introducing an e health solution to improve data quality. The NHSL is the premier trauma care centre in Sri Lanka. The study consisted of three components. A research study was conducted to assess the quality of data in relation to selected five dimensions of data quality namely accuracy, completeness, timeliness, legibility and reliability. The intervention was to develop and deploy an electronic emergency department information system (eEDIS). Post assessment of the intervention confirmed that all five dimensions of data quality had improved. The most significant improvements are noticed in accuracy and timeliness dimensions.Keywords: electronic health records, electronic emergency department information system, emergency department, data quality
Procedia PDF Downloads 27426846 Adjustment of the Level of Vibrational Force on Targeted Teeth
Authors: Amin Akbari, Dongcai Wang, Huiru Li, Xiaoping Du, Jie Chen
Abstract:
The effect of vibrational force (VF) on accelerating orthodontic tooth movement depends on the level of delivered stimulation to the tooth in terms of peak load (PL), which requires contacts between the tooth and the VF device. A personalized device ensures the contacts, but the resulting PL distribution on the teeth is unknown. Furthermore, it is unclear whether the PL on particular teeth can be adjusted to the prescribed values. The objective of this study was to investigate the efficacy of apersonalized VF device in controlling the level of stimulation on two teeth, the mandibular canines and 2nd molars. A 3-D finite element (FE) model of human dentition, including teeth, PDL, and alveolar bone, was created from the cone beam computed tomography images of an anonymous subject. The VF was applied to the teeth through a VFdevice consisting of a mouthpiece with engraved tooth profile of the subject and a VF source that applied 0.3 N force with the frequency of 30 Hz. The dentition and mouthpiece were meshed using 10-node tetrahedral elements. Interface elements were created at the interfaces between the teeth and the mouthpiece. The upper and lower teeth bite on the mouthpiece to receive the vibration. The depth of engraved individual tooth profile could be adjusted, which was accomplished by adding a layer of material as an interference or removing a layer of material as a clearance to change the PL on the tooth. The interference increases the PL while the clearance decreases it. Fivemouthpiece design cases were simulated, which included a mouthpiece without interference/clearance; the mouthpieces with bilateral interferences on both mandibular canines and 2nd molars with magnitudes of 0.1, 0.15, and 0.2-mm, respectively; and mouthpiece with bilateral 0.3-mm clearances on the four teeth. Then, the force distributions on the entire dentition were compared corresponding to these adjustments. The PL distribution on the teeth is uneven when there is no interference or clearance. Among all teeth, the anterior segment receives the highest level of PL. Adding 0.1, 0.15, and 0.2-mm interferences to the canines and 2nd molars bilaterally leads to increase of the PL on the canines by 10, 62, and 73 percent and on the 2nd molar by 14, 55, and 87 percent, respectively. Adding clearances to the canines and 2nd molars by removing the contactsbetween these teeth and the mouthpiece results in zero PL on them. Moreover, introducing interference to mandibular canines and 2nd molarsredistributes the PL on the entireteeth. The share of the PL on the anterior teeth are reduced. The use of the personalized mouthpiece ensures contactsof the teeth to the mouthpiece so that all teeth can be stimulated. However, the PL distribution is uneven. Adding interference between a tooth and the mouthpiece increases the PL while introducing clearance decreases the PL. As a result, the PL is redistributed. This study confirms that the level of VF stimulation on the individual tooth can be adjusted to a prescribed value.Keywords: finite element method, orthodontic treatment, stress analysis, tooth movement, vibrational force
Procedia PDF Downloads 22426845 Cellular Technologies in Urology
Authors: R. Zhankina, U. Zhanbyrbekuly, A. Tamadon, M. Askarov, R. Sherkhanov, D. Akhmetov, D. Saipiyeva, N. Keulimzhaev
Abstract:
Male infertility affects about 15% of couples of reproductive age. Approximately 10–15% have azoospermia who have previously been diagnosed with male infertility. Azoospermia is regarded as the absence of spermatozoa in the ejaculate and is found in 10-15% of infertile men. Non-obstructive azoospermia is considered a cause of male infertility that is not amenable to drug therapy. Patients with non-obstructive azoospermia are unable to have their "own" children and have only options for adoption or use of donor sperm. Advances in assisted reproductive technologies such as intracytoplasmic sperm injection in vitro fertilization have significantly changed the management of patients with non-obstructive azoospermia. Advances in biotechnology have increased the options for treating patients with non-obstructive azoospermia. Mesenchymal stem cell therapy has been recognized as a new option for infertility treatment. Material and methods of the study: After obtaining informed consent, 5 patients diagnosed with non-obstructive azoospermia were included in an open, non-randomized study. The age of the patients ranged from 24 to 35 years. The examination was carried out before the start of treatment, which included biochemical blood tests, hormonal profile levels (luteinizing hormone, follicle-stimulating hormone, testosterone, prolactin, inhibin B); tests for tumor markers; genetic research. All studies were carried out in compliance with the requirements of Protocol No. 8 dated 06/09/20, approved by the Local Ethical Commission of NJSC "Astana Medical University". The control examination of patients was carried out after 6 months, by re-taking the program and hormonal profile (testosterone, luteinizing hormone, follicle-stimulating hormone, prolactin, inhibin B). Before micro-TESE of the testis, all 5 patients underwent myeloexfusion in the operating room. During the micro-TESE, autotransplantation of mesenchymal stem cells into the testicular network, previously cultured in a cell technology laboratory for 2 weeks, was performed. Results of the study: in all patients, the levels of total testosterone increased, the level of follicle-stimulating hormone decreased, the levels of luteinizing hormone returned to normal, the level of inhibin B increased. IVF with a positive result; another patient (20%) had spermatogenesis cells. Non-obstructive azoospermia and mesenchymal stem cells Conclusions: The positive results of this work serve as the basis for the application of a new cellular therapeutic approach for the treatment of non-obstructive azoospermia using mesenchymal stem cells.Keywords: cell therapy, regenerative medicine, male infertility, mesenchymal stem cells
Procedia PDF Downloads 11426844 Solar Heating System to Promote the Disinfection of Water
Authors: Elmo Thiago Lins Cöuras Ford, Valentina Alessandra Carvalho do Vale
Abstract:
It presents a heating system using low cost alternative solar collectors to promote the disinfection of water in low income communities that take water contaminated by bacteria. The system consists of two solar collectors, with total area of 4 m² and was built using PET bottles and cans of beer and soft drinks. Each collector is made up of 8 PVC tubes, connected in series and work in continuous flow. It will determine the flux the most appropriate to generate the temperature to promote the disinfection. It will be presented results of the efficiency and thermal loss of system and results of analysis of water after undergoing the process of heating.Keywords: Disinfection of water, solar heating system, poor communities, bioinformatics, biomedicine
Procedia PDF Downloads 48626843 Evaluation of Golden Beam Data for the Commissioning of 6 and 18 MV Photons Beams in Varian Linear Accelerator
Authors: Shoukat Ali, Abdul Qadir Jandga, Amjad Hussain
Abstract:
Objective: The main purpose of this study is to compare the Percent Depth dose (PDD) and In-plane and cross-plane profiles of Varian Golden beam data to the measured data of 6 and 18 MV photons for the commissioning of Eclipse treatment planning system. Introduction: Commissioning of treatment planning system requires an extensive acquisition of beam data for the clinical use of linear accelerators. Accurate dose delivery require to enter the PDDs, Profiles and dose rate tables for open and wedges fields into treatment planning system, enabling to calculate the MUs and dose distribution. Varian offers a generic set of beam data as a reference data, however not recommend for clinical use. In this study, we compared the generic beam data with the measured beam data to evaluate the reliability of generic beam data to be used for the clinical purpose. Methods and Material: PDDs and Profiles of Open and Wedge fields for different field sizes and at different depths measured as per Varian’s algorithm commissioning guideline. The measurement performed with PTW 3D-scanning water phantom with semi-flex ion chamber and MEPHYSTO software. The online available Varian Golden Beam Data compared with the measured data to evaluate the accuracy of the golden beam data to be used for the commissioning of Eclipse treatment planning system. Results: The deviation between measured vs. golden beam data was in the range of 2% max. In PDDs, the deviation increases more in the deeper depths than the shallower depths. Similarly, profiles have the same trend of increasing deviation at large field sizes and increasing depths. Conclusion: Study shows that the percentage deviation between measured and golden beam data is within the acceptable tolerance and therefore can be used for the commissioning process; however, verification of small subset of acquired data with the golden beam data should be mandatory before clinical use.Keywords: percent depth dose, flatness, symmetry, golden beam data
Procedia PDF Downloads 48926842 Multi-Size Continuous Particle Separation on a Dielectrophoresis-Based Microfluidics Chip
Authors: Arash Dalili, Hamed Tahmouressi, Mina Hoorfar
Abstract:
Advances in lab-on-a-chip (LOC) devices have led to significant advances in the manipulation, separation, and isolation of particles and cells. Among the different active and passive particle manipulation methods, dielectrophoresis (DEP) has been proven to be a versatile mechanism as it is label-free, cost-effective, simple to operate, and has high manipulation efficiency. DEP has been applied for a wide range of biological and environmental applications. A popular form of DEP devices is the continuous manipulation of particles by using co-planar slanted electrodes, which utilizes a sheath flow to focus the particles into one side of the microchannel. When particles enter the DEP manipulation zone, the negative DEP (nDEP) force generated by the slanted electrodes deflects the particles laterally towards the opposite side of the microchannel. The lateral displacement of the particles is dependent on multiple parameters including the geometry of the electrodes, the width, length and height of the microchannel, the size of the particles and the throughput. In this study, COMSOL Multiphysics® modeling along with experimental studies are used to investigate the effect of the aforementioned parameters. The electric field between the electrodes and the induced DEP force on the particles are modelled by COMSOL Multiphysics®. The simulation model is used to show the effect of the DEP force on the particles, and how the geometry of the electrodes (width of the electrodes and the gap between them) plays a role in the manipulation of polystyrene microparticles. The simulation results show that increasing the electrode width to a certain limit, which depends on the height of the channel, increases the induced DEP force. Also, decreasing the gap between the electrodes leads to a stronger DEP force. Based on these results, criteria for the fabrication of the electrodes were found, and soft lithography was used to fabricate interdigitated slanted electrodes and microchannels. Experimental studies were run to find the effect of the flow rate, geometrical parameters of the microchannel such as length, width, and height as well as the electrodes’ angle on the displacement of 5 um, 10 um and 15 um polystyrene particles. An empirical equation is developed to predict the displacement of the particles under different conditions. It is shown that the displacement of the particles is more for longer and lower height channels, lower flow rates, and bigger particles. On the other hand, the effect of the angle of the electrodes on the displacement of the particles was negligible. Based on the results, we have developed an optimum design (in terms of efficiency and throughput) for three size separation of particles.Keywords: COMSOL Multiphysics, Dielectrophoresis, Microfluidics, Particle separation
Procedia PDF Downloads 186