Search results for: high-intensity interval training
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4708

Search results for: high-intensity interval training

1528 Evaluating Data Maturity in Riyadh's Nonprofit Sector: Insights Using the National Data Maturity Index (NDI)

Authors: Maryam Aloshan, Imam Mohammad Ibn Saud, Ahmad Khudair

Abstract:

This study assesses the data governance maturity of nonprofit organizations in Riyadh, Saudi Arabia, using the National Data Maturity Index (NDI) framework developed by the Saudi Data and Artificial Intelligence Authority (SDAIA). Employing a survey designed around the NDI model, data maturity levels were evaluated across 14 dimensions using a 5-point Likert scale. The results reveal a spectrum of maturity levels among the organizations surveyed: while some medium-sized associations reached the ‘Defined’ stage, others, including large associations, fell within the ‘Absence of Capabilities’ or ‘Building’ phases, with no organizations achieving the advanced ‘Established’ or ‘Pioneering’ levels. This variation suggests an emerging recognition of data governance but underscores the need for targeted interventions to bridge the maturity gap. The findings point to a significant opportunity to elevate data governance capabilities in Saudi nonprofits through customized capacity-building initiatives, including training, mentorship, and best practice sharing. This study contributes valuable insights into the digital transformation journey of the Saudi nonprofit sector, aligning with national goals for data-driven governance and organizational efficiency.

Keywords: nonprofit organizations-national data maturity index (NDI), Saudi Arabia- SDAIA, data governance, data maturity

Procedia PDF Downloads 14
1527 Dynamic Distribution Calibration for Improved Few-Shot Image Classification

Authors: Majid Habib Khan, Jinwei Zhao, Xinhong Hei, Liu Jiedong, Rana Shahzad Noor, Muhammad Imran

Abstract:

Deep learning is increasingly employed in image classification, yet the scarcity and high cost of labeled data for training remain a challenge. Limited samples often lead to overfitting due to biased sample distribution. This paper introduces a dynamic distribution calibration method for few-shot learning. Initially, base and new class samples undergo normalization to mitigate disparate feature magnitudes. A pre-trained model then extracts feature vectors from both classes. The method dynamically selects distribution characteristics from base classes (both adjacent and remote) in the embedding space, using a threshold value approach for new class samples. Given the propensity of similar classes to share feature distributions like mean and variance, this research assumes a Gaussian distribution for feature vectors. Subsequently, distributional features of new class samples are calibrated using a corrected hyperparameter, derived from the distribution features of both adjacent and distant base classes. This calibration augments the new class sample set. The technique demonstrates significant improvements, with up to 4% accuracy gains in few-shot classification challenges, as evidenced by tests on miniImagenet and CUB datasets.

Keywords: deep learning, computer vision, image classification, few-shot learning, threshold

Procedia PDF Downloads 66
1526 Testing Nitrogen and Iron Based Compounds as an Environmentally Safer Alternative to Control Broadleaf Weeds in Turf

Authors: Simran Gill, Samuel Bartels

Abstract:

Turfgrass is an important component of urban and rural lawns and landscapes. However, broadleaf weeds such as dandelions (Taraxacum officinale) and white clovers (Trifolium repens) pose major challenges to the health and aesthetics of turfgrass fields. Chemical weed control methods, such as 2,4-D weedicides, have been widely deployed; however, their safety and environmental impacts are often debated. Alternative, environmentally friendly control methods have been considered, but experimental tests for their effectiveness have been limited. This study investigates the use and effectiveness of nitrogen and iron compounds as nutrient management methods of weed control. In a two-phase experiment, the first conducted on a blend of cool season turfgrasses in plastic containers, the blend included Perennial ryegrass (Lolium perenne), Kentucky bluegrass (Poa pratensis) and Creeping red fescue (Festuca rubra) grown under controlled conditions in the greenhouse, involved the application of different combinations of nitrogen (urea and ammonium sulphate) and iron (chelated iron and iron sulphate) compounds and their combinations (urea × chelated iron, urea × iron sulphate, ammonium sulphate × chelated iron, ammonium sulphate × iron sulphate) contrasted with chemical 2, 4-D weedicide and a control (no application) treatment. There were three replicates of each of the treatments, resulting in a total of 30 treatment combinations. The parameters assessed during weekly data collection included a visual quality rating of weeds (nominal scale of 0-9), number of leaves, longest leaf span, number of weeds, chlorophyll fluorescence of grass, the visual quality rating of grass (0-9), and the weight of dried grass clippings. The results drawn from the experiment conducted over the period of 12 weeks, with three applications each at an interval of every 4 weeks, stated that the combination of ammonium sulphate and iron sulphate appeared to be most effective in halting the growth and establishment of dandelions and clovers while it also improved turf health. The second phase of the experiment, which involved the ammonium sulphate × iron sulphate, weedicide, and control treatments, was conducted outdoors on already established perennial turf with weeds under natural field conditions. After 12 weeks of observation, the results were comparable among the treatments in terms of weed control, but the ammonium sulphate × iron sulphate treatment fared much better in terms of the improved visual quality of the turf and other quality ratings. Preliminary results from these experiments thus suggest that nutrient management based on nitrogen and iron compounds could be a useful environmentally friendly alternative for controlling broadleaf weeds and improving the health and quality of turfgrass.

Keywords: broadleaf weeds, nitrogen, iron, turfgrass

Procedia PDF Downloads 72
1525 Prediction of Temperature Distribution during Drilling Process Using Artificial Neural Network

Authors: Ali Reza Tahavvor, Saeed Hosseini, Nazli Jowkar, Afshin Karimzadeh Fard

Abstract:

Experimental & numeral study of temperature distribution during milling process, is important in milling quality and tools life aspects. In the present study the milling cross-section temperature is determined by using Artificial Neural Networks (ANN) according to the temperature of certain points of the work piece and the points specifications and the milling rotational speed of the blade. In the present work, at first three-dimensional model of the work piece is provided and then by using the Computational Heat Transfer (CHT) simulations, temperature in different nods of the work piece are specified in steady-state conditions. Results obtained from CHT are used for training and testing the ANN approach. Using reverse engineering and setting the desired x, y, z and the milling rotational speed of the blade as input data to the network, the milling surface temperature determined by neural network is presented as output data. The desired points temperature for different milling blade rotational speed are obtained experimentally and by extrapolation method for the milling surface temperature is obtained and a comparison is performed among the soft programming ANN, CHT results and experimental data and it is observed that ANN soft programming code can be used more efficiently to determine the temperature in a milling process.

Keywords: artificial neural networks, milling process, rotational speed, temperature

Procedia PDF Downloads 405
1524 Canadian Business Leaders’ Phenomenological Online Education Expansion

Authors: Amna Khaliq

Abstract:

This research project centers on Canadian business leaders’ phenomenological online education expansion by navigating the challenges faced by strategic leaders concerning the expansion of online education in the Canadian higher education sector from a business perspective. The study identifies the problems and opportunities of faculty members’ transition from traditional face-to-face to online instruction, particularly in the context of technology-enhanced learning (TEL), and their influence on the growth strategies of Canadian educational institutions. It explores strategic leaders’ approaches and the impact of emerging technologies to assist with developing and executing business strategies to expand online education in Canada. As online education has gained prominence in the country, this research addresses a relevant business problem for educational institutions. The research employs a phenomenological approach in the qualitative research design to conduct this investigation. The study interviews eighteen faculty members engaged in online education in Canada. The interview data is analyzed to answer the three research questions for strategic leaders to expand online education with higher education institutions in Canada. The recommendations include 1) data privacy, infrastructure, security, and technology, 2) support and training for student engagement, 3) accessibility and inclusion, and 4) collaboration among institutions associated with expanding online education.

Keywords: strategic leadership, Canada, education, technology

Procedia PDF Downloads 64
1523 Heat Stress a Risk Factor for Poor Maternal Health- Evidence from South India

Authors: Vidhya Venugopal, Rekha S.

Abstract:

Introduction: Climate change and the growing frequency of higher average temperatures and heat waves have detrimental health effects, especially for certain vulnerable groups with limited socioeconomic status (SES) or physiological capacity to adapt to or endure high temperatures. Little research has been conducted on the effects of heat stress on pregnant women and fetuses in tropical regions such as India. Very high ambient temperatures may worsen Adverse Pregnancy Outcomes (APOs) and are a major worry in the scenario of climate change. The relationship between rising temperatures and APO must be better understood in order to design more effective interventions. Methodology: We conducted an observational cohort study involving 865 pregnant women in various districts of Tamil Nadu districts between 2014 and 2021. Physiological Heat Strain Indicators (HSI) such as morning and evening Core Body Temperature (CBT) and Urine Specific Gravity (USG) were monitored using an infrared thermometer and refractometer, respectively. A validated, modified version of the HOTHAPS questionnaire was utilised to collect self-reported health symptoms. A follow-up was undertaken with the mothers to collect information regarding birth outcomes and APOs, such as spontaneous abortions, stillbirths, Preterm Birth (PTB), birth abnormalities, and Low Birth Weight (LBW). Major findings of the study: According to the findings of our study, ambient temperatures (mean WBGT°C) were substantially higher (>28°C) for approximately 46% of women performing moderate daily life activities. 82% versus 43% of these women experienced dehydration and heat-related complaints. 34% of women had USG >1.020, which is symptomatic of dehydration. APOs, which include spontaneous abortions, were prevalent at 2.2%, stillbirth/preterm birth/birth abnormalities were prevalent at 2.2%, and low birth weight was prevalent at 16.3%. With exposures to WBGT>28°C, the incidence of miscarriage or unexpected abortion rose by approximately 2.7 times (95% CI: 1.1-6.9). In addition, higher WBGT exposures were associated with a 1.4-fold increased risk of unfavorable birth outcomes (95% Confidence Interval [CI]: 1.02-1.09). The risk of spontaneous abortions was 2.8 times higher among women who conceived during the hotter months (February – September) compared to those women who conceived in the cooler months (October – January) (95% CI: 1.04-7.4). Positive relationships between ambient heat and APOs found in this study necessitate further exploration into the underlying factors for extensive cohort studies to generate information to enable the formulation of policies that can effectively protect these women against excessive heat stress for enhanced maternal and fetal health.

Keywords: heat exposures, community, pregnant women, physiological strain, adverse outcome, interventions

Procedia PDF Downloads 84
1522 Ethics in the Production of Chinese Reality TV

Authors: Tianyu Zhang

Abstract:

China has become one of the markets with the biggest potential for UK exporters, but it remains difficult for outsiders to explore Chinese media’s inner workings due to a lack of access. Having worked in Chinese media, the author conducted six month’s participant-observation in China Central Television (CCTV) and three independent production companies. This paper mainly explores how TV production ethics were implemented in the casting process of three Chinese reality shows that are well-known within the country. The three production teams had issues in common: unorganised management, subjective casting standards and lack of production ethics. Casting directors, who were multitasking, could only rely on their professional experience and ad-hoc demands from the management. More concerning phenomena such as borderline corruption, passive-aggressiveness, and blame cultures were prevalent during the entire production, especially during casting. The casting process also often involved the celebrity status of the many ‘ordinary’ participants who were not that ‘ordinary’ as they claimed. Many of these participants were professional talents who were not famous enough but worked as many other well-known celebrities who had their own employees. On the other hand, as comprehensive production and ethics guidelines were missing, junior television practitioners struggled between their ideal professional standards and real-life events that fell into grey areas – telling white lies, bribery, shifting blame, and lack of employee training. Although facing challenges, many practitioners came up with self-management solutions and worked with positivity.

Keywords: production studies, ethics, television production, ethnography, reality TV, Chinese TV

Procedia PDF Downloads 80
1521 An Automatic Speech Recognition of Conversational Telephone Speech in Malay Language

Authors: M. Draman, S. Z. Muhamad Yassin, M. S. Alias, Z. Lambak, M. I. Zulkifli, S. N. Padhi, K. N. Baharim, F. Maskuriy, A. I. A. Rahim

Abstract:

The performance of Malay automatic speech recognition (ASR) system for the call centre environment is presented. The system utilizes Kaldi toolkit as the platform to the entire library and algorithm used in performing the ASR task. The acoustic model implemented in this system uses a deep neural network (DNN) method to model the acoustic signal and the standard (n-gram) model for language modelling. With 80 hours of training data from the call centre recordings, the ASR system can achieve 72% of accuracy that corresponds to 28% of word error rate (WER). The testing was done using 20 hours of audio data. Despite the implementation of DNN, the system shows a low accuracy owing to the varieties of noises, accent and dialect that typically occurs in Malaysian call centre environment. This significant variation of speakers is reflected by the large standard deviation of the average word error rate (WERav) (i.e., ~ 10%). It is observed that the lowest WER (13.8%) was obtained from recording sample with a standard Malay dialect (central Malaysia) of native speaker as compared to 49% of the sample with the highest WER that contains conversation of the speaker that uses non-standard Malay dialect.

Keywords: conversational speech recognition, deep neural network, Malay language, speech recognition

Procedia PDF Downloads 322
1520 Personality Traits of NEO Five Factors and Statistics Anxiety among Social Sciences University Students

Authors: Oluyinka Ojedokun, S. E. Idemudia

Abstract:

In Nigeria, statistics is a compulsory course required from all social sciences students as part of their academic training. However, a rising number of social sciences undergraduates usually express statistics anxiety. The prevalence of statistics anxiety among undergraduates in social sciences has created a growing concern for educators and researchers in the higher education institutions, mainly because this statistics anxiety adversely affects their performance in statistics and research methods courses. From a societal perspective it is important to reverse this trend. Although scholars and researchers have highlighted some psychosocial factors that influence statistics anxiety in students but few empirical studies exist on the association between personality traits of NEO five factors and statistics anxiety. It is in the light of this situation that this study was designed to assess the extent to which the personality traits of NEO five factors influence statistics anxiety of students in social sciences courses. The participants were 282 undergraduates in the faculty of social sciences at a state owned public university in Nigeria. The findings demonstrate that the personality traits contributing to statistics anxiety include openness to experience, conscientious, extraversion, and neuroticism. These results imply that statistics anxiety is related to individual differences in personality traits and suggest that certain aspects of statistics anxiety may be relatively stable and resistant to change. An effective and simple method to reduce statistics anxiety among social sciences students is to create awareness of the statistical and methodological requirements of the social sciences courses before commencement of their programmes.

Keywords: personality traits, statistics anxiety, social sciences, students

Procedia PDF Downloads 536
1519 Parameter Measurement Systems to Evaluate Performance of Archers

Authors: Muhammad Zikril Hakim Md. Azizi, Norhafizan Ahmad, Raja Ariffin Raja Ghazilla

Abstract:

Postural stability, attention level of the archer and particularly the vibrations of the bow itself plays a prominent role in determining the athletes performance. Many techniques and systems had been developing to monitor the parameters of the archers during training. In Malaysia, archery coaches tend to use non-scientific ways that they are familiar with, to evaluate archer performance. An approach that provides more affordable yet accurate systems to the masses and relatively easy system deployment procedure need to be proposed. Hence, this project will address to fulfil the needs. Three area of the archer parameter were included for data monitoring sensors. Attention level can be measured using EEG sensor, centre of mass linked to the postural stability can be measured by foot pressure sensor, and the bow vibrations in three axis will be relayed by the vibrations sensors placed directly on the bow using wireless sensors. Arduino based microcontroller used to relay all the data back to the interfacing systems. Interface systems will be using Python language and C++ framework for user interface and hardware interfacing systems. All sensor data can be observed in real time using the in-house applications, and each sessions can be saved to common files so that coach and the team can have a further discussion and comparisons.

Keywords: archery, graphical user interface, microcontroller, wireless sensor, monitoring system

Procedia PDF Downloads 299
1518 Evaluation of the Internal Quality for Pineapple Based on the Spectroscopy Approach and Neural Network

Authors: Nonlapun Meenil, Pisitpong Intarapong, Thitima Wongsheree, Pranchalee Samanpiboon

Abstract:

In Thailand, once pineapples are harvested, they must be classified into two classes based on their sweetness: sweet and unsweet. This paper has studied and developed the assessment of internal quality of pineapples using a low-cost compact spectroscopy sensor according to the Spectroscopy approach and Neural Network (NN). During the experiments, Batavia pineapples were utilized, generating 100 samples. The extracted pineapple juice of each sample was used to determine the Soluble Solid Content (SSC) labeling into sweet and unsweet classes. In terms of experimental equipment, the sensor cover was specifically designed to install the sensor and light source to read the reflectance at a five mm depth from pineapple flesh. By using a spectroscopy sensor, data on visible and near-infrared reflectance (Vis-NIR) were collected. The NN was used to classify the pineapple classes. Before the classification step, the preprocessing methods, which are Class balancing, Data shuffling, and Standardization were applied. The 510 nm and 900 nm reflectance values of the middle parts of pineapples were used as features of the NN. With the Sequential model and Relu activation function, 100% accuracy of the training set and 76.67% accuracy of the test set were achieved. According to the abovementioned information, using a low-cost compact spectroscopy sensor has achieved favorable results in classifying the sweetness of the two classes of pineapples.

Keywords: neural network, pineapple, soluble solid content, spectroscopy

Procedia PDF Downloads 73
1517 The Asymmetric Proximal Support Vector Machine Based on Multitask Learning for Classification

Authors: Qing Wu, Fei-Yan Li, Heng-Chang Zhang

Abstract:

Multitask learning support vector machines (SVMs) have recently attracted increasing research attention. Given several related tasks, the single-task learning methods trains each task separately and ignore the inner cross-relationship among tasks. However, multitask learning can capture the correlation information among tasks and achieve better performance by training all tasks simultaneously. In addition, the asymmetric squared loss function can better improve the generalization ability of the models on the most asymmetric distributed data. In this paper, we first make two assumptions on the relatedness among tasks and propose two multitask learning proximal support vector machine algorithms, named MTL-a-PSVM and EMTL-a-PSVM, respectively. MTL-a-PSVM seeks a trade-off between the maximum expectile distance for each task model and the closeness of each task model to the general model. As an extension of the MTL-a-PSVM, EMTL-a-PSVM can select appropriate kernel functions for shared information and private information. Besides, two corresponding special cases named MTL-PSVM and EMTLPSVM are proposed by analyzing the asymmetric squared loss function, which can be easily implemented by solving linear systems. Experimental analysis of three classification datasets demonstrates the effectiveness and superiority of our proposed multitask learning algorithms.

Keywords: multitask learning, asymmetric squared loss, EMTL-a-PSVM, classification

Procedia PDF Downloads 133
1516 The Social Enterprise Model And Its Beneficiaries

Authors: Lorryn Williams

Abstract:

This study will explore how the introduction of the for-profit social enterprise model affects the real lives of the individuals and communities that this model aims to help in South Africa. The congruence between organisational need construction and the real needs of beneficiaries, and whether the adoption of a profit driven model, such as social entrepreneurship, supports or discards these needs is key to answering the former question. By making use of qualitative methods, the study aims to collect empirical evidence that either supports the social entrepreneurship approach when compared to other programs such as vocational training programs or rejects it as less beneficial. It is the objective of this research to provide an answer to the question of whether the social enterprise model of conducting charity leaves the beneficiaries of non-profit organisations in a generally better or worse off position. The study will specifically explore the underlying assumptions the social entrepreneurship model makes, since the assumptions made concerning the uplifting effects it has on its beneficiaries may produce either real or assumed change for beneficiaries. The meaning of social cohesion and social capital for these organisations, the construction of beneficiary dependence and independence, the consideration of formal and informal economies beneficiaries engage in, and the extent to which sustainability is used as a brand, will be investigated. Through engaging the relevant literature, experts in the field of non-profit donorship and need implementation, organisations who have both adopted social enterprise programs and not, and most importantly, the beneficiaries themselves, it will be possible to provide answers to questions this study aims to answer.

Keywords: social enterprise, beneficiaries, profit driven model, non-profit organizations

Procedia PDF Downloads 140
1515 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency

Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva

Abstract:

This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.

Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium

Procedia PDF Downloads 233
1514 Learning Vocabulary with SkELL: Developing a Methodology with University Students in Japan Using Action Research

Authors: Henry R. Troy

Abstract:

Corpora are becoming more prevalent in the language classroom, especially in the development of dictionaries and course materials. Nevertheless, corpora are still perceived by many educators as difficult to use directly in the classroom, a process which is also known as “data-driven learning” (DDL). Action research has been identified as a method by which DDL’s efficiency can be increased, but it is also an approach few studies on DDL have employed. Studies into the effectiveness of DDL in language education in Japan are also rare, and investigations focused more on student and teacher reactions rather than pre and post-test scores are rarer still. This study investigates the student and teacher reactions to the use of SkELL, a free online corpus designed to be user-friendly, for vocabulary learning at a university in Japan. Action research is utilized to refine the teaching methodology, with changes to the method based on student and teacher feedback received via surveys submitted after each of the four implementations of DDL. After some training, the students used tablets to study the target vocabulary autonomously in pairs and groups, with the teacher acting as facilitator. The results show that the students enjoyed using SkELL and felt it was effective for vocabulary learning, while the teaching methodology grew in efficiency throughout the course. These findings suggest that action research can be a successful method for increasing the efficacy of DDL in the language classroom, especially with teachers and students who are new to the practice.

Keywords: action research, corpus linguistics, data-driven learning, vocabulary learning

Procedia PDF Downloads 246
1513 Association Between Hip Internal and External Rotation Range of Motion and Low Back Pain in Table Tennis Players

Authors: Kaili Wang, Botao Zhang, Enming Zhang

Abstract:

Background: Low back pain (LBP) is a common problem affecting athletes' training and competition. Although the association between a limited hip range of motion and prevalence of low back pain has been studied extensively, it has not been studied in table tennis. Aim: The main purposes of this study in table tennis players were (1) to investigate if there is a difference in hip internal rotation (HIR) and external rotation (HER) range of motion (ROM) between players with LBP and players without LBP and (2) to analyze the association between HIR and HER ROM and LBP. Methods: Forty-six table tennis players from the Chinese table tennis team were evaluated for passive maximum HIR and HER ROM. LBP was retrospectively recorded for the last 12 months before the date of ROM assessment by a physical therapist. The data were analyzed the difference in HIR and HER ROM between players with LBP and players without LBP by Mann-Whitney U test, and the association between the difference in HIR and HER ROM and LBP was analyzed via a binary logistic regression. Results: The 54% of players had developed LBP during the retrospective study period. Significant difference between LBP group and the asymptomatic group for HIR ROM (z=4.007, p<0.001) was observed. Difference between LBP group and asymptomatic group for HER ROM (z=1.117, p=0.264) was not significant. Players who had HIR ROM deficit had an increased risk of LBP compared with players without HIR ROM deficit (OR=5.344, 95%CI: 1.006-28.395, P=0.049). Conclusion: HIR ROM of a table tennis player with LBP was less than a table tennis player without LBP. Compared with player whose HIR ROM was normal, player who had HIR ROM deficit appeared to have a higher risk for LBP.

Keywords: assessment, injury prevention, low back pain, table tennis players

Procedia PDF Downloads 111
1512 Use of PACER Application as Physical Activity Assessment Tool: Results of a Reliability and Validity Study

Authors: Carine Platat, Fatima Qshadi, Ghofran Kayed, Nour Hussein, Amjad Jarrar, Habiba Ali

Abstract:

Nowadays, smartphones are very popular. They are offering a variety of easy-to-use and free applications among which step counters and fitness tests. The number of users is huge making of such applications a potentially efficient new strategy to encourage people to become more active. Nonetheless, data on their reliability and validity are very scarce and when available, they are often negative and contradictory. Besides, weight status, which is likely to introduce a bias in the physical activity assessment, was not often considered. Hence, the use of these applications as motivational tool, assessment tool and in research is questionable. PACER is one of the free step counters application. Even though it is one of the best rated free application by users, it has never been tested for reliability and validity. Prior any use of PACER, this remains to be investigated. The objective of this work is to investigate the reliability and validity of the smartphone application PACER in measuring the number of steps and in assessing the cardiorespiratory fitness by the 6 minutes walking test. 20 overweight or obese students (10 male and 10 female) were recruited at the United Arab Emirate University, aged between 18 and 25 years old. Reliability and validity were tested in real life conditions and in controlled conditions by using a treadmill. Test-retest experiments were done with PACER on 2 days separated by a week in real life conditions (24 hours each time) and in controlled conditions (30 minutes on treadmill, 3km/h). Validity was tested against the pedometer OMRON in the same conditions. During treadmill test, video was recorded and steps numbers were compared between PACER, pedometer and video. The validity of PACER in estimating the cardiorespiratory fitness (VO2max) as part of the 6 minutes walking test (6MWT) was studied against the 20m shuttle running test. Reliability was studied by calculating intraclass correlation coefficients (ICC), 95% confidence interval (95%CI) and by Bland-Altman plots. Validity was studied by calculating Spearman correlation coefficient (rho) and Bland-Altman plots. PACER reliability was good in both male and female in real life conditions (p≤10-3) but only in female in controlled conditions (p=0.01). PACER was valid against OMRON pedometer in male and female in real life conditions (rho=0.94, p≤10-3 ; rho=0.64, p=0.01, in male and female respectively). In controlled conditions, PACER was not valid against pedometer. But, PACER was valid against video in female (rho=0.72, p≤10-3). PACER was valid against the shuttle run test in male and female (rho-=0.66, p=0.01 ; rho=0.51, p=0.04) to estimate VO2max. This study provides data on the reliability and viability of PACER in overweight or obese male and female young adults. Globally, PACER was shown as reliable and valid in real life conditions in overweight or obese male and female to count steps and assess fitness. This supports the use of PACER to assess and promote physical activity in clinical follow-up and community interventions.

Keywords: smartphone application, pacer, reliability, validity, steps, fitness, physical activity

Procedia PDF Downloads 452
1511 Investigating the Causes of Human Error-Induced Incidents in the Maintenance Operations of Petrochemical Industry by Using Human Factors Analysis and Classification System

Authors: Omid Kalatpour, Mohammadreza Ajdari

Abstract:

This article studied the possible causes of human error-induced incidents in the petrochemical industry maintenance activities by using Human Factors Analysis and Classification System (HFACS). The purpose of the study was anticipating and identifying these causes and proposing corrective and preventive actions. Maintenance department in a petrochemical company was selected for research. A checklist of human error-induced incidents was developed based on four HFACS main levels and nineteen sub-groups. Hierarchical task analysis (HTA) technique was used to identify maintenance activities and tasks. The main causes of possible incidents were identified by checklist and recorded. Corrective and preventive actions were defined depending on priority. Analyzing the worksheets of 444 activities in four levels of HFACS showed 37.6% of the causes were at the level of unsafe actions, 27.5% at the level of unsafe supervision, 20.9% at the level of preconditions for unsafe acts and 14% of the causes were at the level of organizational effects. The HFACS sub-groups showed errors (24.36%) inadequate supervision (14.89%) and violations (13.26%) with the most frequency. According to findings of this study, increasing the training effectiveness of operators and supervision improvement respectively are the most important measures in decreasing the human error-induced incidents in petrochemical industry maintenance.

Keywords: human error, petrochemical industry, maintenance, HFACS

Procedia PDF Downloads 242
1510 Traffic Analysis and Prediction Using Closed-Circuit Television Systems

Authors: Aragorn Joaquin Pineda Dela Cruz

Abstract:

Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.

Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction

Procedia PDF Downloads 102
1509 A Scoping Review to Explore the Policies and Procedures Addressing the Implementation of Inclusive Education in BRICS Countries

Authors: Bronwyn S. Mthimunye, Athena S. Pedro, Nicolette V. Roman

Abstract:

Inclusive education is a global concern, in the context of Brazil, Russia, India, China, and South Africa. These countries are all striving for inclusive education, as there are many children excluded from formal schooling. The need for inclusive education is imperative, given the increase in special needs diagnoses. Many children confronted with special needs are still not able to exercise their basic right to education. The aim of conducting this scoping review was to explore the policies and procedures addressing the implementation of inclusive education in Brazil, Russia, India, China, and South Africa. The studies included were published between 2006-2016 and located in Academic Search Complete, ERIC, Medline, PsycARTICLES, JSTOR, and SAGE Journals. Seven articles were included in which all of the articles reported on inclusive education and the status of implementation. The findings identified many challenges faced by Brazil, Russia, India, China, and South Africa that affect the implementation of policies and programmes. Challenges such as poor planning, resource-constrained communities, lack of professionals in schools, and the need for adequate teacher training were identified. Brazil, Russia, India, China, and South Africa are faced with many social and economic challenges, which serves as a barrier to the implementation of inclusive education.

Keywords: special needs, inclusion, education, scoping review

Procedia PDF Downloads 298
1508 3D Printing Perceptual Models of Preference Using a Fuzzy Extreme Learning Machine Approach

Authors: Xinyi Le

Abstract:

In this paper, 3D printing orientations were determined through our perceptual model. Some FDM (Fused Deposition Modeling) 3D printers, which are widely used in universities and industries, often require support structures during the additive manufacturing. After removing the residual material, some surface artifacts remain at the contact points. These artifacts will damage the function and visual effect of the model. To prevent the impact of these artifacts, we present a fuzzy extreme learning machine approach to find printing directions that avoid placing supports in perceptually significant regions. The proposed approach is able to solve the evaluation problem by combing both the subjective knowledge and objective information. Our method combines the advantages of fuzzy theory, auto-encoders, and extreme learning machine. Fuzzy set theory is applied for dealing with subjective preference information, and auto-encoder step is used to extract good features without supervised labels before extreme learning machine. An extreme learning machine method is then developed successfully for training and learning perceptual models. The performance of this perceptual model will be demonstrated on both natural and man-made objects. It is a good human-computer interaction practice which draws from supporting knowledge on both the machine side and the human side.

Keywords: 3d printing, perceptual model, fuzzy evaluation, data-driven approach

Procedia PDF Downloads 438
1507 Anti-Fire Group 'Peduli Api': Case Study of Mitigating the Fire Hazard Impact and Climate Policy Enhancement on Riau Province Indonesia

Authors: Bayu Rizky Pratama, Hardiansyah Nur Sahaya

Abstract:

Riau Province is the worst emitter for forest burning which causes the huge scale of externality such as declining of forest habitat, health disease, and climate change impact. Indonesia forum of budget transparency for Riau Province (FITRA) reported the length of forest burning reached about 186.069 hectares which is 7,13% of total national forest burning disaster, consisted of 107.000 hectares of peatland and the rest 79.069 hectares of mineral land. Anti-fire group, a voluntary group next to the forest, to help in protecting the forest burning and heavily smoke residual has been established but unfortunately the implementation still far from expectation. This research will emphasize on (1) how the anti-fire group contribute to fire hazard tackling; (2) the identification of SWOT analysis to enhance the group benefit; and (3) government policy implication to maximize the role of Anti-fire group and reduce the case of forest burning as well as heavily smoke which can raise climate change impact. As the observation found some weakness from SWOT identification such as (1) lack of education and training; (2) facility in extinguishing the fire damage; (3) law for economic incentive; (4) communication and field experience; (5) also the reporting the fire case.

Keywords: anti-fire group, forest burning impact, SWOT, climate change mitigation

Procedia PDF Downloads 388
1506 Knowledge, Hierarchy and Decision-Making: Analysis of Documentary Filmmaking Practices in India

Authors: Nivedita Ghosh

Abstract:

In his critique of Lefebvre’s view that ‘technological capacities’ are class-dependent, Francois Hetman argues that technology today is participatory, allowing the entry of individuals from different levels of social stratification. As a result, we are entering into an era of technology operators or ‘clerks’ who become the new decision-makers because of the knowledge they possess of the use of technologies. In response to Hetman’s thesis, this paper argues that knowledge of technology, while indeed providing a momentary space for decision-making, does not necessarily restructure social hierarchies. Through case studies presented from the world of Indian documentary filmmaking, this paper puts forth the view that Hetman’s clerks, despite being technologically advanced, do not break into the filmmaking hierarchical order. This remains true even for a situation where technical knowledge rests most with those in the lowest rungs of the filmmaking ladder. Instead, technological knowledge provides the space for other kinds of relationships to evolve, such as those of ‘trusting the technician’ or ‘admiration for the technician’s work’. Furthermore, what continues to define documentary filmmaking hierarchy is conceptualization capacities of the practitioners, which are influenced by a similarity in socio-cultural backgrounds and film school training accessible primarily to the filmmakers instead of the technicians. Accordingly, the paper concludes with the argument that more than ‘technological-capacities’, it is ‘conceptualization capacities’ which are class-dependent, especially when we study the field of documentary filmmaking.

Keywords: documentary filmmaking, India, technology, knowledge, hierarchy

Procedia PDF Downloads 262
1505 Fifth Grade Student Skills of Reading Illustrated Drawings in Physical and Chemical Changes Included in Science Textbook

Authors: Sozan H. Omar, Lina L. Al-Rewaili

Abstract:

The current study aimed to measure the fifth Grade student skills of reading illustrates in physical and chemical chapter included in science textbook, as well as identity the tasks the dispersants related to designing these illustrates which obstruct the students to read them properly. The researcher applied the test instrument of open discuss questions to measure the skill of: recognizing, description, interpretation and assessment for a sample of this research consisted of (269) students who read three illustrates, and conduct an interview with sample of them (27) students to recognize the dispersants related to designing of these illustrates. The study results showed that there are poor levels in illustrated drawing reading skills: description, interpretation, and assessment. The most important dispersants which obstruct the students to read theses illustrates properly representing: Art impacts of these illustrates, there are some elements which don’t serve these illustrates. In the light of the above results, the researcher provided some recommendations such as training the students on using the images and illustrates properly in science textbooks, as well as create simple designs of illustrates and they should be free of crowded elements and impacts which don’t serve the illustrates.

Keywords: reading illustrated drawings skills, fifth grade science, physical and chemical changes

Procedia PDF Downloads 374
1504 The Role of Employee Incentives in Financing from Customers

Authors: Mengyu Lu, Yongsheng Guo

Abstract:

This study investigates how employee incentives affect employee performance in financing from customers. This study followed a grounded theory approach where data were collected through 29 interviews. Main themes and categories were identified through the coding processes. This study found that casual conditions, including financial barriers, informal finance, business location, customer base and customer relationship, influenced the adoption of customer finance in the case of SMEs. The SMEs build and maintain long-term relationships with customers through personal communications. The SMEs engage and motivate employees in customer communications and business financing strategy through financial incentives programs, including bonuses, salary rises, rewards and non-financial incentives, including training opportunities, extra holiday leave, and flexible working hours. Employee performance was measured through financing contribution and job contribution. As a consequence, customers will be well served by employees and get a better customer experience. SMEs can get benefits such as employee engagement, employee satisfaction and sustainable financing sources. This study gets in sight of employee incentives in improving employee performance in customer finance and makes implications to human capital theories. Suggestions are provided to the decision-makers in businesses as incentive programs improve employee performance that, eventually contributes to overall business performance.

Keywords: SMEs, financing from customers, employee incentives, performance-based measurement

Procedia PDF Downloads 56
1503 US Foreign Aids and Its Institutional and Non-Institutional Impacts in the Middle East, Africa, Southeast Asia, and Latin America (2000 - 2020)

Authors: Mahdi Fakheri, Mohammad Mohsen Mahdizadeh Naeini

Abstract:

This paper addresses an understudied aspect of U.S. foreign aids between the years 2000 and 2020. Despite a growing body of literature on the impacts of U.S. aids, the question about how the United States uses its foreign aids to change developing countries has remained unanswered. As foreign aid is a tool of the United States' foreign policy, answering this very question can reveal the future that the U.S. prefers for developing countries and that secures its national interest. This paper will explore USAID's official dataset, which includes the data of foreign aids to the Middle East, Africa, Latin America, and Southeast Asia from 2000 to 2020. Through an empirical analysis, this paper argues that the focus of U.S. foreign aid is evenly divided between institutional and non-institutional (i.e., slight enhancement of status quo) changes. The former is induced by training and education, funding the initiatives and projects, making capacity and increasing the efficiency of human, operational, and management sectors, and enhancing the living condition of the people. Moreover, it will be demonstrated that the political, military, cultural, economic, and judicial are some of the institutions that the U.S. has planned to change in the aforementioned period and regions.

Keywords: USAID, foreign aid, development, developing countries, Middle East, Africa, Southeast Asia, Latin America

Procedia PDF Downloads 189
1502 A Lightweight Pretrained Encrypted Traffic Classification Method with Squeeze-and-Excitation Block and Sharpness-Aware Optimization

Authors: Zhiyan Meng, Dan Liu, Jintao Meng

Abstract:

Dependable encrypted traffic classification is crucial for improving cybersecurity and handling the growing amount of data. Large language models have shown that learning from large datasets can be effective, making pre-trained methods for encrypted traffic classification popular. However, attention-based pre-trained methods face two main issues: their large neural parameters are not suitable for low-computation environments like mobile devices and real-time applications, and they often overfit by getting stuck in local minima. To address these issues, we developed a lightweight transformer model, which reduces the computational parameters through lightweight vocabulary construction and Squeeze-and-Excitation Block. We use sharpness-aware optimization to avoid local minima during pre-training and capture temporal features with relative positional embeddings. Our approach keeps the model's classification accuracy high for downstream tasks. We conducted experiments on four datasets -USTC-TFC2016, VPN 2016, Tor 2016, and CICIOT 2022. Even with fewer than 18 million parameters, our method achieves classification results similar to methods with ten times as many parameters.

Keywords: sharpness-aware optimization, encrypted traffic classification, squeeze-and-excitation block, pretrained model

Procedia PDF Downloads 30
1501 Increase Women's Knowledge and Attitude about Breast Cancer and Screening: Using an Educational Intervention in Community

Authors: Mitra Savabi-Esfahani, Fariba Taleghani, Mahnaz Noroozi, Maryam Tabatabaeian, Elsebeth Lynge

Abstract:

Breast cancer is a health concern in worldwide. All women have not adequate information about breast cancer, resulting in undetected some tumors until advanced stages. Therefore awareness of people was recommended as a strategy to control that. The aim of this study was to assess the effect of an educational intervention on women's knowledge and attitude about breast cancer and screening. This study was conducted in 2016 on 191 women. All women living in one of big cities were invited to enroll in training classes. Inclusion criteria consisted women who were 20 - 69 years and not participated in any educational intervention. The lecture with group discussion was used as educational methods. Data collection tool was a structured questionnaire which filled out before and after intervention. The reliability of the questionnaire was determined by Cronbach's alpha. The data were analyzed using SPSS software. The average age was 44/4 ± 11.5 and 42.6% of the women had obtained high school. Of the 191 women, 70(36.6%) and 76(39.8%) had low and medium level of knowledge respectively and half of them, 95(50%) had medium level of attitude in before intervention. There was significant difference between mean scores of knowledge and attitude before and after the intervention by Paired T test (p < 0/001). It seems applying effective educational interventions can increase knowledge and attitude women about breast cancer particularly in community that they have insufficient levels. Moreover, the lecture method along with group discussion can be proposed as effective and conventional methods for this purpose.

Keywords: attitude, breast cancer, educational intervention, knowledge

Procedia PDF Downloads 309
1500 University Lecturers' Attitudes towards Learner Autonomy in the EFL Context in Vietnam

Authors: Nhung T. Bui

Abstract:

Part of the dilemma facing educational reforms in Vietnam as in other Asian contexts is how to encourage more independence in students’ learning approaches. Since 2005, the Ministry of Education and Training of Vietnam has included the students’ ability to learn independently in its national education objectives. While learner autonomy has been viewed as a goal in the teaching and learning English as a foreign language (EFL) and there has been a considerable literature on strategies to stimulate autonomy in learners, teachers’ voices have rarely been heard. Given that teachers play a central role in helping their students to be more autonomous, especially in an inherent Confucian heritage culture like Vietnam, their attitudes towards learner autonomy should be investigated before any practical implementations could be undertaken. This paper reports significant findings of a survey questionnaire with 262 lecturers of English from 5 universities in Hanoi, Vietnam giving opinions regarding the practices and prospects of learner autonomy in their classrooms. The study reveals that lecturers perceive they should be more responsible than their students in all class-related activities; they most appreciate their students’ ability to learn cooperatively and that they consider stimulating students’ interest as the most important teaching strategy to promote learner autonomy. Lecturers, then, are strongly suggested to gradually ‘empower’ their students through the application of out-of-classroom activities; of learning activities which requires collaboration and team spirit; and of activities which could boost students’ interest in learning English.

Keywords: English as a foreign language, higher education, learner autonomy, Vietnam

Procedia PDF Downloads 267
1499 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 572