Search results for: trace of heavy metal
842 Theoretical and Experimental Investigation of Binder-free Trimetallic Phosphate Nanosheets
Authors: Iftikhar Hussain, Muhammad Ahmad, Xi Chen, Li Yuxiang
Abstract:
Transition metal phosphides and phosphates are newly emerged electrode material candidates in energy storage devices. For the first time, we report uniformly distributed, interconnected, and well-aligned two-dimensional nanosheets made from trimetallic Zn-Co-Ga phosphate (ZCGP) electrode materials with preserved crystal phase. It is found that the ZCGP electrode material exhibits about 2.85 and 1.66 times higher specific capacity than mono- and bimetallic phosphate electrode materials at the same current density. The trimetallic ZCGP electrode exhibits superior conductivity, lower internal resistance (IR) drop, and high Coulombic efficiency compared to mono- and bimetallic phosphate. The charge storage mechanism is studied for mono- bi- and trimetallic electrode materials, which illustrate the diffusion-dominated battery-type behavior. By means of density functional theory (DFT) calculations, ZCGP shows superior metallic conductivity due to the modified exchange splitting originating from 3d-orbitals of Co atoms in the presence of Zn and Ga. Moreover, a hybrid supercapacitor (ZCGP//rGO) device is engineered, which delivered a high energy density (ED) of 40 W h kg⁻¹ and a high-power density (PD) of 7,745 W kg⁻¹, lighting 5 different colors of light emitting diodes (LEDs). These outstanding results confirm the promising battery-type electrode materials for energy storage applications.Keywords: trimetallic phosphate, nanosheets, DFT calculations, hybrid supercapacitor, binder-free, synergistic effect
Procedia PDF Downloads 210841 Comparative and Combined Toxicity of NiO and Mn₃O₄ Nanoparticles as Assessed in vitro and in vivo
Authors: Ilzira A. Minigalieva, Tatiana V. Bushueva, Eleonore Frohlich, Vladimir Panov, Ekaterina Shishkina, Boris A. Katsnelson
Abstract:
Background: The overwhelming majority of the experimental studies in the field of metal nanotoxicology have been performed on cultures of established cell lines, with very few researchers focusing on animal experiments, while a juxtaposition of conclusions inferred from these two types of research is blatantly lacking. The least studied aspect of this problem relates to characterizing and predicting the combined toxicity of metallic nanoparticles. Methods: Comparative and combined toxic effects of purposefully prepared spherical NiO and Mn₃O₄ nanoparticles (mean diameters 16.7 ± 8.2 nm and 18.4 ± 5.4 nm respectively) were estimated on cultures of human cell lines: MRC-5 fibroblasts, THP-1 monocytes, SY-SY5Y neuroblastoma cells, as well as on the latter two lines differentiated to macrophages and neurons, respectively. The combined cytotoxicity was mathematically modeled using the response surface methodology. Results: The comparative assessment of the studied NPs unspecific toxicity previously obtained in vivo was satisfactorily reproduced by the present in vitro tests. However, with respect to manganese-specific brain damage which had been demonstrated by us in animal experiment with the same NPs, the testing on neuronall cell culture showed only a certain enhancing effect of Mn₃O₄-NPs on the toxic action of NiO-NPs, while the role of the latter prevailed. Conclusion: From the point of view of the preventive toxicology, the experimental modeling of metallic NPs combined toxicity on cell cultures can give non-reliable predictions of the in vivo action’s effects.Keywords: manganese oxide, nickel oxide, nanoparticles, in vitro toxicity
Procedia PDF Downloads 297840 Effects of Amino Bisphosphonic Acid on the Growth and Phytoextraction Efficiency of Salix schwerinii Grown in Ni-Contaminated Soil
Authors: Muhammad Mohsin, Mir Md Abdus Salam, Pertti Pulkkinen, Ari Pappinen
Abstract:
Soil polluted with elevated level of nickel (Ni) concentration may cause severe hazards to humans and forest ecosystems, for example, by polluting underground water reserves, affecting food quality and by reducing agricultural productivity. The present study investigated the phytoextraction ability of Salix schwerinii, enhanced with an application of the N100 (11-amino-1-hydroxyundecylidene) chelate. N100 has proved to be a non-toxic, low risk of leaching, environmentally friendly and easily biodegradable chelate that has a potential for metal chelation. The Salix were grown in garden soil that was also amended with nickel (Ni; 150 mg kg⁻¹). Multiple doses of N100 were applied to the treatments as follows: Ni + N100 1.2 g and Ni+ N100 2.4 g. Furthermore, N100 doses were also repeated with the control soil. The effect of N100 on height growth, biomass, and the accumulation of Ni in Salix in polluted soils was studied. In this study, N100 application was found to be effective in enhancing height and biomass growth under polluted treatments. Total reflection X-ray fluorescence (TXRF) spectrometry was used to determine the concentration of Ni in the Salix tissues. The total Ni concentrations in the soils amended with N100 increased substantially by up to 324% as compared to the control. The Ni translocation factor (TF) and bioconcentration factor (BF) values for S. schwerinii increased with the application of N100 as varied from 0.45–1.25 and 0.80‒1.50, respectively. This study revealed that S. schwerinii is suitable for the phytoextraction of Ni-contaminated soils.Keywords: bisphosphonic acid, nickel, phytoextraction, Salix
Procedia PDF Downloads 154839 High-Temperature Behavior of Boiler Steel by Friction Stir Processing
Authors: Supreet Singh, Manpreet Kaur, Manoj Kumar
Abstract:
High temperature corrosion is an imperative material degradation method experienced in thermal power plants and other energy generation sectors. Metallic materials such as ferritic steels have special properties such as easy fabrication and machinibilty, low cost, but a serious drawback of these materials is the worsening in properties initiating from the interaction with the environments. The metallic materials do not endure higher temperatures for extensive period of time because of their poor corrosion resistance. Friction Stir Processing (FSP), has emerged as the potent surface modification means and control of microstructure in thermo mechanically heat affecting zones of various metal alloys. In the current research work, FSP was done on the boiler tube of SA 210 Grade A1 material which is regularly used by thermal power plants. The strengthening of SA210 Grade A1 boiler steel through microstructural refinement by Friction Stir Processing (FSP) and analyze the effect of the same on high temperature corrosion behavior. The high temperature corrosion performance of the unprocessed and the FSPed specimens were evaluated in the laboratory using molten salt environment of Na₂SO₄-82%Fe₂(SO₄). The unprocessed and FSPed low carbon steel Gr A1 evaluation was done in terms of microstructure, corrosion resistance, mechanical properties like hardness- tensile. The in-depth characterization was done by EBSD, SEM/EDS and X-ray mapping analyses with an aim to propose the mechanism behind high temperature corrosion behavior of the FSPed steel.Keywords: boiler steel, characterization, corrosion, EBSD/SEM/EDS/XRD, friction stir processing
Procedia PDF Downloads 238838 Arsenic Removal from Drinking Water by Hybrid Hydrogel-Biochar Matrix: An Understanding of Process Parameters
Authors: Vibha Sinha, Sumedha Chakma
Abstract:
Arsenic (As) contamination in drinking water is a serious concern worldwide resulting in severe health maladies. To tackle this problem, several hydrogel based matrix which selectively uptake toxic metals from contaminated water has increasingly been examined as a potential practical method for metal removal. The major concern in hydrogels is low stability of matrix, resulting in poor performance. In this study, the potential of hybrid hydrogel-biochar matrix synthesized from natural plant polymers, specific for As removal was explored. Various compositional and functional group changes of the elements contained in the matrix due to the adsorption of As were identified. Moreover, to resolve the stability issue in hydrogel matrix, optimum and effective mixing of hydrogel with biochar was studied. Mixing varied proportions of matrix components at the time of digestion process was tested. Preliminary results suggest that partial premixing methods may increase the stability and reduce cost. Addition of nanoparticles and specific catalysts with different concentrations of As(III) and As(V) under batch conditions was performed to study their role in performance enhancement of the hydrogel matrix. Further, effect of process parameters, optimal uptake conditions and detailed mechanism derived from experimental studies were suitably conducted. This study provides an efficient, specific and a low-cost As removal method that offers excellent regeneration abilities which can be reused for value.Keywords: arsenic, catalysts, hybrid hydrogel-biochar, water purification
Procedia PDF Downloads 189837 A Combinatorial Approach of Treatment for Landfill Leachate
Authors: Anusha Atmakuri, R. D. Tyagi, Patrick Drogui
Abstract:
Landfilling is the most familiar and easy way to dispose solid waste. Landfill is generally received via wastes from municipal near to a landfill. The waste collected is from commercial, industrial, and residential areas and many more. Landfill leachate (LFL) is formed when rainwater passes through the waste placed in landfills and consists of several dissolved organic materials, for instance, aquatic humic substances (AHS), volatile fatty acids (VFAs), heavy metals, inorganic macro components, and xenobiotic organic matters, highly toxic to the environment. These components of LFL put a load on it, hence it necessitates the treatment of LFL prior to its discharge into the environment. Various methods have been used to treat LFL over the years, such as physical, chemical, biological, physicochemical, electrical, and advanced oxidation methods. This study focuses on the combination of biological and electrochemical methods- extracellular polymeric substances and electrocoagulation(EC). The coupling of electro-coagulation process with extracellular polymeric substances (EPS) (as flocculant) as pre and\or post treatment strategy provides efficient and economical process for the decontamination of landfill leachate contaminated with suspended matter, metals (e.g., Fe, Mn) and ammonical nitrogen. Electro-coagulation and EPS mediated coagulation approach could be an economically viable for the treatment of landfill leachate, along with possessing several other advantages over several other methods. This study utilised waste substrates such as activated sludge, crude glycerol and waste cooking oil for the production of EPS using fermentation technology. A comparison of different scenarios for the treatment of landfill leachate is presented- such as using EPS alone as bioflocculant, EPS and EC with EPS being the 1st stage, and EPS and EC with EC being the 1st stage. The work establishes the use of crude EPS as a bioflocculant for the treatment of landfill leachate and wastewater from a site near a landfill, along with EC being successful in removal of some major pollutants such as COD, turbidity, total suspended solids. A combination of these two methods is to be explored more for the complete removal of all pollutants from landfill leachate.Keywords: landfill leachate, extracellular polymeric substances, electrocoagulation, bioflocculant.
Procedia PDF Downloads 86836 Tracing a Timber Breakthrough: A Qualitative Study of the Introduction of Cross-Laminated-Timber to the Student Housing Market in Norway
Authors: Marius Nygaard, Ona Flindall
Abstract:
The Palisaden student housing project was completed in August 2013 and was, with its eight floors, Norway’s tallest timber building at the time of completion. It was the first time cross-laminated-timber (CLT) was utilized at this scale in Norway. The project was the result of a concerted effort by a newly formed management company to establish CLT as a sustainable and financially competitive alternative to conventional steel and concrete systems. The introduction of CLT onto the student housing market proved so successful that by 2017 more than 4000 individual student residences will have been built using the same model of development and construction. The aim of this paper is to identify the key factors that enabled this breakthrough for CLT. It is based on an in-depth study of a series of housing projects and the role of the management company who both instigated and enabled this shift of CLT from the margin to the mainstream. Specifically, it will look at how a new building system was integrated into a marketing strategy that identified a market potential within the existing structure of the construction industry and within the economic restrictions inherent to student housing in Norway. It will show how a key player established a project model that changed both the patterns of cooperation and the information basis for decisions. Based on qualitative semi-structured interviews with managers, contractors and the interdisciplinary teams of consultants (architects, structural engineers, acoustical experts etc.) this paper will trace the introduction, expansion and evolution of CLT-based building systems in the student housing market. It will show how the project management firm’s position in the value chain enabled them to function both as a liaison between contractor and client, and between contractor and producer. A position that allowed them to improve the flow of information. This ensured that CLT was handled on equal terms to other structural solutions in the project specifications, enabling realistic pricing and risk evaluation. Secondly, this paper will describe and discuss how the project management firm established and interacted with a growing network of contractors, architects and engineers to pool expertise and broaden the knowledge base across Norway’s regional markets. Finally, it will examine the role of the client, the building typology, and the industrial and technological factors in achieving this breakthrough for CLT in the construction industry. This paper gives an in-depth view of the progression of a single case rather than a broad description of the state of the art of large-scale timber building in Norway. However, this type of study may offer insights that are important to the understanding not only of specific markets but also of how new technologies should be introduced in big and well-established industries.Keywords: cross-laminated-timber (CLT), industry breakthrough, student housing, timber market
Procedia PDF Downloads 223835 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: Case Study on Contaminated Site Soil
Authors: Mary Allagoa, Abir Al-Tabbaa
Abstract:
The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to decrease the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of using the binders, with a focus on Total Heavy metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk assessments (ILCR) and other indexes to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0- 320.5 kPa, while THM levels are less than 10 µg/l in GGBS: MgO and CEM: PFA but below 1 µg/l in CEM I based. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 – 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), Risk allowable daily dose intake (ADI), and Risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.Keywords: risk ADI, risk CDI, ILCR, novel binders, additives binders, hazard index
Procedia PDF Downloads 810834 Prenatal Lead Exposure and Postpartum Depression: An Exploratory Study of Women in Mexico
Authors: Nia McRae, Robert Wright, Ghalib Bello
Abstract:
Introduction: Postpartum depression is a prevalent mood disorder that is detrimental to the mental and physical health of mothers and their newborns. Lead (Pb) is a toxic metal that is associated with hormonal imbalance and mental impairments. The hormone changes that accompany pregnancy and childbirth may be exacerbated by Pb and increase new mothers’ susceptibility to postpartum depression. To the best of the author’s knowledge, this is the only study that investigates the association between prenatal Pb exposure and postpartum depression. Identifying risk factors can contribute to improved prevention and treatment strategies for postpartum depression. Methods: Data was derived from the Programming Research in Obesity, Growth, Environment and Social Stress (PROGRESS) study which is an ongoing longitudinal birth cohort. Postpartum depression was identified by a score of 13 or above on the 10-Item Edinburg Postnatal Depression Scale (EPDS) 6-months and 12-months postpartum. Pb was measured in the blood (BPb) in the second and third trimester and in the tibia and patella 1-month postpartum. Quantile regression models were used to assess the relationship between BPb and postpartum depression. Results: BPb in the second trimester was negatively associated with the 80th percentile of depression 6-months postpartum (β: -0.26; 95% CI: -0.51, -0.01). No significant association was found between BPb in the third trimester and depression 6-months postpartum. BPb in the third trimester exhibited an inverse relationship with the 60th percentile (β: -0.23; 95% CI: -0.41, -0.06), 70th percentile (β: -0.31; 95% CI: -0.52, -0.10), and 90th percentile of depression 12-months postpartum (β: -0.36; 95% CI: -0.69, -0.03). There was no significant association between BPb in the second trimester and depression 12-months postpartum. Bone Pb concentrations were not significantly associated with postpartum depression. Conclusion: The negative association between BPb and postpartum depression may support research which demonstrates lead is a nontherapeutic stimulant. Further research is needed to verify these results and identify effect modifiers.Keywords: depression, lead, postpartum, prenatal
Procedia PDF Downloads 225833 Non-Destructive Testing of Selective Laser Melting Products
Authors: Luca Collini, Michele Antolotti, Diego Schiavi
Abstract:
At present, complex geometries within production time shrinkage, rapidly increasing demand, and high-quality standard requirement make the non-destructive (ND) control of additively manufactured components indispensable means. On the other hand, a technology gap and the lack of standards regulating the methods and the acceptance criteria indicate the NDT of these components a stimulating field to be still fully explored. Up to date, penetrant testing, acoustic wave, tomography, radiography, and semi-automated ultrasound methods have been tested on metal powder based products so far. External defects, distortion, surface porosity, roughness, texture, internal porosity, and inclusions are the typical defects in the focus of testing. Detection of density and layers compactness are also been tried on stainless steels by the ultrasonic scattering method. In this work, the authors want to present and discuss the radiographic and the ultrasound ND testing on additively manufactured Ti₆Al₄V and inconel parts obtained by the selective laser melting (SLM) technology. In order to test the possibilities given by the radiographic method, both X-Rays and γ-Rays are tried on a set of specifically designed specimens realized by the SLM. The specimens contain a family of defectology, which represent the most commonly found, as cracks and lack of fusion. The tests are also applied to real parts of various complexity and thickness. A set of practical indications and of acceptance criteria is finally drawn.Keywords: non-destructive testing, selective laser melting, radiography, UT method
Procedia PDF Downloads 146832 Willingness to Adopt "Green Steel" Products: A Case Study from the Automotive Sector
Authors: Hasan Muslemani, Jeffrey Wilson, Xi Liang, Francisco Ascui, Katharina Kaesehage
Abstract:
This paper aims to examine consumer behaviour towards, and the willingness to adopt, green steel use in the automotive sector, in order to identify potential barriers and opportunities for its widespread adoption. Semi-structured interviews were held with experts from global, regional and country-specific industry associations and automakers. The analysis shows there is a new shift towards lifecycle thinking in the sector, although these efforts have been voluntary and driven by customer and employee pressures rather than regulation. The paper further appraises possible demand for green steel within different vehicle types (based on size and powertrain), and shows that manufacturers of electric heavy-duty vehicles are most likely to adopt green steel in the first instance, given the amount of incorporated steel in the vehicles and the fact that lifecycle emissions lie predominantly in their manufacturing phase. A case for green advanced higher-strength steels (AHSS) can also be made in light-duty passenger vehicles, which may mitigate competition from light-weight alternative materials in terms of cost and greenness (depending on source and utilisation zones). This work builds on a wide sustainability-related literature in the automotive sector and highlights areas in need of urgent action if the sector as a whole were to meet its Paris Agreement climate targets, in particular a need to revisit current CO2 performance regulations to include Scope 1 and Scope 2 emissions, engage in educational green marketing campaigns, and explore innovative market-based mechanisms to bridge the gap between relatively-low carbon abatement costs of steelmaking and high abatement costs of vehicle manufacturing.Keywords: Green steel, Consumer behaviour, Automotive industry, Environmental sustainability
Procedia PDF Downloads 164831 Biostimulant and Abiotic Plant Stress Interactions in Malting Barley: A Glasshouse Study
Authors: Conor Blunt, Mariluz del Pino-de Elias, Grace Cott, Saoirse Tracy, Rainer Melzer
Abstract:
The European Green Deal announced in 2021 details agricultural chemical pesticide use and synthetic fertilizer application to be reduced by 50% and 20% by 2030. Increasing and maintaining expected yields under these ambitious goals has strained the agricultural sector. This intergovernmental plan has identified plant biostimulants as one potential input to facilitate this new phase of sustainable agriculture; these products are defined as microorganisms or substances that can stimulate soil and plant functioning to enhance crop nutrient use efficiency, quality and tolerance to abiotic stresses. Spring barley is Ireland’s most widely sown tillage crop, and grain destined for malting commands the most significant market price. Heavy erratic rainfall is forecasted in Ireland’s climate future, and barley is particularly susceptible to waterlogging. Recent findings suggest that plant receptivity to biostimulants may depend on the level of stress inflicted on crops to elicit an assisted plant response. In this study, three biostimulants of different genesis (seaweed, protein hydrolysate and bacteria) are applied to ‘RGT Planet’ malting barley fertilized at three different rates (0 kg/ha, 40 kg/ha, 75 kg/ha) of calcium ammonium nitrogen (27% N) under non-stressed and waterlogged conditions. This 4x3x2 factorial trial design was planted in a completed randomized block with one plant per experimental unit. Leaf gas exchange data and key agronomic and grain quality parameters were analyzed via ANOVA. No penalty on productivity was evident on plants receiving 40 kg/ha of N and bio stimulant compared to 75 kg/ha of N treatments. The main effects of nitrogen application and waterlogging provided the most significant variation in the dataset.Keywords: biostimulant, Barley, malting, NUE, waterlogging
Procedia PDF Downloads 76830 Geosynthetic Tubes in Coastal Structures a Better Substitute for Shorter Planning Horizon: A Case Study
Authors: A. Pietro Rimoldi, B. Anilkumar Gopinath, C. Minimol Korulla
Abstract:
Coastal engineering structure is conventionally designed for a shorter planning horizon usually 20 years. These structures are subjected to different offshore climatic externalities like waves, tides, tsunamis etc. during the design life period. The probability of occurrence of these different offshore climatic externalities varies. The impact frequently caused by these externalities on the structures is of concern because it has a significant bearing on the capital /operating cost of the project. There can also be repeated short time occurrence of these externalities in the assumed planning horizon which can cause heavy damage to the conventional coastal structure which are mainly made of rock. A replacement of the damaged portion to prevent complete collapse is time consuming and expensive when dealing with hard rock structures. But if coastal structures are made of Geo-synthetic containment systems such replacement is quickly possible in the time period between two successive occurrences. In order to have a better knowledge and to enhance the predictive capacity of these occurrences, this study estimates risk of encounter within the design life period of various externalities based on the concept of exponential distribution. This gives an idea of the frequency of occurrences which in turn gives an indication of whether replacement is necessary and if so at what time interval such replacements have to be effected. To validate this theoretical finding, a pilot project has been taken up in the field so that the impact of the externalities can be studied both for a hard rock and a Geosynthetic tube structure. The paper brings out the salient feature of a case study which pertains to a project in which Geosynthetic tubes have been used for reformation of a seawall adjacent to a conventional rock structure in Alappuzha coast, Kerala, India. The effectiveness of the Geosystem in combatting the impact of the short-term externalities has been brought out.Keywords: climatic externalities, exponential distribution, geosystems, planning horizon
Procedia PDF Downloads 227829 Influence of Sodium Lauryl Ether Sulfate and Curing Temperature on Behaviors of Lightweight Kaolinite-Based Geopolymer
Authors: W. Sornlar, S. Supothina, A. Wannagon
Abstract:
Lightweight geopolymer can be prepared by using some foaming agents, such as metal powders or hydrogen peroxide; however, it is difficult to control the generated cell size due to the high reactivity of the system. This study aims to investigate the influence of Sodium Lauryl Ether Sulfate (SLES) foam addition and curing temperature on the physical, mechanical, thermal, and microstructure behaviors of the lightweight kaolinite-based geopolymer. To provide porous structure, the geopolymer paste was mixed with 0-15 wt% of SLES foam before casting into the mold. Testing and characterizations were carried out after 28 days. The results showed that SLES foam generated the regular and spherical macropores, which were well distributed in the geopolymer samples. The total porosity increased as SLES foam increased, similarly as the apparent porosity and water absorption. On the other hand, the bulk density and mechanical strength decreased as SLES foam increased. Curing temperature was studied simultaneously due to it strongly affects the mechanical strength of geopolymer. In this study, rising of curing temperature from 27 to 50°C (at 75% relative humidity) improved the compressive strength of samples but deteriorated after curing at 60°C. Among them, the composition of 15 wt% SLES foam (NF15) presented the highest porosity (70.51-72.89%), the lowest density (0.68-0.73 g/cm³), and very low thermal conductivity (0.172-0.197 W/mK). It had the proper compressive strength of 4.21-4.74 MPa that can be applied for the thermal insulation.Keywords: lightweight, kaolinite-based geopolymer, curing temperature, foaming agent, thermal conductivity
Procedia PDF Downloads 181828 Comparative Study of the Sensitivity of Two Freshwater Gastropods, Lymnaea Stagnalis and Planorbarius Corneus, to Silver Nanoparticles: Bioaccumulation and Toxicity
Authors: Ting Wang, Pierre Marle, Vera I. Slaveykova, Kristin Schirmer, Wei Liu
Abstract:
Metal-based nanoparticles (NPs) are considered detrimental to aquatic organisms due to their potential accumulation. However, little is known about the mechanisms underlying these effects and their species-specificity. Here, we used stable silver (Ag) NPs (20 nm, from 10 to 500 μg/L) with a low dissolution rate (≤2.4%) to study the bioaccumulation and biological impacts in two freshwater gastropods: Lymnaea stagnalis and Planorbarius corneus. No mortality was detected during the experiments. Ag bioaccumulation showed a dose-related increase with an enhanced concentration in both species after 7d exposure. L. stagnalis displayed a higher accumulation for AgNPs than P. corneus (e.g., up to 18- and 15-fold in hepatopancreas and hemolymph, respectively), which could be due to the more active L. stagnalis having greater contact with suspended AgNPs. Furthermore, the hepatopancreas and stomach were preferred organs for bioaccumulation compared to the kidney, mantle and foot. Regarding biological responses, the hemolymph rather than hepatopancreas appeared more susceptible to oxidative stress elicited by AgNPs, as shown by significantly increasing lipid peroxidation (i.e., formation of malondialdehyde). Neurotoxicity was detected in L. stagnalis when exposed to high concentrations (500 μg/L). Comparison with impacts elicited by dissolved Ag revealed that the effects observed on AgNPs exposure were mainly attributable to NPs. These results highlighted the relationship between the physiological traits, bioaccumulation, and toxicity responses of these two species to AgNPs and demonstrated the necessity of species-specificity considerations when assessing the toxicity of NPs.Keywords: nanotoxicity, freshwater gastropods, species-specificity, metals, physiological traits
Procedia PDF Downloads 63827 Effect of Sulfur on the High-Temperature Oxidation of DIN1.4091
Abstract:
Centrifugal casting is a metal casting method that uses forces make by centripetal acceleration to distribute molten material in mold. Centrifugal cast parts manufactured in industry contain gas pipes and water supply lines, moreover rings, turbocharger, bushings, brake drums. Turbochargers were exposed to exhaust temperatures of 900-1050°C require a material for the corrosion resistance that will withstand such high component temperatures during the entire service life of the vehicle. Hence, the study of corrosion resistance for turbocharger is important for practical application. DIN1.4091 steels were used widely. The DIN1.4091 steels whose compositions were Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) were centrifugally cast, and oxidized at 900°C for 50-200 h in order to find the effect of sulfur on the high-temperature oxidation of Fe-34.4Cr-14.5Ni-2.5Mo-0.4W-0.4Mn-0.5Si-(0.009 or 0.35)S (wt.%) alloys. These alloys formed oxide scales that consisted primarily of Cr₂O₃ as the major oxide and Cr₂MnO₄ as the minor one through preferential oxidation of Cr and Mn. Cr formed a thin CrOx oxide film on the surface to prevent further oxidation, and when it is added more than 20%, the sulphide decreased corrosion rate. The high affinity of Mn with S, led to the formation of scattered MnS inclusions, particularly in the 0.35S-containing cast alloy. Sulfur was harmful to the oxidation resistance because it deteriorated the scale/alloy adherence so as to accelerate the adherence and compactness of the formed scales. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2016R1A2B1013169).Keywords: centrifugal casting, turbocharger, sulfur, oxidation, Fe-34.4Cr-14.5Ni alloy
Procedia PDF Downloads 199826 Vertically Coupled III-V/Silicon Single Mode Laser with a Hybrid Grating Structure
Abstract:
Silicon photonics has gained much interest and extensive research for a promising aspect for fabricating compact, high-speed and low-cost photonic devices compatible with complementary metal-oxide-semiconductor (CMOS) process. Despite the remarkable progress made on the development of silicon photonics, high-performance, cost-effective, and reliable silicon laser sources are still missing. In this work, we present a 1550 nm III-V/silicon laser design with stable single-mode lasing property and robust and high-efficiency vertical coupling. The InP cavity consists of two uniform Bragg grating sections at sides for mode selection and feedback, as well as a central second-order grating for surface emission. A grating coupler is etched on the SOI waveguide by which the light coupling between the parallel III-V and SOI is reached vertically rather than by evanescent wave coupling. Laser characteristic is simulated and optimized by the traveling-wave model (TWM) and a Green’s function analysis as well as a 2D finite difference time domain (FDTD) method for the coupling process. The simulation results show that single-mode lasing with SMSR better than 48dB is achievable, and the threshold current is less than 15mA with a slope efficiency of around 0.13W/A. The coupling efficiency is larger than 42% and possesses a high tolerance with less than 10% reduction for 10 um horizontal or 15 um vertical dislocation. The design can be realized by standard flip-chip bonding techniques without co-fabrication of III-V and silicon or precise alignment.Keywords: III-V/silicon integration, silicon photonics, single mode laser, vertical coupling
Procedia PDF Downloads 156825 Induction Melting as a Fabrication Route for Aluminum-Carbon Nanotubes Nanocomposite
Authors: Muhammad Shahid, Muhammad Mansoor
Abstract:
Increasing demands of contemporary applications for high strength and lightweight materials prompted the development of metal-matrix composites (MMCs). After the discovery of carbon nanotubes (CNTs) in 1991 (revealing an excellent set of mechanical properties) became one of the most promising strengthening materials for MMC applications. Additionally, the relatively low density of the nanotubes imparted high specific strengths, making them perfect strengthening material to reinforce MMCs. In the present study, aluminum-multiwalled carbon nanotubes (Al-MWCNTs) composite was prepared in an air induction furnace. The dispersion of the nanotubes in molten aluminum was assisted by inherent string action of induction heating at 790°C. During the fabrication process, multifunctional fluxes were used to avoid oxidation of the nanotubes and molten aluminum. Subsequently, the melt was cast in to a copper mold and cold rolled to 0.5 mm thickness. During metallographic examination using a scanning electron microscope, it was observed that the nanotubes were effectively dispersed in the matrix. The mechanical properties of the composite were significantly increased as compared to pure aluminum specimen i.e. the yield strength from 65 to 115 MPa, the tensile strength from 82 to 125 MPa and hardness from 27 to 30 HV for pure aluminum and Al-CNTs composite, respectively. To recognize the associated strengthening mechanisms in the nanocomposites, three foremost strengthening models i.e. shear lag model, Orowan looping and Hall-Petch have been critically analyzed; experimental data were found to be closely satisfying the shear lag model.Keywords: carbon nanotubes, induction melting, strengthening mechanism, nanocomposite
Procedia PDF Downloads 369824 Extended Kalman Filter and Markov Chain Monte Carlo Method for Uncertainty Estimation: Application to X-Ray Fluorescence Machine Calibration and Metal Testing
Authors: S. Bouhouche, R. Drai, J. Bast
Abstract:
This paper is concerned with a method for uncertainty evaluation of steel sample content using X-Ray Fluorescence method. The considered method of analysis is a comparative technique based on the X-Ray Fluorescence; the calibration step assumes the adequate chemical composition of metallic analyzed sample. It is proposed in this work a new combined approach using the Kalman Filter and Markov Chain Monte Carlo (MCMC) for uncertainty estimation of steel content analysis. The Kalman filter algorithm is extended to the model identification of the chemical analysis process using the main factors affecting the analysis results; in this case, the estimated states are reduced to the model parameters. The MCMC is a stochastic method that computes the statistical properties of the considered states such as the probability distribution function (PDF) according to the initial state and the target distribution using Monte Carlo simulation algorithm. Conventional approach is based on the linear correlation, the uncertainty budget is established for steel Mn(wt%), Cr(wt%), Ni(wt%) and Mo(wt%) content respectively. A comparative study between the conventional procedure and the proposed method is given. This kind of approaches is applied for constructing an accurate computing procedure of uncertainty measurement.Keywords: Kalman filter, Markov chain Monte Carlo, x-ray fluorescence calibration and testing, steel content measurement, uncertainty measurement
Procedia PDF Downloads 283823 Review of Microstructure, Mechanical and Corrosion Behavior of Aluminum Matrix Composite Reinforced with Agro/Industrial Waste Fabricated by Stir Casting Process
Authors: Mehari Kahsay, Krishna Murthy Kyathegowda, Temesgen Berhanu
Abstract:
Aluminum matrix composites have gained focus on research and industrial use, especially those not requiring extreme loading or thermal conditions, for the last few decades. Their relatively low cost, simple processing and attractive properties are the reasons for the widespread use of aluminum matrix composites in the manufacturing of automobiles, aircraft, military, and sports goods. In this article, the microstructure, mechanical, and corrosion behaviors of the aluminum metal matrix were reviewed, focusing on the stir casting fabrication process and usage of agro/industrial waste reinforcement particles. The results portrayed that mechanical properties like tensile strength, ultimate tensile strength, hardness, percentage of elongation, impact, and fracture toughness are highly dependent on the amount, kind, and size of reinforcing particles. Additionally, uniform distribution, wettability of reinforcement particles, and the porosity level of the resulting composite also affect the mechanical and corrosion behaviors of aluminum matrix composites. The two-step stir-casting process resulted in better wetting characteristics, a lower porosity level, and a uniform distribution of particles with proper handling of process parameters. On the other hand, the inconsistent and contradicting results on corrosion behavior regarding monolithic and hybrid aluminum matrix composites need further study.Keywords: microstructure, mechanical behavior, corrosion, aluminum matrix composite
Procedia PDF Downloads 73822 Land Use and Natal Multimammate Mouse Abundance in Lassa Fever Endemic Villages of Eastern Sierra Leone
Authors: J. T. Koininga, J. E. Teigen, A. Wilkinson, D. Kanneh, F. Kanneh, M. Foday, D. S. Grant, M. Leach, L. M. Moses
Abstract:
Lassa fever (LF) is a severe febrile illness endemic to West Africa. While human-to-human transmission occurs, evidence suggests most LF cases originate from exposure to rodents, particularly the Natal multimammate mouse, Mastomys natalensis. Within West Africa, LF occurs primarily in rural communities where agriculture is the main economic activity. Seasonality of LF has also been linked to agricultural cycles, with peak incidence occurring in the dry season when fields are burned and plowed. To investigate this pattern of seasonality, four agricultural communities were selected for this two-year longitudinal study. Each community was to be sampled four times each year, but this was interrupted by the Ebola virus disease outbreak. Agricultural land use, forested, and fallow areas were identified through participatory mapping. Transects were plotted in each area and Sherman traps were set for four nights. Captured small mammals were identified, ear tagged, and released. Mastomys natalensis abundance was found to be highest in areas of converted fallow land and rice swamps in the dry season and upland mixed crop areas toward the onset of the rainy season. All peak times were associated with heavy perturbation of soil. All ages and genders were present during these time points. These results suggest that peak abundance of the Mastomys natalensis in agricultural areas coincides with peak incidence of LF reported in this region. Although contact with rodents may be higher in villages, our study suggests human behaviors in agricultural areas may increase risk of transmission of Lassa virus.Keywords: agriculture, land use, Lassa Fever, rodent abundance
Procedia PDF Downloads 119821 A Flexible Real-Time Eco-Drive Strategy for Electric Minibus
Authors: Felice De Luca, Vincenzo Galdi, Piera Stella, Vito Calderaro, Adriano Campagna, Antonio Piccolo
Abstract:
Sustainable mobility has become one of the major issues of recent years. The challenge in reducing polluting emissions as much as possible has led to the production and diffusion of vehicles with internal combustion engines that are less polluting and to the adoption of green energy vectors, such as vehicles powered by natural gas or LPG and, more recently, with hybrid and electric ones. While on the one hand, the spread of electric vehicles for private use is becoming a reality, albeit rather slowly, not the same is happening for vehicles used for public transport, especially those that operate in the congested areas of the cities. Even if the first electric buses are increasingly being offered on the market, it remains central to the problem of autonomy for battery fed vehicles with high daily routes and little time available for recharging. In fact, at present, solid-state batteries are still too large in size, heavy, and unable to guarantee the required autonomy. Therefore, in order to maximize the energy management on the vehicle, the optimization of driving profiles offer a faster and cheaper contribution to improve vehicle autonomy. In this paper, following the authors’ precedent works on electric vehicles in public transport and energy management strategies in the electric mobility area, an eco-driving strategy for electric bus is presented and validated. Particularly, the characteristics of the prototype bus are described, and a general-purpose eco-drive methodology is briefly presented. The model is firstly simulated in MATLAB™ and then implemented on a mobile device installed on-board of a prototype bus developed by the authors in a previous research project. The solution implemented furnishes the bus-driver suggestions on the guide style to adopt. The result of the test in a real case will be shown to highlight the effectiveness of the solution proposed in terms of energy saving.Keywords: eco-drive, electric bus, energy management, prototype
Procedia PDF Downloads 142820 Cleaning Performance of High-Frequency, High-Intensity 360 kHz Frequency Operating in Thickness Mode Transducers
Authors: R. Vetrimurugan, Terry Lim, M. J. Goodson, R. Nagarajan
Abstract:
This study investigates the cleaning performance of high intensity 360 kHz frequency on the removal of nano-dimensional and sub-micron particles from various surfaces, uniformity of the cleaning tank and run to run variation of cleaning process. The uniformity of the cleaning tank was measured by two different methods i.e 1. ppbTM meter and 2. Liquid Particle Counting (LPC) technique. In the second method, aluminium metal spacer components was placed at various locations of the cleaning tank (such as centre, top left corner, bottom left corner, top right corner, bottom right corner) and the resultant particles removed by 360 kHz frequency was measured. The result indicates that the energy was distributed more uniformly throughout the entire cleaning vessel even at the corners and edges of the tank when megasonic sweeping technology is applied. The result also shows that rinsing the parts with 360 kHz frequency at final rinse gives lower particle counts, hence higher cleaning efficiency as compared to other frequencies. When megasonic sweeping technology is applied each piezoelectric transducers will operate at their optimum resonant frequency and generates stronger acoustic cavitational force and higher acoustic streaming velocity. These combined forces are helping to enhance the particle removal and at the same time improve the overall cleaning performance. The multiple extractions study was also carried out for various frequencies to measure the cleaning potential and asymptote value.Keywords: power distribution, megasonic sweeping, cavitation intensity, particle removal, laser particle counting, nano, submicron
Procedia PDF Downloads 418819 An Automated Magnetic Dispersive Solid-Phase Extraction Method for Detection of Cocaine in Human Urine
Authors: Feiyu Yang, Chunfang Ni, Rong Wang, Yun Zou, Wenbin Liu, Chenggong Zhang, Fenjin Sun, Chun Wang
Abstract:
Cocaine is the most frequently used illegal drug globally, with the global annual prevalence of cocaine used ranging from 0.3% to 0.4 % of the adult population aged 15–64 years. Growing consumption trend of abused cocaine and drug crimes are a great concern, therefore urine sample testing has become an important noninvasive sampling whereas cocaine and its metabolites (COCs) are usually present in high concentrations and relatively long detection windows. However, direct analysis of urine samples is not feasible because urine complex medium often causes low sensitivity and selectivity of the determination. On the other hand, presence of low doses of analytes in urine makes an extraction and pretreatment step important before determination. Especially, in gathered taking drug cases, the pretreatment step becomes more tedious and time-consuming. So developing a sensitive, rapid and high-throughput method for detection of COCs in human body is indispensable for law enforcement officers, treatment specialists and health officials. In this work, a new automated magnetic dispersive solid-phase extraction (MDSPE) sampling method followed by high performance liquid chromatography-mass spectrometry (HPLC-MS) was developed for quantitative enrichment of COCs from human urine, using prepared magnetic nanoparticles as absorbants. The nanoparticles were prepared by silanizing magnetic Fe3O4 nanoparticles and modifying them with divinyl benzene and vinyl pyrrolidone, which possesses the ability for specific adsorption of COCs. And this kind of magnetic particle facilitated the pretreatment steps by electromagnetically controlled extraction to achieve full automation. The proposed device significantly improved the sampling preparation efficiency with 32 samples in one batch within 40mins. Optimization of the preparation procedure for the magnetic nanoparticles was explored and the performances of magnetic nanoparticles were characterized by scanning electron microscopy, vibrating sample magnetometer and infrared spectra measurements. Several analytical experimental parameters were studied, including amount of particles, adsorption time, elution solvent, extraction and desorption kinetics, and the verification of the proposed method was accomplished. The limits of detection for the cocaine and cocaine metabolites were 0.09-1.1 ng·mL-1 with recoveries ranging from 75.1 to 105.7%. Compared to traditional sampling method, this method is time-saving and environmentally friendly. It was confirmed that the proposed automated method was a kind of highly effective way for the trace cocaine and cocaine metabolites analyses in human urine.Keywords: automatic magnetic dispersive solid-phase extraction, cocaine detection, magnetic nanoparticles, urine sample testing
Procedia PDF Downloads 204818 “Towards Creating a Safe Future”: An Assessment of the Causes of Flooding in Nsanje District, Lower Shire Malawi
Authors: Davie Hope Moyo
Abstract:
The environment is a combination of two things: resources and hazards. One of the hazards that is a result of environmental changes is the occurrence of flooding. Floods are one of the disasters that are highly feared by people because they have a huge impact on the human population and their environment. In recent years, flooding disasters in the Nsanje district are increasing in both frequency and magnitude. This study aims to understand the root causes of this phenomenon. To understand the causes of flooding, this study focused on the case of TA Ndamera in the Nsanje district, southern Malawi. People in the Nsanje district face disruption in their day-to-day life because of floods that affect their communities. When floods happen, people lose their property, land, livestock, and even lives. The study was carried out in order to have a better understanding of the root causes of floods. The findings of this study may help the government and other development agencies to put in place mitigation measures that will make Nsanje District resilient to the occurrence of future flood hazards. Data was collected from the area of TA Ndamera in order to assess the causes of flooding in the district. Interviews, transect walks, and researcher observation was done to appreciate the topography of the district and evaluate other factors that are making the people become vulnerable to the impacts of flooding in the district. It was found that flooding in the district is mainly caused by heavy rainfall in the upper shire, settlements along river banks, deforestation, and the topography of the district in general. The research study ends by providing recommendation strategies that need to be put in place to increase the resilience of the communities to future flood hazards. The research recommends the development of indigenous knowledge systems to alert people of incoming floods, construction of evacuation centers to ease pressure on schools, savings, and insurance schemes, construction of dykes, desilting rivers, and afforestation.Keywords: disaster causes, mitigation, safety measures, Nsanje Malawi
Procedia PDF Downloads 83817 Influence of Laser Excitation on SERS of Silicon Nanocrystals
Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks
Abstract:
Surface enhanced Raman spectroscopy (SERS) of Silicon nano crystals (SiNCs) were obtained using two different laser excitations: 488 nm and 514.5 nm. Silver nano particles were used as plasmonics metal nano particles due to a robust SERS effect that observed when they mixed with SiNCs. SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. Silver nano particles (AgNPs) of two different sizes were synthesized using photo chemical reduction of AgNO3 with sodium dodecyl sulfate (SDS). The synthesized AgNPs have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement in the SERS intensity was observed for AgNPs100/SiNCs and AgNPs30/SiNCs mixtures increasing up to 9 and 3 times respectively using 488 nm intensity; whereas the intensity of the SERS signal increased up to 7 and 2 times respectively, using 514.5 nm excitation source. The enhancement in SERS intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. The results provide good consensus between the wavelength of the laser excitation source and surface plasmon resonance absorption band of silver nano particles consider to be an important requirement in SERS experiments.Keywords: silicon nanocrystals (SiNCs), silver nanoparticles (AgNPs), surface enhanced raman spectroscopy (SERS)
Procedia PDF Downloads 333816 Dehydration of Glycerol to Acrolein with Solid Acid Catalysts
Authors: Lin Huang, Bo Wang, Armando Borgna
Abstract:
Dehydration of glycerol to acrolein was conducted with solid acid catalysts in liquid phase in a batch reactor and in gas phase in a fix-bed reactor, respectively. In the liquid-phase reaction, ZSM-5, H3PO4-modified ZSM-5 and heteropolyacids including H3PW12O40•xH2O (HPW) and Cs2.5H0.5PW12O40 (CsPW) were studied as catalysts. High temperatures and high boiling point solvents such as sulfolane improved the selectivity to acrolein through suppressing the formation of polyglycerols and coke. Catalytic results and temperature-programmed desorption of ammonia showed that the yield of acrolein increased with increasing catalyst acidity within the range of weak acid strength. Weak acid sites favored the selectivity to acrolein whereas strong acid sites promoted the formation of coke. ZSM-5 possessing only acid sites led to a high acrolein yield, while heteropolyacid catalysts with strong acid sites produced a low acrolein yield. In the gas-phase reaction, HPW and CsPW supported on metal oxides such as SiO2, γ-Al2O3, SiO2-Al2O3, ZrO2 and silicate TUD-1 were studied as catalysts. HPW/TUD-1 was most active for the production of acrolein, followed by HPW/SiO2. An acrolein yield of 61 % was obtained over HPW/TUD-1. X-ray diffraction study suggested that HPW and CsPW were stable and more dispersed on SiO2, silicate TUD-1 and SiO2-Al2O3. It was found that the structures of HPW and CsPW were destroyed by interaction with γ-Al2O3 and ZrO2. Compared to CsPW/TUD-1, the higher acrolein yield with HPW/TUD-1 may be attributed to more Brønsted acid sites on HPW/TUD-1, based on preliminary pyridine adsorption IR study.Keywords: dehydration, glycerol, acrolein, solid acid catalysts, gas-phase, liquid-phase
Procedia PDF Downloads 265815 Challenges and Insights by Electrical Characterization of Large Area Graphene Layers
Authors: Marcus Klein, Martina GrießBach, Richard Kupke
Abstract:
The current advances in the research and manufacturing of large area graphene layers are promising towards the introduction of this exciting material in the display industry and other applications that benefit from excellent electrical and optical characteristics. New production technologies in the fabrication of flexible displays, touch screens or printed electronics apply graphene layers on non-metal substrates and bring new challenges to the required metrology. Traditional measurement concepts of layer thickness, sheet resistance, and layer uniformity, are difficult to apply to graphene production processes and are often harmful to the product layer. New non-contact sensor concepts are required to adapt to the challenges and even the foreseeable inline production of large area graphene. Dedicated non-contact measurement sensors are a pioneering method to leverage these issues in a large variety of applications, while significantly lowering the costs of development and process setup. Transferred and printed graphene layers can be characterized with high accuracy in a huge measurement range using a very high resolution. Large area graphene mappings are applied for process optimization and for efficient quality control for transfer, doping, annealing and stacking processes. Examples of doped, defected and excellent Graphene are presented as quality images and implications for manufacturers are explained.Keywords: graphene, doping and defect testing, non-contact sheet resistance measurement, inline metrology
Procedia PDF Downloads 307814 Effect of Environmental Changes in Working Heart Rate among Industrial Workers: An Ergonomic Interpretation
Authors: P. Mukhopadhyay, N. C. Dey
Abstract:
Occupational health hazard is a very common term in every emerging country. Along with the unorganized sector, most organized sectors including government industries are suffering from this affliction. In addition to workload, the seasonal changes also have some impacts on working environment. With this focus in mind, one hundred male industrial workers, who are directly involved to the task of Periodic Overhauling (POH) in a fabricating workshop in the public domain are selected for this research work. They have been studied during work periods throughout different seasons in a year. For each and every season, the participants working heart rate (WHR) is measured and compared with the standards given by different national and internationally recognized agencies i.e., World Health Organization (WHO) and American Conference of Governmental Industrial Hygienists (ACGIH) etc. The different environmental parameters i.e. dry bulb temperature (DBT), wet bulb temperature (WBT), globe temperature (GT), natural wet bulb temperature (NWB), relative humidity (RH), wet bulb globe temperature (WBGT), air velocity (AV), effective temperature (ET) are recorded throughout the seasons to critically observe the effect of seasonal changes on the WHR of the workers. The effect of changes in environment to the WHR of the workers is very much surprising. It is found that the percentages of workers who belong to the ‘very heavy’ workload category are 83.33%, 66.66% and 16.66% in the summer, rainy and winter seasons, respectively. Ongoing undertaking of this type of job profile forces the worker towards occupational disorders causing absenteeism. This occurrence results in lower production rates, and on the other hand, costs due to medical claims also weaken the industry’s economic condition. In this circumstance, the authors are trying to focus on some remedial measures from the ergonomic angle by proposing a new work/ rest regimen and introducing engineering controls along with management controls which may help the worker, and consequently, the management also.Keywords: workload, working heart rate, occupational health hazard, industrial worker
Procedia PDF Downloads 134813 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste
Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova
Abstract:
Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples
Procedia PDF Downloads 119