Search results for: breath monitoring using pressure sensors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7966

Search results for: breath monitoring using pressure sensors

4756 Succinonitrile Modified Polyacrylamide as a Quasi-Solid Electrolyte for an Organic Based Electrochromic Device

Authors: Benjamin Orimolade, Emily Draper

Abstract:

The interest in all solid electrochromic devices (ECD) is ongoing. This is because these devices offer realistic applications of electrochromic materials in products such as sensors, windows and energy storage devices. The use of quasi-solid (gel) electrolytes for the construction of these ECDs is attractive because of their ease of preparation, availability, low cost, improved electrochromic performance, good ionic conductivity and prevention of leakages in ECDs. Herein, we developed a gel electrolyte consisting of polyacrylamide modified with succinonitrile for an ECD containing leucine-modified naphthalene diimide (NDI-L) as electrochromic material. The amount of succinonitrile in the gel was optimized, and the structure, surface morphology, and ionic conductivity of the electrolytes were assessed using microscopic techniques and electrochemical methods. The ECD fabricated with the gel electrolyte displayed good electrochromic performance with a fast switching response of up to 10 s and outstanding stability. These results add significant insight into understanding the inter- and intra-molecular interaction in succinonitrile gel electrolytes and provide a typical practicable high-performance gel electrolyte material for solid electrochromic devices.

Keywords: electrochromic device, gel electrolytes, naphthalene diimide, succinonitrile

Procedia PDF Downloads 61
4755 Mobile Wireless Investigation Platform

Authors: Dimitar Karastoyanov, Todor Penchev

Abstract:

The paper presents the research of a kind of autonomous mobile robots, intended for work and adaptive perception in unknown and unstructured environment. The objective are robots, dedicated for multi-sensory environment perception and exploration, like measurements and samples taking, discovering and putting a mark on the objects as well as environment interactions–transportation, carrying in and out of equipment and objects. At that ground classification of the different types mobile robots in accordance with the way of locomotion (wheel- or chain-driven, walking, etc.), used drive mechanisms, kind of sensors, end effectors, area of application, etc. is made. Modular system for the mechanical construction of the mobile robots is proposed. Special PLC on the base of AtMega128 processor for robot control is developed. Electronic modules for the wireless communication on the base of Jennic processor as well as the specific software are developed. The methods, means and algorithms for adaptive environment behaviour and tasks realization are examined. The methods of group control of mobile robots and for suspicious objects detecting and handling are discussed too.

Keywords: mobile robots, wireless communications, environment investigations, group control, suspicious objects

Procedia PDF Downloads 358
4754 Data Stream Association Rule Mining with Cloud Computing

Authors: B. Suraj Aravind, M. H. M. Krishna Prasad

Abstract:

There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.

Keywords: data stream, association rule mining, cloud computing, frequent itemsets

Procedia PDF Downloads 503
4753 Continuous Glucose Monitoring Systems and the Improvement in Hypoglycemic Awareness Post-Islet Transplantation: A Single-Centre Cohort Study

Authors: Clare Flood, Shareen Forbes

Abstract:

Background: Type 1 diabetes mellitus (T1DM) is an autoimmune disorder affecting >400,000 people in the UK alone, with the global prevalence expected to double in the next decade. Islet transplant offers a minimally-invasive procedure with very low morbidity and almost no mortality, and is now as effective as whole pancreas transplant. The procedure was introduced to the UK in 2011 for patients with the most severe type 1 diabetes mellitus (T1DM) – those with unstable blood glucose, frequently occurring episodes of severe hypoglycemia and impaired awareness of hypoglycemia (IAH). Objectives: To evaluate the effectiveness of islet transplantation in improving glycemic control, reducing the burden of hypoglycemia and improving awareness of hypoglycemia through a single-centre cohort study at the Royal Infirmary of Edinburgh. Glycemic control and degree of hypoglycemic awareness will be determined and monitored pre- and post-transplantation to determine effectiveness of the procedure. Methods: A retrospective analysis of data collected over three years from the 16 patients who have undergone islet transplantation in Scotland. Glycated haemoglobin (HbA1c) was measured and continuous glucose monitoring systems (CGMS) were utilised to assess glycemic control, while Gold and Clarke score questionnaires tested IAH. Results: All patients had improved glycemic control following transplant, with optimal control seen visually at 3 months post-transplant. Glycemic control significantly improved, as illustrated by percentage time in hypoglycemia in the months following transplant (p=0.0211) and HbA1c (p=0.0426). Improved Clarke (p=0.0034) and Gold (p=0.0001) scores indicate improved glycemic awareness following transplant. Conclusion: While the small sample of islet transplant recipients at the Royal Infirmary of Edinburgh prevents definitive conclusions being drawn, it is indicated that through our retrospective, single-centre cohort study of 16 patients, islet transplant is capable of improving glycemic control, reducing the burden of hypoglycemia and IAH post-transplant. Data can be combined with similar trials at other centres to increase statistical power but from research in Edinburgh, it can be suggested that the minimally invasive procedure of islet transplantation offers selected patients with extremely unstable T1DM the incredible opportunity to regain control of their condition and improve their quality of life.

Keywords: diabetes, islet, transplant, CGMS

Procedia PDF Downloads 272
4752 Testing the Effectiveness of a Peer Facilitated Body Project Interventions Among Body Dissatisfied Young Women in China: A Randomized Control Trial

Authors: Todd Jackson

Abstract:

In this randomized control trial, we tested the effectiveness of a peer-facilitated version of the Body Project (BP) intervention among body-dissatisfied young women in China. Participants were randomly assigned to a peer-facilitator BP condition (N = 94) versus an educational video minimal intervention control condition (N = 89). Questionnaire measures of two primary outcomes (i.e., disordered eating and body dissatisfaction) and six secondary outcomes (thin-ideal internalization, pressure to be thin, negative affect, body surveillance, body shame, body appreciation and interest in cosmetic surgery) were administered at a pre-treatment baseline, a post-treatment assessment, and at a 12-month follow-up. A series of 2 (Group) x 2 (Time) analyses of variance indicated women in the peer-facilitated BP condition reported significant improvements in primary outcome measures of disordered eating and body dissatisfaction compared to women in the educational video control condition following treatment and at the 12-month follow-up. Furthermore, women in the peer-facilitated BP condition reported significant improvements in measures of body surveillance, body shame and body appreciation) compared to educational video controls that extended to the 12-month follow-up. Finally, although women in the peer-facilitated BP condition showed significant post-treatment improvements in thin-ideal internalization, negative affect, perceived pressure to be thin, and interest in cosmetic surgery compared to video controls, these differences were no longer statistically significant at the 12-month follow-up. In conclusion, findings supported the overall effectiveness of a peer-facilitated group version of the BP as an intervention for reducing disordered eating and several associated risk factors among at-risk young women in China.

Keywords: body project, disordered eating, body dissatisfaction, risk factors, prevention, China

Procedia PDF Downloads 72
4751 Thermal Properties of Polyhedral Oligomeric Silsesquioxanes/Polyimide Nanocomposite

Authors: Seyfullah Madakbas, Hatice Birtane, Memet Vezir Kahraman

Abstract:

In this study, we aimed to synthesize and characterize polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite. Polyimide nanocomposites widely have been used in membranes in fuel cell, solar cell, gas filtration, sensors, aerospace components, printed circuit boards. Firstly, polyamic acid was synthesized and characterized by Fourier Transform Infrared. Then, polyhedral oligomeric silsesquioxanes containing polyimide nanocomposite was prepared with thermal imidization method. The obtained polyimide nanocomposite was characterized by Fourier Transform Infrared, Scanning Electron Microscope, Thermal Gravimetric Analysis and Differential Scanning Calorimetry. Thermal stability of polyimide nanocomposite was evaluated by thermal gravimetric analysis and differential scanning calorimetry. Surface morphology of composite samples was investigated by scanning electron microscope. The obtained results prove that successfully prepared polyhedral oligomeric silsesquioxanes are containing polyimide nanocomposite. The obtained nanocomposite can be used in many industries such as electronics, automotive, aerospace, etc.

Keywords: polyimide, nanocomposite, polyhedral oligomeric silsesquioxanes

Procedia PDF Downloads 179
4750 Modeling User Context Using CEAR Diagram

Authors: Ravindra Dastikop, G. S. Thyagaraju, U. P. Kulkarni

Abstract:

Even though the number of context aware applications is increasing day by day along with the users, till today there is no generic programming paradigm for context aware applications. This situation could be remedied by design and developing the appropriate context modeling and programming paradigm for context aware applications. In this paper, we are proposing the static context model and metrics for validating the expressiveness and understandability of the model. The proposed context modeling is a way of describing a situation of user using context entities , attributes and relationships .The model which is an extended and hybrid version of ER model, ontology model and Graphical model is specifically meant for expressing and understanding the user situation in context aware environment. The model is useful for understanding context aware problems, preparing documentation and designing programs and databases. The model makes use of context entity attributes relationship (CEAR) diagram for representation of association between the context entities and attributes. We have identified a new set of graphical notations for improving the expressiveness and understandability of context from the end user perspective .

Keywords: user context, context entity, context entity attributes, situation, sensors, devices, relationships, actors, expressiveness, understandability

Procedia PDF Downloads 345
4749 The Effects of Seat Heights and Obesity on Lower-Limb Joint Kinematics during Sit-To-Stand Movement

Authors: Seungwon Baek, Haeseok Jeong, Haehyun Lee, Woojin Park

Abstract:

The main purpose of this study was to compare obese people to the non-obese in terms of joint kinematics in lower-limb body. The height of chairs was also considered as a design factor. Obese people had a difficulty in sit-to-stand (STS) tasks compared to the non-obese people. High chair heights can make STS task easy and it helps the obese to be more comfortable with STS task in particular. Subjects were instructed to wear inertial measurement unit (IMU) sensors. They perform STS task using chairs of different heights. Joint kinematics and subjective ratings of discomfort were measured. Knee angles of the obese group were greater than that of the non-obese group in normal type. No significant difference in joint kinematics was found in high chair. Interaction effect was found between obesity and height of chair. The results verified the previous research that had suggested a biomechanical model of STS movement. The results can be applied to occupational design for the obese.

Keywords: biomechanics, electromyography, joint kinematics, obesity, sitting, sit-to-stand

Procedia PDF Downloads 302
4748 Adaptations to Hamilton's Rule in Human Populations

Authors: Monty Vacura

Abstract:

Hamilton’s Rule is a universal law of biology expressed in protists, plants and animals. When applied to human populations, this model explains: 1) Origin of religion in society as a biopsychological need selected to increase population size; 2) Instincts of racism expressed through intergroup competition; 3) Simultaneous selection for human cooperation and conflict, love and hate; 4) Connection between sporting events and instinctive social messaging for stimulating offensive and defensive responses; 5) Pathway to reduce human sacrifice. This chapter discusses the deep psychological influences of Hamilton’s Rule. Suggestions are provided to reduce human deaths via our instinctive sacrificial behavior, by consciously monitoring Hamilton’s Rule variables highlighted throughout our media outlets.

Keywords: psychology, Hamilton’s rule, evolution, human instincts

Procedia PDF Downloads 60
4747 Hybrid Control Mode Based on Multi-Sensor Information by Fuzzy Approach for Navigation Task of Autonomous Mobile Robot

Authors: Jonqlan Lin, C. Y. Tasi, K. H. Lin

Abstract:

This paper addresses the issue of the autonomous mobile robot (AMR) navigation task based on the hybrid control modes. The novel hybrid control mode, based on multi-sensors information by using the fuzzy approach, has been presented in this research. The system operates in real time, is robust, enables the robot to operate with imprecise knowledge, and takes into account the physical limitations of the environment in which the robot moves, obtaining satisfactory responses for a large number of different situations. An experiment is simulated and carried out with a pioneer mobile robot. From the experimental results, the effectiveness and usefulness of the proposed AMR obstacle avoidance and navigation scheme are confirmed. The experimental results show the feasibility, and the control system has improved the navigation accuracy. The implementation of the controller is robust, has a low execution time, and allows an easy design and tuning of the fuzzy knowledge base.

Keywords: autonomous mobile robot, obstacle avoidance, MEMS, hybrid control mode, navigation control

Procedia PDF Downloads 467
4746 Comparative Studies on the Concentration of Some Heavy Metal in Urban Particulate Matter, Bangkok, Thailand

Authors: Sivapan Choo-In

Abstract:

The main objective of this study was investigate particulate matter concentration on main and secondary roadside in urban area. And studied on the concentration of some heavy metal including lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd) in particulate matter in Bangkok area. The averaged particle concentration for main roadside are higher than secondary roadside. The particulate matter less than 10 micron concentration contribute the majority of the Total Suspended Particulate for main road and zinc concentration were higher than copper and lead for both site.

Keywords: air pollution, air quality, polution, monitoring

Procedia PDF Downloads 324
4745 Effect of Proteoliposome Concentration on Salt Rejection Rate of Polysulfone Membrane Prepared by Incorporation of Escherichia coli and Halomonas elongata Aquaporins

Authors: Aysenur Ozturk, Aysen Yildiz, Hilal Yilmaz, Pinar Ergenekon, Melek Ozkan

Abstract:

Water scarcity is one of the most important environmental problems of the World today. Desalination process is regarded as a promising solution to solve drinking water problem of the countries facing with water shortages. Reverse osmosis membranes are widely used for desalination processes. Nano structured biomimetic membrane production is one of the most challenging research subject for improving water filtration efficiency of the membranes and for reducing the cost of desalination processes. There are several researches in the literature on the development of novel biomimetic nanofiltration membranes by incorporation of aquaporin Z molecules. Aquaporins are cell membrane proteins that allow the passage of water molecules and reject all other dissolved solutes. They are present in cell membranes of most of the living organisms and provide high water passage capacity. In this study, GST (Glutathione S-transferas) tagged E. coli aquaporinZ and H. elongate aquaporin proteins, which were previously cloned and characterized, were purified from E. coli BL21 cells and used for fabrication of modified Polysulphone Membrane (PS). Aquaporins were incorporated on the surface of the membrane by using 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) phospolipids as carrier liposomes. Aquaporin containing proteoliposomes were immobilized on the surface of the membrane with m-phenylene-diamine (MPD) and trimesoyl chloride (TMC) rejection layer. Water flux, salt rejection and glucose rejection performances of the thin film composite membranes were tested by using Dead-End Reactor Cell. In this study, effect of proteoliposome concentration, and filtration pressure on water flux and salt rejection rate of membranes were investigated. Type of aquaporin used for membrane fabrication, flux and pressure applied for filtration were found to be important parameters affecting rejection rates. Results suggested that optimization of concentration of aquaporin carriers (proteoliposomes) on the membrane surface is necessary for fabrication of effective composite membranes used for different purposes.

Keywords: aquaporins, biomimmetic membranes, desalination, water treatment

Procedia PDF Downloads 198
4744 Retrieval of Aerosol Optical Depth and Correlation Analysis of PM2.5 Based on GF-1 Wide Field of View Images

Authors: Bo Wang

Abstract:

This paper proposes a method that can estimate PM2.5 by the images of GF-1 Satellite that called WFOV images (Wide Field of View). AOD (Aerosol Optical Depth) over land surfaces was retrieved in Shanghai area based on DDV (Dark Dense Vegetation) method. PM2.5 information, gathered from ground monitoring stations hourly, was fitted with AOD using different polynomial coefficients, and then the correlation coefficient between them was calculated. The results showed that, the GF-1 WFOV images can meet the requirement of retrieving AOD, and the correlation coefficient between the retrieved AOD and PM2.5 was high. If more detailed and comprehensive data is provided, the accuracy could be improved and the parameters can be more precise in the future.

Keywords: remote sensing retrieve, PM 2.5, GF-1, aerosol optical depth

Procedia PDF Downloads 244
4743 Atmospheric Circulation Patterns Inducing Coastal Upwelling in the Baltic Sea

Authors: Ewa Bednorz, Marek Polrolniczak, Bartosz Czernecki, Arkadiusz Marek Tomczyk

Abstract:

This study is meant as a contribution to the research of the upwelling phenomenon, which is one of the most pronounced examples of the sea-atmosphere coupling. The aim is to confirm the atmospheric forcing of the sea waters circulation and sea surface temperature along the variously oriented Baltic Sea coasts and to find out macroscale and regional circulation patterns triggering upwelling along different sections of this relatively small and semi-closed sea basin. The mean daily sea surface temperature data from the summer seasons (June–August) of the years 1982–2017 made the basis for the detection of upwelling cases. For the atmospheric part of the analysis, monthly indices of the Northern Hemisphere macroscale circulation patterns were used. Besides, in order to identify the local direction of airflow, the daily zonal and meridional regional circulation indices were constructed and introduced to the analysis. Finally, daily regional circulation patterns over the Baltic Sea region were distinguished by applying the principal component analysis to the gridded mean daily sea level pressure data. Within the Baltic Sea, upwelling is the most frequent along the zonally oriented northern coast of the Gulf of Finland, southern coasts of Sweden, and along the middle part of the western Gulf of Bothnia coast. Among the macroscale circulation patterns, the Scandinavian type (SCAND), with a primary circulation center located over Scandinavia, has the strongest impact on the horizontal flow of surface sea waters in the Baltic Sea, which triggers upwelling. An anticyclone center over Scandinavia in the positive phase of SCAND enhances the eastern airflow, which increases upwelling frequency along southeastern Baltic coasts. It was proved in the study that the zonal circulation has a stronger impact on upwelling occurrence than the meridional one, and it could increase/decrease a chance of upwelling formation by more than 70% in some coastal sections. Positive and negative phases of six distinguished regional daily circulation patterns made 12 different synoptic situations which were analyzed in the terms of their influence on the upwelling formation. Each of them revealed some impact on the frequency of upwelling in some coastal section of the Baltic Sea; however, two kinds of synoptic situations seemed to have the strongest influence, namely, the first kind representing pressure patterns enhancing the zonal flow and the second kind representing synoptic patterns with a cyclone/anticyclone centers over southern Scandinavia. Upwelling occurrence appeared to be particularly strongly reliant on the atmospheric conditions in some specific coastal sections, namely: the Gulf of Finland, the south eastern Baltic coasts (Polish and Latvian-Lithuanian section), and the western part of the Gulf of Bothnia. Concluding, it can be stated that atmospheric conditions strongly control the occurrence of upwelling within the Baltic Sea basin. Both local and macroscale circulation patterns expressed by the location of the pressure centers influence the frequency of this phenomenon; however, the impact strength varies, depending on the coastal region. Acknowledgment: This research was funded by the National Science Centre, Poland, grant number 2016/21/B/ST10/01440.

Keywords: Baltic Sea, circulation patterns, coastal upwelling, synoptic conditions

Procedia PDF Downloads 128
4742 Delivering Inclusive Growth through Information and Communication Technology: The Miracle of Internet of Everything

Authors: Olawale Johnson

Abstract:

The cry and agitation for the creation of equal opportunities is one of the major reasons behind the social menace countries of the world experience. As the poor, continue to demand for the dividends of economic growth, countries of the world are in a state of dilemma because, despite impressive growth figures, the poor are still far below the empowerment line. However, evidence from the Asian Tigers has proven that with the adoption and efficient utilization of information technology, a growth miracle is not far-fetched. With the mind-boggling pace of technological innovation, the need to ensure that the innovative products are all connected has become vital. Technologies that did not exist a few years ago have become vital equipment used to underlie every aspect of our economy from medicine to banking to sports. The need to connect things sensors, actuators and smart systems with the aim of ensuring person-to-object, object-to-object communications has promoted the need of internet of things. As developing countries struggle with delivering inclusiveness, the Internet of Everything is perceived to be the miracle that will deliver this in no time. This paper examines how the Asian Tigers have been able to promote inclusive growth through the Internet of Everything.

Keywords: inclusive growth, internet of everything, innovation, embedded systems and smart technologies

Procedia PDF Downloads 321
4741 A Computational Fluid Dynamics Simulation of Single Rod Bundles with 54 Fuel Rods without Spacers

Authors: S. K. Verma, S. L. Sinha, D. K. Chandraker

Abstract:

The Advanced Heavy Water Reactor (AHWR) is a vertical pressure tube type, heavy water moderated and boiling light water cooled natural circulation based reactor. The fuel bundle of AHWR contains 54 fuel rods arranged in three concentric rings of 12, 18 and 24 fuel rods. This fuel bundle is divided into a number of imaginary interacting flow passage called subchannels. Single phase flow condition exists in reactor rod bundle during startup condition and up to certain length of rod bundle when it is operating at full power. Prediction of the thermal margin of the reactor during startup condition has necessitated the determination of the turbulent mixing rate of coolant amongst these subchannels. Thus, it is vital to evaluate turbulent mixing between subchannels of AHWR rod bundle. With the remarkable progress in the computer processing power, the computational fluid dynamics (CFD) methodology can be useful for investigating the thermal–hydraulic characteristics phenomena in the nuclear fuel assembly. The present report covers the results of simulation of pressure drop, velocity variation and turbulence intensity on single rod bundle with 54 rods in circular arrays. In this investigation, 54-rod assemblies are simulated with ANSYS Fluent 15 using steady simulations with an ANSYS Workbench meshing. The simulations have been carried out with water for Reynolds number 9861.83. The rod bundle has a mean flow area of 4853.0584 mm2 in the bare region with the hydraulic diameter of 8.105 mm. In present investigation, a benchmark k-ε model has been used as a turbulence model and the symmetry condition is set as boundary conditions. Simulation are carried out to determine the turbulent mixing rate in the simulated subchannels of the reactor. The size of rod and the pitch in the test has been same as that of actual rod bundle in the prototype. Water has been used as the working fluid and the turbulent mixing tests have been carried out at atmospheric condition without heat addition. The mean velocity in the subchannel has been varied from 0-1.2 m/s. The flow conditions are found to be closer to the actual reactor condition.

Keywords: AHWR, CFD, single-phase turbulent mixing rate, thermal–hydraulic

Procedia PDF Downloads 322
4740 [Keynote]: No-Trust-Zone Architecture for Securing Supervisory Control and Data Acquisition

Authors: Michael Okeke, Andrew Blyth

Abstract:

Supervisory Control And Data Acquisition (SCADA) as the state of the art Industrial Control Systems (ICS) are used in many different critical infrastructures, from smart home to energy systems and from locomotives train system to planes. Security of SCADA systems is vital since many lives depend on it for daily activities and deviation from normal operation could be disastrous to the environment as well as lives. This paper describes how No-Trust-Zone (NTZ) architecture could be incorporated into SCADA Systems in order to reduce the chances of malicious intent. The architecture is made up of two distinctive parts which are; the field devices such as; sensors, PLCs pumps, and actuators. The second part of the architecture is designed following lambda architecture, which is made up of a detection algorithm based on Particle Swarm Optimization (PSO) and Hadoop framework for data processing and storage. Apache Spark will be a part of the lambda architecture for real-time analysis of packets for anomalies detection.

Keywords: industrial control system (ics, no-trust-zone (ntz), particle swarm optimisation (pso), supervisory control and data acquisition (scada), swarm intelligence (SI)

Procedia PDF Downloads 346
4739 Methodology to Affirm Driver Engagement in Dynamic Driving Task (DDT) for a Level 2 Adas Feature

Authors: Praneeth Puvvula

Abstract:

Autonomy in has become increasingly common in modern automotive cars. There are 5 levels of autonomy as defined by SAE. This paper focuses on a SAE level 2 feature which, by definition, is able to control the vehicle longitudinally and laterally at the same time. The system keeps the vehicle centred with in the lane by detecting the lane boundaries while maintaining the vehicle speed. As with the features from SAE level 1 to level 3, the primary responsibility of dynamic driving task lies with the driver. This will need monitoring techniques to ensure the driver is always engaged even while the feature is active. This paper focuses on the these techniques, which would help the safe usage of the feature and provide appropriate warnings to the driver.

Keywords: autonomous driving, safety, adas, automotive technology

Procedia PDF Downloads 89
4738 Delivering Safer Clinical Trials; Using Electronic Healthcare Records (EHR) to Monitor, Detect and Report Adverse Events in Clinical Trials

Authors: Claire Williams

Abstract:

Randomised controlled Trials (RCTs) of efficacy are still perceived as the gold standard for the generation of evidence, and whilst advances in data collection methods are well developed, this progress has not been matched for the reporting of adverse events (AEs). Assessment and reporting of AEs in clinical trials are fraught with human error and inefficiency and are extremely time and resource intensive. Recent research conducted into the quality of reporting of AEs during clinical trials concluded it is substandard and reporting is inconsistent. Investigators commonly send reports to sponsors who are incorrectly categorised and lacking in critical information, which can complicate the detection of valid safety signals. In our presentation, we will describe an electronic data capture system, which has been designed to support clinical trial processes by reducing the resource burden on investigators, improving overall trial efficiencies, and making trials safer for patients. This proprietary technology was developed using expertise proven in the delivery of the world’s first prospective, phase 3b real-world trial, ‘The Salford Lung Study, ’ which enabled robust safety monitoring and reporting processes to be accomplished by the remote monitoring of patients’ EHRs. This technology enables safety alerts that are pre-defined by the protocol to be detected from the data extracted directly from the patients EHR. Based on study-specific criteria, which are created from the standard definition of a serious adverse event (SAE) and the safety profile of the medicinal product, the system alerts the investigator or study team to the safety alert. Each safety alert will require a clinical review by the investigator or delegate; examples of the types of alerts include hospital admission, death, hepatotoxicity, neutropenia, and acute renal failure. This is achieved in near real-time; safety alerts can be reviewed along with any additional information available to determine whether they meet the protocol-defined criteria for reporting or withdrawal. This active surveillance technology helps reduce the resource burden of the more traditional methods of AE detection for the investigators and study teams and can help eliminate reporting bias. Integration of multiple healthcare data sources enables much more complete and accurate safety data to be collected as part of a trial and can also provide an opportunity to evaluate a drug’s safety profile long-term, in post-trial follow-up. By utilising this robust and proven method for safety monitoring and reporting, a much higher risk of patient cohorts can be enrolled into trials, thus promoting inclusivity and diversity. Broadening eligibility criteria and adopting more inclusive recruitment practices in the later stages of drug development will increase the ability to understand the medicinal products risk-benefit profile across the patient population that is likely to use the product in clinical practice. Furthermore, this ground-breaking approach to AE detection not only provides sponsors with better-quality safety data for their products, but it reduces the resource burden on the investigator and study teams. With the data taken directly from the source, trial costs are reduced, with minimal data validation required and near real-time reporting enables safety concerns and signals to be detected more quickly than in a traditional RCT.

Keywords: more comprehensive and accurate safety data, near real-time safety alerts, reduced resource burden, safer trials

Procedia PDF Downloads 86
4737 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection

Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma

Abstract:

Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.

Keywords: nanohybrids, response, sensor, VOCs, xylene

Procedia PDF Downloads 331
4736 Operating System Support for Mobile Device Thermal Management and Performance Optimization in Augmented Reality Applications

Authors: Yasith Mindula Saipath Wickramasinghe

Abstract:

Augmented reality applications require a high processing power to load, render and live stream high-definition AR models and virtual scenes; it also requires device sensors to work excessively to coordinate with internal hardware, OS and give the expected outcome in advance features like object detection, real time tracking, as well as voice and text recognition. Excessive thermal generation due to these advanced functionalities has become a major research problem as it is unbearable for smaller mobile devices to manage such heat increment and battery drainage as it causes physical harm to the devices in the long term. Therefore, effective thermal management is one of the major requirements in Augmented Reality application development. As this paper discusses major causes for this issue, it also provides possible solutions in the means of operating system adaptations as well as further research on best coding practises to optimize the application performance that reduces thermal excessive thermal generation.

Keywords: augmented reality, device thermal management, GPU, operating systems, device I/O, overheating

Procedia PDF Downloads 119
4735 Deflagration and Detonation Simulation in Hydrogen-Air Mixtures

Authors: Belyayev P. E., Makeyeva I. R., Mastyuk D. A., Pigasov E. E.

Abstract:

Previously, the phrase ”hydrogen safety” was often used in terms of NPP safety. Due to the rise of interest to “green” and, particularly, hydrogen power engineering, the problem of hydrogen safety at industrial facilities has become ever more urgent. In Russia, the industrial production of hydrogen is meant to be performed by placing a chemical engineering plant near NPP, which supplies the plant with the necessary energy. In this approach, the production of hydrogen involves a wide range of combustible gases, such as methane, carbon monoxide, and hydrogen itself. Considering probable incidents, sudden combustible gas outburst into open space with further ignition is less dangerous by itself than ignition of the combustible mixture in the presence of many pipelines, reactor vessels, and any kind of fitting frames. Even ignition of 2100 cubic meters of the hydrogen-air mixture in open space gives velocity and pressure that are much lesser than velocity and pressure in Chapman-Jouguet condition and do not exceed 80 m/s and 6 kPa accordingly. However, the space blockage, the significant change of channel diameter on the way of flame propagation, and the presence of gas suspension lead to significant deflagration acceleration and to its transition into detonation or quasi-detonation. At the same time, process parameters acquired from the experiments at specific experimental facilities are not general, and their application to different facilities can only have a conventional and qualitative character. Yet, conducting deflagration and detonation experimental investigation for each specific industrial facility project in order to determine safe infrastructure unit placement does not seem feasible due to its high cost and hazard, while the conduction of numerical experiments is significantly cheaper and safer. Hence, the development of a numerical method that allows the description of reacting flows in domains with complex geometry seems promising. The base for this method is the modification of Kuropatenko method for calculating shock waves recently developed by authors, which allows using it in Eulerian coordinates. The current work contains the results of the development process. In addition, the comparison of numerical simulation results and experimental series with flame propagation in shock tubes with orifice plates is presented.

Keywords: CFD, reacting flow, DDT, gas explosion

Procedia PDF Downloads 90
4734 Evaluation of Cardiac Rhythm Patterns after Open Surgical Maze-Procedures from Three Years' Experiences in a Single Heart Center

Authors: J. Yan, B. Pieper, B. Bucsky, H. H. Sievers, B. Nasseri, S. A. Mohamed

Abstract:

In order to optimize the efficacy of medications, the regular follow-up with long-term continuous monitoring of heart rhythmic patterns has been facilitated since clinical introduction of cardiac implantable electronic monitoring devices (CIMD). Extensive analysis of rhythmic circadian properties is capable to disclose the distributions of arrhythmic events, which may support appropriate medication according rate-/rhythm-control strategy and minimize consequent afflictions. 348 patients (69 ± 0.5ys, male 61.8%) with predisposed atrial fibrillation (AF), undergoing primary ablating therapies combined to coronary or valve operations and secondary implantation of CIMDs, were involved and divided into 3 groups such as PAAF (paroxysmal AF) (n=99, male 68.7%), PEAF (persistent AF) (n=94, male 62.8%), and LSPEAF (long-standing persistent AF) (n=155, male 56.8%). All patients participated in three-year ambulant follow-up (3, 6, 9, 12, 18, 24, 30 and 36 months). Burdens of atrial fibrillation recurrence were assessed using cardiac monitor devices, whereby attacks frequencies and their circadian patterns were systemically analyzed. Anticoagulants and regular anti-arrhythmic medications were evaluated and the last were listed in terms of anti-rate and anti-rhythm regimens. Patients in the PEAF-group showed the least AF-burden after surgical ablating procedures compared to both of the other subtypes (p < 0.05). The AF-recurrences predominantly performed such attacks’ property as shorter than one hour, namely within 10 minutes (p < 0.05), regardless of AF-subtypes. Concerning circadian distribution of the recurrence attacks, frequent AF-attacks were mostly recorded in the morning in the PAAF-group (p < 0.05), while the patients with predisposed PEAF complained less attack-induced discomforts in the latter half of the night and the ones with LSPEAF only if they were not physically active after primary surgical ablations. Different AF-subtypes presented distinct therapeutic efficacies after appropriate surgical ablating procedures and recurrence properties in sense of circadian distribution. An optimization of medical regimen and drug dosages to maintain the therapeutic success needs more attention to detailed assessment of the long-term follow-up. Rate-control strategy plays a much more important role than rhythm-control in the ongoing follow-up examinations.

Keywords: atrial fibrillation, CIMD, MAZE, rate-control, rhythm-control, rhythm patterns

Procedia PDF Downloads 157
4733 Routing and Energy Efficiency through Data Coupled Clustering in Large Scale Wireless Sensor Networks (WSNs)

Authors: Jainendra Singh, Zaheeruddin

Abstract:

A typical wireless sensor networks (WSNs) consists of several tiny and low-power sensors which use radio frequency to perform distributed sensing tasks. The longevity of wireless sensor networks (WSNs) is a major issue that impacts the application of such networks. While routing protocols are striving to save energy by acting on sensor nodes, recent studies show that network lifetime can be enhanced by further involving sink mobility. A common approach for energy efficiency is partitioning the network into clusters with correlated data, where the representative nodes simply transmit or average measurements inside the cluster. In this paper, we propose an energy- efficient homogenous clustering (EHC) technique. In this technique, the decision of each sensor is based on their residual energy and an estimate of how many of its neighboring cluster heads (CHs) will benefit from it being a CH. We, also explore the routing algorithm in clustered WSNs. We show that the proposed schemes significantly outperform current approaches in terms of packet delay, hop count and energy consumption of WSNs.

Keywords: wireless sensor network, energy efficiency, clustering, routing

Procedia PDF Downloads 267
4732 Fiber-Optic Sensors for Hydrogen Peroxide Vapor Measurement

Authors: H. Akbari Khorami, P. Wild, N. Djilali

Abstract:

This paper reports on the response of a fiber-optic sensing probe to small concentrations of hydrogen peroxide (H2O2) vapor at room temperature. H2O2 has extensive applications in industrial and medical environments. Conversely, H2O2 can be a health hazard by itself. For example, H2O2 induces cellular damage in human cells and its presence can be used to diagnose illnesses such as asthma and human breast cancer. Hence, development of reliable H2O2 sensor is of vital importance to detect and measure this species. Ferric ferrocyanide, referred to as Prussian blue (PB), was deposited on the tip of a multimode optical fiber through the single source precursor technique and served as an indicator of H2O2 in a spectroscopic manner. Sensing tests were performed in H2O2-H2O vapor mixtures with different concentrations of H2O2. The results of sensing tests show the sensor is able to detect H2O2 concentrations in the range of 50.6 ppm to 229.5 ppm. Furthermore, the sensor response to H2O2 concentrations is linear in a log-log scale with the adjacent R-square of 0.93. This sensing behavior allows us to detect and quantify the concentration of H2O2 in the vapor phase.

Keywords: chemical deposition, fiber-optic sensor, hydrogen peroxide vapor, prussian blue

Procedia PDF Downloads 360
4731 Floods Hazards and Emergency Respond in Negara Brunei Darussalam

Authors: Hj Mohd Sidek bin Hj Mohd Yusof

Abstract:

More than 1.5 billion people around the world are adversely affected by floods. Floods account for about a third of all natural catastrophes, cause more than half of all fatalities and are responsible for a third of overall economic loss around the world. Giving advanced warning of impending disasters can reduce or even avoid the number of deaths, social and economic hardships that are so commonly reported after the event. Integrated catchment management recognizes that it is not practical or viable to provide structural measures that will keep floodwater away from the community and their property. Non-structural measures are therefore required to assist the community to cope when flooding occurs which exceeds the capacity of the structural measures. Non-structural measures may need to be used to influence the way land is used or buildings are constructed, or they may be used to improve the community’s preparedness and response to flooding. The development and implementation of non-structural measures may be guided and encouraged by policy and legislation, or through voluntary action by the community based on knowledge gained from public education programs. There is a range of non-structural measures that can be used for flood hazard mitigation which can be the use measures includes policies and rules applied by government to regulate the kinds of activities that are carried out in various flood-prone areas, including minimum floor levels and the type of development approved. Voluntary actions taken by the authorities and by the community living and working on the flood plain to lessen flooding effects on themselves and their properties including monitoring land use changes, monitoring and investigating the effects of bush / forest clearing in the catchment and providing relevant flood related information to the community. Response modification measures may include: flood warning system, flood education, community awareness and readiness, evacuation arrangements and recovery plan. A Civil Defense Emergency Management needs to be established for Brunei Darussalam in order to plan, co-ordinate and undertake flood emergency management. This responsibility may be taken by the Ministry of Home Affairs, Brunei Darussalam who is already responsible for Fire Fighting and Rescue services. Several pieces of legislation and planning instruments are in place to assist flood management, particularly: flood warning system, flood education Community awareness and readiness, evacuation arrangements and recovery plan.

Keywords: RTB, radio television brunei, DDMC, district disaster management center, FIR, flood incidence report, PWD, public works department

Procedia PDF Downloads 258
4730 Contrastive Analysis of Parameters Registered in Training Rowers and the Impact on the Olympic Performance

Authors: Gheorghe Braniste

Abstract:

The management of the training process in sports is closely related to the awareness of the close connection between performance and the morphological, functional and psychological characteristics of the athlete's body. Achieving high results in Olympic sports is influenced, on the one hand, by the genetically determined characteristics of the body and, on the other hand, by the morphological, functional and motor abilities of the athlete. Taking into account the importance of properly understanding the evolutionary specificity of athletes to assess their competitive potential, this study provides a comparative analysis of the parameters that characterize the growth and development of the level of adaptation of sweeping rowers, considering the growth interval between 12 and 20 years. The study established that, in the multi-annual training process, the bodies of the targeted athletes register significant adaptive changes while analyzing parameters of the morphological, functional, psychomotor and sports-technical spheres. As a result of the influence of physical efforts, both specific and non-specific, there is an increase in the adaptability of the body, its transfer to a much higher level of functionality within the parameters, useful and economical adaptive reactions influenced by environmental factors, be they internal or external. The research was carried out for 7 years, on a group of 28 athletes, following their evolution and recording the specific parameters of each age stage. In order to determine the level of physical, morpho-functional, psychomotor development and technical training of rowers, the screening data were applied at the State University of Physical Education and Sports in the Republic of Moldova. During the research, measurements were made on the waist, in the standing and sitting position, arm span, weight, circumference and chest perimeter, vital capacity of the lungs, with the subsequent determination of the vital index (tolerance level to oxygen deficiency in venous blood in Stange and Genchi breath-taking tests that characterize the level of oxygen saturation, absolute and relative strength of the hand and back, calculation of body mass and morphological maturity indices (Kettle index), body surface area (body gait), psychomotor tests (Romberg test), test-tepping 10 s., reaction to a moving object, visual and auditory-motor reaction, recording of technical parameters of rowing on a competitive distance of 200 m. At the end of the study it was found that highly performance is sports is to be associated on the one hand with the genetically determined characteristics of the body and, on the other hand, with favorable adaptive reactions and energy saving, as well as morphofunctional changes influenced by internal and external environmental factors. The importance of the results obtained at the end of the study was positively reflected in obtaining the maximum level of training of athletes in order to demonstrate performance in large-scale competitions and mostly in the Olympic Games.

Keywords: olympics, parameters, performance, peak

Procedia PDF Downloads 125
4729 Scale-Up Study of Gas-Liquid Two Phase Flow in Downcomer

Authors: Jayanth Abishek Subramanian, Ramin Dabirian, Ilias Gavrielatos, Ram Mohan, Ovadia Shoham

Abstract:

Downcomers are important conduits for multiphase flow transfer from offshore platforms to the seabed. Uncertainty in the predictions of the pressure drop of multiphase flow between platforms is often dominated by the uncertainty associated with the prediction of holdup and pressure drop in the downcomer. The objectives of this study are to conduct experimental and theoretical scale-up study of the downcomer. A 4-in. diameter vertical test section was designed and constructed to study two-phase flow in downcomer. The facility is equipped with baffles for flow area restriction, enabling interchangeable annular slot openings between 30% and 61.7%. Also, state-of-the-art instrumentation, the capacitance Wire-Mesh Sensor (WMS) was utilized to acquire the experimental data. A total of 76 experimental data points were acquired, including falling film under 30% and 61.7% annular slot opening for air-water and air-Conosol C200 oil cases as well as gas carry-under for 30% and 61.7% opening utilizing air-Conosol C200 oil. For all experiments, the parameters such as falling film thickness and velocity, entrained liquid holdup in the core, gas void fraction profiles at the cross-sectional area of the liquid column, the void fraction and the gas carry under were measured. The experimental results indicated that the film thickness and film velocity increase as the flow area reduces. Also, the increase in film velocity increases the gas entrainment process. Furthermore, the results confirmed that the increase of gas entrainment for the same liquid flow rate leads to an increase in the gas carry-under. A power comparison method was developed to enable evaluation of the Lopez (2011) model, which was created for full bore downcomer, with the novel scale-up experiment data acquired from the downcomer with the restricted area for flow. Comparison between the experimental data and the model predictions shows a maximum absolute average discrepancy of 22.9% and 21.8% for the falling film thickness and velocity, respectively; and a maximum absolute average discrepancy of 22.2% for fraction of gas carried with the liquid (oil).

Keywords: two phase flow, falling film, downcomer, wire-mesh sensor

Procedia PDF Downloads 167
4728 Dynamic Simulation of a Hybrid Wind Farm with Wind Turbines and Distributed Compressed Air Energy Storage System

Authors: Eronini Iheanyi Umez-Eronini

Abstract:

Most studies and existing implementations of compressed air energy storage (CAES) coupled with a wind farm to overcome intermittency and variability of wind power are based on bulk or centralized CAES plants. A dynamic model of a hybrid wind farm with wind turbines and distributed CAES, consisting of air storage tanks and compressor and expander trains at each wind turbine station, is developed and simulated in MATLAB. An ad hoc supervisory controller, in which the wind turbines are simply operated under classical power optimizing region control while scheduling power production by the expanders and air storage by the compressors, including modulation of the compressor power levels within a control range, is used to regulate overall farm power production to track minute-scale (3-minutes sampling period) TSO absolute power reference signal, over an eight-hour period. Simulation results for real wind data input with a simple wake field model applied to a hybrid plant composed of ten 5-MW wind turbines in a row and ten compatibly sized and configured Diabatic CAES stations show the plant controller is able to track the power demand signal within an error band size on the order of the electrical power rating of a single expander. This performance suggests that much improved results should be anticipated when the global D-CAES control is combined with power regulation for the individual wind turbines using available approaches for wind farm active power control. For standalone power plant fuel electrical efficiency estimate of up to 60%, the round trip electrical storage efficiency computed for the distributed CAES wherein heat generated by running compressors is utilized in the preheat stage of running high pressure expanders while fuel is introduced and combusted before the low pressure expanders, was comparable to reported round trip storage electrical efficiencies for bulk Adiabatic CAES.

Keywords: hybrid wind farm, distributed CAES, diabatic CAES, active power control, dynamic modeling and simulation

Procedia PDF Downloads 84
4727 Design, Fabrication and Analysis of Molded and Direct 3D-Printed Soft Pneumatic Actuators

Authors: N. Naz, A. D. Domenico, M. N. Huda

Abstract:

Soft Robotics is a rapidly growing multidisciplinary field where robots are fabricated using highly deformable materials motivated by bioinspired designs. The high dexterity and adaptability to the external environments during contact make soft robots ideal for applications such as gripping delicate objects, locomotion, and biomedical devices. The actuation system of soft robots mainly includes fluidic, tendon-driven, and smart material actuation. Among them, Soft Pneumatic Actuator, also known as SPA, remains the most popular choice due to its flexibility, safety, easy implementation, and cost-effectiveness. However, at present, most of the fabrication of SPA is still based on traditional molding and casting techniques where the mold is 3d printed into which silicone rubber is cast and consolidated. This conventional method is time-consuming and involves intensive manual labour with the limitation of repeatability and accuracy in design. Recent advancements in direct 3d printing of different soft materials can significantly reduce the repetitive manual task with an ability to fabricate complex geometries and multicomponent designs in a single manufacturing step. The aim of this research work is to design and analyse the Soft Pneumatic Actuator (SPA) utilizing both conventional casting and modern direct 3d printing technologies. The mold of the SPA for traditional casting is 3d printed using fused deposition modeling (FDM) with the polylactic acid (PLA) thermoplastic wire. Hyperelastic soft materials such as Ecoflex-0030/0050 are cast into the mold and consolidated using a lab oven. The bending behaviour is observed experimentally with different pressures of air compressor to ensure uniform bending without any failure. For direct 3D-printing of SPA fused deposition modeling (FDM) with thermoplastic polyurethane (TPU) and stereolithography (SLA) with an elastic resin are used. The actuator is modeled using the finite element method (FEM) to analyse the nonlinear bending behaviour, stress concentration and strain distribution of different hyperelastic materials after pressurization. FEM analysis is carried out using Ansys Workbench software with a Yeon-2nd order hyperelastic material model. FEM includes long-shape deformation, contact between surfaces, and gravity influences. For mesh generation, quadratic tetrahedron, hybrid, and constant pressure mesh are used. SPA is connected to a baseplate that is in connection with the air compressor. A fixed boundary is applied on the baseplate, and static pressure is applied orthogonally to all surfaces of the internal chambers and channels with a closed continuum model. The simulated results from FEM are compared with the experimental results. The experiments are performed in a laboratory set-up where the developed SPA is connected to a compressed air source with a pressure gauge. A comparison study based on performance analysis is done between FDM and SLA printed SPA with the molded counterparts. Furthermore, the molded and 3d printed SPA has been used to develop a three-finger soft pneumatic gripper and has been tested for handling delicate objects.

Keywords: finite element method, fused deposition modeling, hyperelastic, soft pneumatic actuator

Procedia PDF Downloads 90