Search results for: android; data visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25696

Search results for: android; data visualization

22486 Parameter Estimation for Contact Tracing in Graph-Based Models

Authors: Augustine Okolie, Johannes Müller, Mirjam Kretzchmar

Abstract:

We adopt a maximum-likelihood framework to estimate parameters of a stochastic susceptible-infected-recovered (SIR) model with contact tracing on a rooted random tree. Given the number of detectees per index case, our estimator allows to determine the degree distribution of the random tree as well as the tracing probability. Since we do not discover all infectees via contact tracing, this estimation is non-trivial. To keep things simple and stable, we develop an approximation suited for realistic situations (contract tracing probability small, or the probability for the detection of index cases small). In this approximation, the only epidemiological parameter entering the estimator is the basic reproduction number R0. The estimator is tested in a simulation study and applied to covid-19 contact tracing data from India. The simulation study underlines the efficiency of the method. For the empirical covid-19 data, we are able to compare different degree distributions and perform a sensitivity analysis. We find that particularly a power-law and a negative binomial degree distribution meet the data well and that the tracing probability is rather large. The sensitivity analysis shows no strong dependency on the reproduction number.

Keywords: stochastic SIR model on graph, contact tracing, branching process, parameter inference

Procedia PDF Downloads 83
22485 Big Data Analysis on the Development of Jinan’s Consumption Centers under the Influence of E-Commerce

Authors: Hang Wang, Xiaoming Gao

Abstract:

The rapid development of e-commerce has significantly transformed consumer behavior and urban consumption patterns worldwide. This study explores the impact of e-commerce on the development and spatial distribution of consumption centers, with a particular focus on Jinan City, China. Traditionally, urban consumption centers are defined by physical commercial spaces, such as shopping malls and markets. However, the rise of e-commerce has introduced a shift towards virtual consumption hubs, with a corresponding impact on physical retail locations. Utilizing Gaode POI (Point of Interest) data, this research aims to provide a comprehensive analysis of the spatial distribution of consumption centers in Jinan, comparing e-commerce-driven virtual consumption hubs with traditional physical consumption centers. The study methodology involves gathering and analyzing POI data, focusing on logistics distribution for e-commerce activities and mobile charging point locations to represent offline consumption behavior. A spatial clustering technique is applied to examine the concentration of commercial activities and to identify emerging trends in consumption patterns. The findings reveal a clear differentiation between e-commerce and physical consumption centers in Jinan. E-commerce activities are dispersed across a wider geographic area, correlating closely with residential zones and logistics centers, while traditional consumption hubs remain concentrated around historical and commercial areas such as Honglou and the old city center. Additionally, the research identifies an ongoing transition within Jinan’s consumption landscape, with online and offline retail coexisting, though at different spatial and functional levels. This study contributes to urban planning by providing insights into how e-commerce is reshaping consumption behaviors and spatial structures in cities like Jinan. By leveraging big data analytics, the research offers a valuable tool for urban designers and planners to adapt to the evolving demands of digital commerce and to optimize the spatial layout of city infrastructure to better serve the needs of modern consumers.

Keywords: big data, consumption centers, e-commerce, urban planning, jinan

Procedia PDF Downloads 30
22484 The Potential Threat of Cyberterrorism to the National Security: Theoretical Framework

Authors: Abdulrahman S. Alqahtani

Abstract:

The revolution of computing and networks could revolutionise terrorism in the same way that it has brought about changes in other aspects of life. The modern technological era has faced countries with a new set of security challenges. There are many states and potential adversaries who have the potential and capacity in cyberspace, which makes them able to carry out cyber-attacks in the future. Some of them are currently conducting surveillance, gathering and analysis of technical information, and mapping of networks and nodes and infrastructure of opponents, which may be exploited in future conflicts. This poster presents the results of the quantitative study (survey) to test the validity of the proposed theoretical framework for the cyber terrorist threats. This theoretical framework will help to in-depth understand these new digital terrorist threats. It may also be a practical guide for managers and technicians in critical infrastructure, to understand and assess the threats they face. It might also be the foundation for building a national strategy to counter cyberterrorism. In the beginning, it provides basic information about the data. To purify the data, reliability and exploratory factor analysis, as well as confirmatory factor analysis (CFA) were performed. Then, Structural Equation Modelling (SEM) was utilised to test the final model of the theory and to assess the overall goodness-of-fit between the proposed model and the collected data set.

Keywords: cyberterrorism, critical infrastructure, , national security, theoretical framework, terrorism

Procedia PDF Downloads 408
22483 Encryption and Decryption of Nucleic Acid Using Deoxyribonucleic Acid Algorithm

Authors: Iftikhar A. Tayubi, Aabdulrahman Alsubhi, Abdullah Althrwi

Abstract:

The deoxyribonucleic acid text provides a single source of high-quality Cryptography about Deoxyribonucleic acid sequence for structural biologists. We will provide an intuitive, well-organized and user-friendly web interface that allows users to encrypt and decrypt Deoxy Ribonucleic Acid sequence text. It includes complex, securing by using Algorithm to encrypt and decrypt Deoxy Ribonucleic Acid sequence. The utility of this Deoxy Ribonucleic Acid Sequence Text is that, it can provide a user-friendly interface for users to Encrypt and Decrypt store the information about Deoxy Ribonucleic Acid sequence. These interfaces created in this project will satisfy the demands of the scientific community by providing fully encrypt of Deoxy Ribonucleic Acid sequence during this website. We have adopted a methodology by using C# and Active Server Page.NET for programming which is smart and secure. Deoxy Ribonucleic Acid sequence text is a wonderful piece of equipment for encrypting large quantities of data, efficiently. The users can thus navigate from one encoding and store orange text, depending on the field for user’s interest. Algorithm classification allows a user to Protect the deoxy ribonucleic acid sequence from change, whether an alteration or error occurred during the Deoxy Ribonucleic Acid sequence data transfer. It will check the integrity of the Deoxy Ribonucleic Acid sequence data during the access.

Keywords: algorithm, ASP.NET, DNA, encrypt, decrypt

Procedia PDF Downloads 237
22482 Repairing Broken Trust: The Influence of Positive Induced Emotion and Gender

Authors: Zach Banzon, Marina Caculitan, Gianne Laisac, Stephanie Lopez, Marguerite Villegas

Abstract:

The role of incidental positive emotions and gender on people’s trust decisions have been established by existing research. The aim of this experiment is to address the gap in the literature by examining whether these factors will have a similar effect on trust behavior even after the experience of betrayal. A total of 144 undergraduate students participated in a trust game involving the anonymous interaction of a participant and a transgressor. Of these participants, only 125 (63 males and 62 females) were included in the data analyses. A story was used to prime incidental positive emotions or emotions originally unrelated to the trustee. Recovered trust was measured by relating the proportion of the money passed before and after betrayal. Data was analyzed using two-way analysis of variance having two levels for gender (male, female) and two for priming (with, without), with trust propensity scores entered as a covariate. It was predicted that trust recovery will be more apparent in females than in males but the data obtained was not significantly different between the genders. Induced positive emotions, however, had a statistically significant effect on trust behavior even after betrayal. No significant interaction effect was found between induced positive emotion and gender. The experiment provides evidence that the manipulation of situational variables, to a certain extent, can facilitate the reparation of trust.

Keywords: gender effect, positive emotions, trust game, trust recovery

Procedia PDF Downloads 273
22481 Assessment of the Work-Related Stress and Associated Factors among Sanitation Workers in Public Hospitals during COVID-19, Addis Ababa, Ethiopia

Authors: Zerubabel Mihret

Abstract:

Background: Work-related stress is a pattern of reactions to work demands unmatched by worker’s knowledge, skills, or abilities. Healthcare institutions are considered high-risk and intensive work areas for work-related stress. However, there is the nonexistence of clear and strong data about the magnitude of work-related stress on sanitation workers in hospitals in Ethiopia. The aim of this study was to determine the magnitude of work-related stress among sanitation workers in public hospitals during COVID-19 in Addis Ababa, Ethiopia. Methods: Institution-based cross-sectional study was conducted from October 2021 to February 2022 among 494 sanitation workers who were selected from 4 hospitals. HSE (Health and Safety Executive of UK) standard data collection tool was used, and an interviewer-administered questionnaire was used to collect the data using KOBO collect application. The collected data were cleaned and analyzed using SPSS version 20.0. Both binary and multivariable logistic regression analyses were done to identify important factors having an association with work-related stress. Variables with p-value ≤ 0.25 in the bivariate analysis were entered into the multivariable logistic regression model. A statistically significant level was declared at a p-value ≤ 0.05. Results: This study revealed that the magnitude of work-related stress among sanitation workers was 49.2% (95% CI 45-54). Significant proportions (72.7%) of sanitation workers were dissatisfied with their current job. Sex, age, experience, and chewing khat were significantly associated with work-related stress. Conclusion: Work-related stress is significantly high among sanitation workers. Sex, age, experience, and chewing khat were identified as factors associated with work-related stress. Intervention program focusing on the prevention and control of stress is desired by hospitals.

Keywords: work-related stress, sanitation workers, Likert scale, public hospitals, Ethiopia

Procedia PDF Downloads 89
22480 TDApplied: An R Package for Machine Learning and Inference with Persistence Diagrams

Authors: Shael Brown, Reza Farivar

Abstract:

Persistence diagrams capture valuable topological features of datasets that other methods cannot uncover. Still, their adoption in data pipelines has been limited due to the lack of publicly available tools in R (and python) for analyzing groups of them with machine learning and statistical inference. In an easy-to-use and scalable R package called TDApplied, we implement several applied analysis methods tailored to groups of persistence diagrams. The two main contributions of our package are comprehensiveness (most functions do not have implementations elsewhere) and speed (shown through benchmarking against other R packages). We demonstrate applications of the tools on simulated data to illustrate how easily practical analyses of any dataset can be enhanced with topological information.

Keywords: machine learning, persistence diagrams, R, statistical inference

Procedia PDF Downloads 91
22479 The Benefits of Using Hijab Syar'i against Female Sexual Abuse

Authors: Catur Sigit Hartanto, Anggraeni Anisa Wara Rahmayanti

Abstract:

Objective: This research is aimed to assess the benefits of using hijab syar'i against female sexual abuse. Method: This research uses a quantitative study. The population is students in Semarang State University who wear hijab syar’i. The sampling technique uses the method of conformity. The retrieving data uses questionnaire on 30 female students as the sample. The data analysis uses descriptive analysis. Result: Using hijab syar’i provides benefits in preventing and minimizing female sexual abuse. Limitation: Respondents were limited to only 30 people.

Keywords: hijab syar’i, female, sexual abuse, student of Semarang State University

Procedia PDF Downloads 286
22478 Observation and Study of Landslides Affecting the Tangier: Oued Rmel Motorway Segment

Authors: S. Houssaini, L. Bahi

Abstract:

The motorway segment between Tangier and Oued R’mel has experienced, since the beginning of building works, significant instability and landslides linked to a number of geological, hydrogeological and geothermic factors affecting the different formations. The landslides observed are not fully understood, despite many studies conducted on this segment. This study aims at producing new methods to better explain the phenomena behind the landslides, taking into account the geotechnical and geothermic contexts. This analysis builds up on previous studies and geotechnical data collected in the field. The final body of data collected shall be processed through the Plaxis software for a better and customizable view of the landslide problems in the area, which will help to find solutions and stabilize land in the area.

Keywords: landslides, modeling, risk, stabilization

Procedia PDF Downloads 202
22477 Estimation of Train Operation Using an Exponential Smoothing Method

Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono

Abstract:

The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.

Keywords: exponential smoothing method, open data, operation estimation, train schedule

Procedia PDF Downloads 392
22476 Computational Linguistic Implications of Gender Bias: Machines Reflect Misogyny in Society

Authors: Irene Yi

Abstract:

Machine learning, natural language processing, and neural network models of language are becoming more and more prevalent in the fields of technology and linguistics today. Training data for machines are at best, large corpora of human literature and at worst, a reflection of the ugliness in society. Computational linguistics is a growing field dealing with such issues of data collection for technological development. Machines have been trained on millions of human books, only to find that in the course of human history, derogatory and sexist adjectives are used significantly more frequently when describing females in history and literature than when describing males. This is extremely problematic, both as training data, and as the outcome of natural language processing. As machines start to handle more responsibilities, it is crucial to ensure that they do not take with them historical sexist and misogynistic notions. This paper gathers data and algorithms from neural network models of language having to deal with syntax, semantics, sociolinguistics, and text classification. Computational analysis on such linguistic data is used to find patterns of misogyny. Results are significant in showing the existing intentional and unintentional misogynistic notions used to train machines, as well as in developing better technologies that take into account the semantics and syntax of text to be more mindful and reflect gender equality. Further, this paper deals with the idea of non-binary gender pronouns and how machines can process these pronouns correctly, given its semantic and syntactic context. This paper also delves into the implications of gendered grammar and its effect, cross-linguistically, on natural language processing. Languages such as French or Spanish not only have rigid gendered grammar rules, but also historically patriarchal societies. The progression of society comes hand in hand with not only its language, but how machines process those natural languages. These ideas are all extremely vital to the development of natural language models in technology, and they must be taken into account immediately.

Keywords: computational analysis, gendered grammar, misogynistic language, neural networks

Procedia PDF Downloads 126
22475 Regression Analysis in Estimating Stream-Flow and the Effect of Hierarchical Clustering Analysis: A Case Study in Euphrates-Tigris Basin

Authors: Goksel Ezgi Guzey, Bihrat Onoz

Abstract:

The scarcity of streamflow gauging stations and the increasing effects of global warming cause designing water management systems to be very difficult. This study is a significant contribution to assessing regional regression models for estimating streamflow. In this study, simulated meteorological data was related to the observed streamflow data from 1971 to 2020 for 33 stream gauging stations of the Euphrates-Tigris Basin. Ordinary least squares regression was used to predict flow for 2020-2100 with the simulated meteorological data. CORDEX- EURO and CORDEX-MENA domains were used with 0.11 and 0.22 grids, respectively, to estimate climate conditions under certain climate scenarios. Twelve meteorological variables simulated by two regional climate models, RCA4 and RegCM4, were used as independent variables in the ordinary least squares regression, where the observed streamflow was the dependent variable. The variability of streamflow was then calculated with 5-6 meteorological variables and watershed characteristics such as area and height prior to the application. Of the regression analysis of 31 stream gauging stations' data, the stations were subjected to a clustering analysis, which grouped the stations in two clusters in terms of their hydrometeorological properties. Two streamflow equations were found for the two clusters of stream gauging stations for every domain and every regional climate model, which increased the efficiency of streamflow estimation by a range of 10-15% for all the models. This study underlines the importance of homogeneity of a region in estimating streamflow not only in terms of the geographical location but also in terms of the meteorological characteristics of that region.

Keywords: hydrology, streamflow estimation, climate change, hydrologic modeling, HBV, hydropower

Procedia PDF Downloads 133
22474 Behavioral Response of Bee Farmers to Climate Change in South East, Nigeria

Authors: Jude A. Mbanasor, Chigozirim N. Onwusiribe

Abstract:

The enigma climate change is no longer an illusion but a reality. In the recent years, the Nigeria climate has changed and the changes are shown by the changing patterns of rainfall, the sunshine, increasing level carbon and nitrous emission as well as deforestation. This study analyzed the behavioural response of bee keepers to variations in the climate and the adaptation techniques developed in response to the climate variation. Beekeeping is a viable economic activity for the alleviation of poverty as the products include honey, wax, pollen, propolis, royal jelly, venom, queens, bees and their larvae and are all marketable. The study adopted the multistage sampling technique to select 120 beekeepers from the five states of Southeast Nigeria. Well-structured questionnaires and focus group discussions were adopted to collect the required data. Statistical tools like the Principal component analysis, data envelopment models, graphs, and charts were used for the data analysis. Changing patterns of rainfall and sunshine with the increasing rate of deforestation had a negative effect on the habitat of the bees. The bee keepers have adopted the Kenya Top bar and Langstroth hives and they establish the bee hives on fallow farmland close to the cultivated communal farms with more flowering crops.

Keywords: climate, farmer, response, smart

Procedia PDF Downloads 139
22473 Disaster Resilience Analysis of Atlanta Interstate Highway System within the Perimeter

Authors: Mengmeng Liu, J. David Frost

Abstract:

Interstate highway system within the Atlanta Perimeter plays an important role in residents’ daily life. The serious influence of Atlanta I-85 Collapses implies that transportation system in the region lacks a cohesive and comprehensive transportation plan. Therefore, disaster resilience analysis of the transportation system is necessary. Resilience is the system’s capability to persist or to maintain transportation services when exposed to changes or shocks. This paper analyzed the resilience of the whole transportation system within the Perimeter and see how removing interstates within the Perimeter will affect the resilience of the transportation system. The data used in the paper are Atlanta transportation networks and LEHD Origin-Destination Employment Statistics data. First, we calculate the traffic flow on each road section based on LEHD data assuming each trip travel along the shortest travel time paths. Second, we calculate the measure of resilience, which is flow-based connectivity and centrality of the transportation network, and see how they will change if we remove each section of interstates from the current transportation system. Finally, we get the resilience function curve of the interstates and identify the most resilient interstates section. The resilience analysis results show that the framework of calculation resilience is effective and can provide some useful information for the transportation planning and sustainability analysis of the transportation infrastructures.

Keywords: connectivity, interstate highway system, network analysis, resilience analysis

Procedia PDF Downloads 266
22472 Analyzing Migration Patterns Using Public Disorder Event Data

Authors: Marie E. Docken

Abstract:

At some point in the lifecycle of a country, patterns of political and social unrest of varying degrees are observed. Events involving public disorder or civil disobedience may produce effects that range a wide spectrum of varying outcomes, depending on the level of unrest. Many previous studies, primarily theoretical in nature, have attempted to measure public disorder in answering why or how it occurs in society by examining causal factors or underlying issues in the social or political position of a population. The main objective in doing so is to understand how these activities evolve or seek some predictive capability for the events. In contrast, this research involves the fusion of analytics and social studies to provide more knowledge of the public disorder and civil disobedience intensity in populations. With a greater understanding of the magnitude of these events, it is believed that we may learn how they relate to extreme actions such as mass migration or violence. Upon establishing a model for measuring civil unrest based upon empirical data, a case study on various Latin American countries is performed. Interpretations of historical events are combined with analytical results to provide insights regarding the magnitude and effect of social and political activism.

Keywords: public disorder, civil disobedience, Latin America, metrics, data analysis

Procedia PDF Downloads 149
22471 AI as a Tool Hindering Digital Education

Authors: Justyna Żywiołek, Marek Matulewski

Abstract:

The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.

Keywords: AI, digital education, education tools, motivation and engagement

Procedia PDF Downloads 34
22470 Using Printouts as Social Media Evidence and Its Authentication in the Courtroom

Authors: Chih-Ping Chang

Abstract:

Different from traditional objective evidence, social media evidence has its own characteristics with easily tampering, recoverability, and cannot be read without using other devices (such as a computer). Simply taking a screenshot from social network sites must be questioned its original identity. When the police search and seizure digital information, a common way they use is to directly print out digital data obtained and ask the signature of the parties at the presence, without taking original digital data back. In addition to the issue on its original identity, this conduct to obtain evidence may have another two results. First, it will easily allege that is tampering evidence because the police wanted to frame the suspect and falsified evidence. Second, it is not easy to discovery hidden information. The core evidence associated with crime may not appear in the contents of files. Through discovery the original file, data related to the file, such as the original producer, creation time, modification date, and even GPS location display can be revealed from hidden information. Therefore, how to show this kind of evidence in the courtroom will be arguably the most important task for ruling social media evidence. This article, first, will introduce forensic software, like EnCase, TCT, FTK, and analyze their function to prove the identity with another digital data. Then turning back to the court, the second part of this article will discuss legal standard for authentication of social media evidence and application of that forensic software in the courtroom. As the conclusion, this article will provide a rethinking, that is, what kind of authenticity is this rule of evidence chase for. Does legal system automatically operate the transcription of scientific knowledge? Or furthermore, it wants to better render justice, not only under scientific fact, but through multivariate debating.

Keywords: federal rule of evidence, internet forensic, printouts as evidence, social media evidence, United States v. Vayner

Procedia PDF Downloads 296
22469 Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp

Authors: R. C. Ferreira, H. H. C. De Lima, A. A. Cândido, O. M. Couto Junior, P. A. Arroyo, K. Q De Carvalho, G. F. Gauze, M. A. S. D. Barros

Abstract:

Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface.

Keywords: adsorption, activated carbon, babassu, dende

Procedia PDF Downloads 379
22468 Knowledge and Eating Behavior of Teenage Pregnancy

Authors: Udomporn Yingpaisuk, Premwadee Karuhadej

Abstract:

The purposed of this research was to study the eating habit of teenage pregnancy and its relationship to the knowledge of nutrition during pregnancy. The 100 samples were derived from simple random sampling technique of the teenage pregnancy in Bangkae District. The questionnaire was used to collect data with the reliability of 0.8. The data were analyzed by SPSS for Windows with multiple regression technique. Percentage, mean and the relationship of knowledge of eating and eating behavior were obtained. The research results revealed that their knowledge in nutrition was at the average of 4.07 and their eating habit that they mentioned most was to refrain from alcohol and caffeine at 82% and the knowledge in nutrition influenced their eating habits at 54% with the statistically significant level of 0.001.

Keywords: teenage pregnancy, knowledge of eating, eating behavior, alcohol, caffeine

Procedia PDF Downloads 361
22467 Quantification of Magnetic Resonance Elastography for Tissue Shear Modulus using U-Net Trained with Finite-Differential Time-Domain Simulation

Authors: Jiaying Zhang, Xin Mu, Chang Ni, Jeff L. Zhang

Abstract:

Magnetic resonance elastography (MRE) non-invasively assesses tissue elastic properties, such as shear modulus, by measuring tissue’s displacement in response to mechanical waves. The estimated metrics on tissue elasticity or stiffness have been shown to be valuable for monitoring physiologic or pathophysiologic status of tissue, such as a tumor or fatty liver. To quantify tissue shear modulus from MRE-acquired displacements (essentially an inverse problem), multiple approaches have been proposed, including Local Frequency Estimation (LFE) and Direct Inversion (DI). However, one common problem with these methods is that the estimates are severely noise-sensitive due to either the inverse-problem nature or noise propagation in the pixel-by-pixel process. With the advent of deep learning (DL) and its promise in solving inverse problems, a few groups in the field of MRE have explored the feasibility of using DL methods for quantifying shear modulus from MRE data. Most of the groups chose to use real MRE data for DL model training and to cut training images into smaller patches, which enriches feature characteristics of training data but inevitably increases computation time and results in outcomes with patched patterns. In this study, simulated wave images generated by Finite Differential Time Domain (FDTD) simulation are used for network training, and U-Net is used to extract features from each training image without cutting it into patches. The use of simulated data for model training has the flexibility of customizing training datasets to match specific applications. The proposed method aimed to estimate tissue shear modulus from MRE data with high robustness to noise and high model-training efficiency. Specifically, a set of 3000 maps of shear modulus (with a range of 1 kPa to 15 kPa) containing randomly positioned objects were simulated, and their corresponding wave images were generated. The two types of data were fed into the training of a U-Net model as its output and input, respectively. For an independently simulated set of 1000 images, the performance of the proposed method against DI and LFE was compared by the relative errors (root mean square error or RMSE divided by averaged shear modulus) between the true shear modulus map and the estimated ones. The results showed that the estimated shear modulus by the proposed method achieved a relative error of 4.91%±0.66%, substantially lower than 78.20%±1.11% by LFE. Using simulated data, the proposed method significantly outperformed LFE and DI in resilience to increasing noise levels and in resolving fine changes of shear modulus. The feasibility of the proposed method was also tested on MRE data acquired from phantoms and from human calf muscles, resulting in maps of shear modulus with low noise. In future work, the method’s performance on phantom and its repeatability on human data will be tested in a more quantitative manner. In conclusion, the proposed method showed much promise in quantifying tissue shear modulus from MRE with high robustness and efficiency.

Keywords: deep learning, magnetic resonance elastography, magnetic resonance imaging, shear modulus estimation

Procedia PDF Downloads 72
22466 Long-Term Trends of Sea Level and Sea Surface Temperature in the Mediterranean Sea

Authors: Bayoumy Mohamed, Khaled Alam El-Din

Abstract:

In the present study, 24 years of gridded sea level anomalies (SLA) from satellite altimetry and sea surface temperature (SST) from advanced very-high-resolution radiometer (AVHRR) daily data (1993-2016) are used. These data have been used to investigate the sea level rising and warming rates of SST, and their spatial distribution in the Mediterranean Sea. The results revealed that there is a significant sea level rise in the Mediterranean Sea of 2.86 ± 0.45 mm/year together with a significant warming of 0.037 ± 0.007 °C/year. The high spatial correlation between sea level and SST variations suggests that at least part of the sea level change reported during the period of study was due to heating of surface layers. This indicated that the steric effect had a significant influence on sea level change in the Mediterranean Sea.

Keywords: altimetry, AVHRR, Mediterranean Sea, sea level and SST changes, trend analysis

Procedia PDF Downloads 200
22465 Maximum-likelihood Inference of Multi-Finger Movements Using Neural Activities

Authors: Kyung-Jin You, Kiwon Rhee, Marc H. Schieber, Nitish V. Thakor, Hyun-Chool Shin

Abstract:

It remains unknown whether M1 neurons encode multi-finger movements independently or as a certain neural network of single finger movements although multi-finger movements are physically a combination of single finger movements. We present an evidence of correlation between single and multi-finger movements and also attempt a challenging task of semi-blind decoding of neural data with minimum training of the neural decoder. Data were collected from 115 task-related neurons in M1 of a trained rhesus monkey performing flexion and extension of each finger and the wrist (12 single and 6 two-finger-movements). By exploiting correlation of temporal firing pattern between movements, we found that correlation coefficient for physically related movements pairs is greater than others; neurons tuned to single finger movements increased their firing rate when multi-finger commands were instructed. According to this knowledge, neural semi-blind decoding is done by choosing the greatest and the second greatest likelihood for canonical candidates. We achieved a decoding accuracy about 60% for multiple finger movement without corresponding training data set. this results suggest that only with the neural activities on single finger movements can be exploited to control dexterous multi-fingered neuroprosthetics.

Keywords: finger movement, neural activity, blind decoding, M1

Procedia PDF Downloads 327
22464 Evaluation of the Urban Regeneration Project: Land Use Transformation and SNS Big Data Analysis

Authors: Ju-Young Kim, Tae-Heon Moon, Jung-Hun Cho

Abstract:

Urban regeneration projects have been actively promoted in Korea. In particular, Jeonju Hanok Village is evaluated as one of representative cases in terms of utilizing local cultural heritage sits in the urban regeneration project. However, recently, there has been a growing concern in this area, due to the ‘gentrification’, caused by the excessive commercialization and surging tourists. This trend was changing land and building use and resulted in the loss of identity of the region. In this regard, this study analyzed the land use transformation between 2010 and 2016 to identify the commercialization trend in Jeonju Hanok Village. In addition, it conducted SNS big data analysis on Jeonju Hanok Village from February 14th, 2016 to March 31st, 2016 to identify visitors’ awareness of the village. The study results demonstrate that rapid commercialization was underway, unlikely the initial intention, so that planners and officials in city government should reconsider the project direction and rebuild deliberate management strategies. This study is meaningful in that it analyzed the land use transformation and SNS big data to identify the current situation in urban regeneration area. Furthermore, it is expected that the study results will contribute to the vitalization of regeneration area.

Keywords: land use, SNS, text mining, urban regeneration

Procedia PDF Downloads 297
22463 Performance of Environmental Efficiency of Energy Iran and Other Middle East Countries

Authors: Bahram Fathi, Mahdi Khodaparast Mashhadi, Masuod Homayounifar

Abstract:

According to 1404 forecasting documentation, among the most fundamental ways of Iran’s success in competition with other regional countries are innovations, efficiency enhancements and domestic productivity. Therefore, in this study, the energy consumption efficiency of Iran and the neighbor countries has been measured in the period between 2007-2012 considering the simultaneous economic activities, CO2 emission, and consumption of energy through data envelopment analysis of undesirable output. The results of the study indicated that the energy efficiency changes in both Iran and the average neighbor countries has been on a descending trend and Iran’s energy efficiency status is not desirable compared to the other countries in the region.

Keywords: energy efficiency, environmental, undesirable output, data envelopment analysis

Procedia PDF Downloads 452
22462 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification

Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh

Abstract:

Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.

Keywords: cancer classification, feature selection, deep learning, genetic algorithm

Procedia PDF Downloads 118
22461 Creativity and Expressive Interpretation of Musical Drama in Children with Special Needs (Down Syndrome) in Special Schools Yayasan Pendidikan Anak Cacat, Medan, North Sumatera

Authors: Junita Batubara

Abstract:

Children with special needs, especially those with disability in mental, physical or social/emotional interactions, are marginalized. Many people still view them as troublesome, inconvenience, having learning difficulties, unproductive and burdensome to society. This study intends to investigate; how musical drama can develop the ability to control the coordination of mental functions; how musical dramas can assist children to work together; how musical dramas can assist to maintain the child's emotional and physical health; how musical dramas can improve children creativity. The objectives of the research are: To know whether musical drama can control the coordination of mental function of children; to know whether musical drama can improve communication ability and expression of children; to know whether musical drama can help children work with people around them; to find out if musical dramas can develop the child's emotional and physical health; to find out if musical drama can improve children's creativity. The study employed a qualitative research approach. Data was collecting by listening, observing in depth through public hearings that select the key informants who were teachers and principals, parents and children. The data obtained from each public hearing was then processed (reduced), conclusion drawing/verification, presentation of data (data display). Furthermore, the model obtained was implementing for musical performance, where the benefits of the show are: musical drama can improve language skills; musical dramas are capable of developing memory and storage of information; developing communication skills and express themselves; helping children work together; assisting emotional and physical health; enhancing creativity.

Keywords: children Down syndrome, music, drama script, performance

Procedia PDF Downloads 246
22460 Medical Image Compression Based on Region of Interest: A Review

Authors: Sudeepti Dayal, Neelesh Gupta

Abstract:

In terms of transmission, bigger the size of any image, longer the time the channel takes for transmission. It is understood that the bandwidth of the channel is fixed. Therefore, if the size of an image is reduced, a larger number of data or images can be transmitted over the channel. Compression is the technique used to reduce the size of an image. In terms of storage, compression reduces the file size which it occupies on the disk. Any image is based on two parameters, region of interest and non-region of interest. There are several algorithms of compression that compress the data more economically. In this paper we have reviewed region of interest and non-region of interest based compression techniques and the algorithms which compress the image most efficiently.

Keywords: compression ratio, region of interest, DCT, DWT

Procedia PDF Downloads 377
22459 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 118
22458 Rényi Entropy Correction to Expanding Universe

Authors: Hamidreza Fazlollahi

Abstract:

The Re ́nyi entropy comprises a group of data estimates that sums up the well-known Shannon entropy, acquiring a considerable lot of its properties. It appears as unqualified and restrictive entropy, relative entropy, or common data, and has found numerous applications in information theory. In the Re ́nyi’s argument, the area law of the black hole entropy plays a significant role. However, the total entropy can be modified by some quantum effects, motivated by the randomness of a system. In this note, by employing this modified entropy relation, we have derived corrections to Friedmann equations. Taking this entropy associated with the apparent horizon of the Friedmann-Robertson-Walker Universe and assuming the first law of thermodynamics, dE=T_A (dS)_A+WdV, satisfies the apparent horizon, we have reconsidered expanding Universe. Also, the second thermodynamics law has been examined.

Keywords: Friedmann equations, dark energy, first law of thermodynamics, Reyni entropy

Procedia PDF Downloads 101
22457 Assessment of Forest Above Ground Biomass Through Linear Modeling Technique Using SAR Data

Authors: Arjun G. Koppad

Abstract:

The study was conducted in Joida taluk of Uttara Kannada district, Karnataka, India, to assess the land use land cover (LULC) and forest aboveground biomass using L band SAR data. The study area covered has dense, moderately dense, and sparse forests. The sampled area was 0.01 percent of the forest area with 30 sampling plots which were selected randomly. The point center quadrate (PCQ) method was used to select the tree and collected the tree growth parameters viz., tree height, diameter at breast height (DBH), and diameter at the tree base. The tree crown density was measured with a densitometer. Each sample plot biomass was estimated using the standard formula. In this study, the LULC classification was done using Freeman-Durden, Yamaghuchi and Pauli polarimetric decompositions. It was observed that the Freeman-Durden decomposition showed better LULC classification with an accuracy of 88 percent. An attempt was made to estimate the aboveground biomass using SAR backscatter. The ALOS-2 PALSAR-2 L-band data (HH, HV, VV &VH) fully polarimetric quad-pol SAR data was used. SAR backscatter-based regression model was implemented to retrieve forest aboveground biomass of the study area. Cross-polarization (HV) has shown a good correlation with forest above-ground biomass. The Multi Linear Regression analysis was done to estimate aboveground biomass of the natural forest areas of the Joida taluk. The different polarizations (HH &HV, VV &HH, HV & VH, VV&VH) combination of HH and HV polarization shows a good correlation with field and predicted biomass. The RMSE and value for HH & HV and HH & VV were 78 t/ha and 0.861, 81 t/ha and 0.853, respectively. Hence the model can be recommended for estimating AGB for the dense, moderately dense, and sparse forest.

Keywords: forest, biomass, LULC, back scatter, SAR, regression

Procedia PDF Downloads 32