Search results for: soil charge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3796

Search results for: soil charge

646 Border Control and Human Rights Violations: Lessons Learned from the United States and Potential Solutions for the European Union

Authors: María Elena Menéndez Ibáñez

Abstract:

After the terrorist attacks of 9/11, new measures were adopted by powerful countries and regions like the United States and the European Union in order to safeguard their security. In 2002, the US created the Department of Homeland Security with one sole objective; to protect American soil and people. The US adopted new policies that made every immigrant a potential terrorist and a threat to their national security. Stronger border control became one of the key elements of the fight against organized crime and terrorism. The main objective of this paper is to compare some of the most important and radical measures adopted by the US, even those that resulted in systematic violations of human rights, with some of the European measures adopted after the 2015 Paris attacks of 2015, such as unlawful detainment of prisoners and other measures against foreigners. Through the Schengen agreement, the European Union has tried to eliminate tariffs and border controls, in order to guarantee successful economic growth. Terrorists have taken advantage of this and have made the region vulnerable to attacks. Authorities need to strengthen their surveillance methods in order to safeguard the region and its stability. Through qualitative methods applied to social sciences, this research will also try to explain why some of the mechanisms proven to be useful in the US would not be so in Europe, especially because they would result in human rights violations. Finally, solutions will be offered that would not put the whole Schengen Agreement at risk. Europe cannot reinstate border control, without making individuals vulnerable to human rights violations.

Keywords: border control, immigration, international cooperation, national security

Procedia PDF Downloads 118
645 Proposal of Blue and Green Infrastructure for the Jaguaré Stream Watershed, São Paulo, Brazil

Authors: Juliana C. Alencar, Monica Ferreira do Amaral Porto

Abstract:

The blue-green infrastructure in recent years has been pointed out as a possibility to increase the environmental quality of watersheds. The regulation ecosystem services brought by these areas are many, such as the improvement of the air quality of the air, water, soil, microclimate, besides helping to control the peak flows and to promote the quality of life of the population. This study proposes a blue-green infrastructure scenario for the Jaguaré watershed, located in the western zone of the São Paulo city in Brazil. Based on the proposed scenario, it was verified the impact of the adoption of the blue and green infrastructure in the control of the peak flow of the basin, the benefits for the avifauna that are also reflected in the flora and finally, the quantification of the regulation ecosystem services brought by the adoption of the scenario proposed. A survey of existing green areas and potential areas for expansion and connection of these areas to form a network in the watershed was carried out. Based on this proposed new network of green areas, the peak flow for the proposed scenario was calculated with the help of software, ABC6. Finally, a survey of the ecosystem services contemplated in the proposed scenario was made. It was possible to conclude that the blue and green infrastructure would provide several regulation ecosystem services for the watershed, such as the control of the peak flow, the connection frame between the forest fragments that promoted the environmental enrichment of these fragments, improvement of the microclimate and the provision of leisure areas for the population.

Keywords: green and blue infrastructure, sustainable drainage, urban waters, ecosystem services

Procedia PDF Downloads 100
644 Land Suitability Prediction Modelling for Agricultural Crops Using Machine Learning Approach: A Case Study of Khuzestan Province, Iran

Authors: Saba Gachpaz, Hamid Reza Heidari

Abstract:

The sharp increase in population growth leads to more pressure on agricultural areas to satisfy the food supply. To achieve this, more resources should be consumed and, besides other environmental concerns, highlight sustainable agricultural development. Land-use management is a crucial factor in obtaining optimum productivity. Machine learning is a widely used technique in the agricultural sector, from yield prediction to customer behavior. This method focuses on learning and provides patterns and correlations from our data set. In this study, nine physical control factors, namely, soil classification, electrical conductivity, normalized difference water index (NDWI), groundwater level, elevation, annual precipitation, pH of water, annual mean temperature, and slope in the alluvial plain in Khuzestan (an agricultural hotspot in Iran) are used to decide the best agricultural land use for both rainfed and irrigated agriculture for ten different crops. For this purpose, each variable was imported into Arc GIS, and a raster layer was obtained. In the next level, by using training samples, all layers were imported into the python environment. A random forest model was applied, and the weight of each variable was specified. In the final step, results were visualized using a digital elevation model, and the importance of all factors for each one of the crops was obtained. Our results show that despite 62% of the study area being allocated to agricultural purposes, only 42.9% of these areas can be defined as a suitable class for cultivation purposes.

Keywords: land suitability, machine learning, random forest, sustainable agriculture

Procedia PDF Downloads 63
643 Relaxor Ferroelectric Lead-Free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ Ceramic: Giant Electromechanical Response with Intrinsic Polarization and Resistive Leakage Analyses

Authors: Abid Hussain, Binay Kumar

Abstract:

Environment-friendly lead-free Na₀.₅₂K₀.₄₄Li₀.₀₄Nb₀.₈₄Ta₀.₁₀Sb₀.₀₆O₃ (NKLNTS) ceramic was synthesized by solid-state reaction method in search of a potential candidate to replace lead-based ceramics such as PbZrO₃-PbTiO₃ (PZT), Pb(Mg₁/₃Nb₂/₃)O₃-PbTiO₃ (PMN-PT) etc., for various applications. The ceramic was calcined at temperature 850 ᵒC and sintered at 1090 ᵒC. The powder X-Ray Diffraction (XRD) pattern revealed the formation of pure perovskite phase having tetragonal symmetry with space group P4mm of the synthesized ceramic. The surface morphology of the ceramic was studied using Field Emission Scanning Electron Microscopy (FESEM) technique. The well-defined grains with homogeneous microstructure were observed. The average grain size was found to be ~ 0.6 µm. A very large value of piezoelectric charge coefficient (d₃₃ ~ 754 pm/V) was obtained for the synthesized ceramic which indicated its potential for use in transducers and actuators. In dielectric measurements, a high value of ferroelectric to paraelectric phase transition temperature (Tm~305 ᵒC), a high value of maximum dielectric permittivity ~ 2110 (at 1 kHz) and a very small value of dielectric loss ( < 0.6) were obtained which suggested the utility of NKLNTS ceramic in high-temperature ferroelectric devices. Also, the degree of diffuseness (γ) was found to be 1.61 which confirmed a relaxor ferroelectric behavior in NKLNTS ceramic. P-E hysteresis loop was traced and the value of spontaneous polarization was found to be ~11μC/cm² at room temperature. The pyroelectric coefficient was obtained to be very high (p ∼ 1870 μCm⁻² ᵒC⁻¹) for the present case indicating its applicability in pyroelectric detector applications including fire and burglar alarms, infrared imaging, etc. NKLNTS ceramic showed fatigue free behavior over 107 switching cycles. Remanent hysteresis task was performed to determine the true-remanent (or intrinsic) polarization of NKLNTS ceramic by eliminating non-switchable components which showed that a major portion (83.10 %) of the remanent polarization (Pr) is switchable in the sample which makes NKLNTS ceramic a suitable material for memory switching devices applications. Time-Dependent Compensated (TDC) hysteresis task was carried out which revealed resistive leakage free nature of the ceramic. The performance of NKLNTS ceramic was found to be superior to many lead based piezoceramics and hence can effectively replace them for use in piezoelectric, pyroelectric and long duration ferroelectric applications.

Keywords: dielectric properties, ferroelectric properties , lead free ceramic, piezoelectric property, solid state reaction, true-remanent polarization

Procedia PDF Downloads 124
642 Exploration into Bio Inspired Computing Based on Spintronic Energy Efficiency Principles and Neuromorphic Speed Pathways

Authors: Anirudh Lahiri

Abstract:

Neuromorphic computing, inspired by the intricate operations of biological neural networks, offers a revolutionary approach to overcoming the limitations of traditional computing architectures. This research proposes the integration of spintronics with neuromorphic systems, aiming to enhance computational performance, scalability, and energy efficiency. Traditional computing systems, based on the Von Neumann architecture, struggle with scalability and efficiency due to the segregation of memory and processing functions. In contrast, the human brain exemplifies high efficiency and adaptability, processing vast amounts of information with minimal energy consumption. This project explores the use of spintronics, which utilizes the electron's spin rather than its charge, to create more energy-efficient computing systems. Spintronic devices, such as magnetic tunnel junctions (MTJs) manipulated through spin-transfer torque (STT) and spin-orbit torque (SOT), offer a promising pathway to reducing power consumption and enhancing the speed of data processing. The integration of these devices within a neuromorphic framework aims to replicate the efficiency and adaptability of biological systems. The research is structured into three phases: an exhaustive literature review to build a theoretical foundation, laboratory experiments to test and optimize the theoretical models, and iterative refinements based on experimental results to finalize the system. The initial phase focuses on understanding the current state of neuromorphic and spintronic technologies. The second phase involves practical experimentation with spintronic devices and the development of neuromorphic systems that mimic synaptic plasticity and other biological processes. The final phase focuses on refining the systems based on feedback from the testing phase and preparing the findings for publication. The expected contributions of this research are twofold. Firstly, it aims to significantly reduce the energy consumption of computational systems while maintaining or increasing processing speed, addressing a critical need in the field of computing. Secondly, it seeks to enhance the learning capabilities of neuromorphic systems, allowing them to adapt more dynamically to changing environmental inputs, thus better mimicking the human brain's functionality. The integration of spintronics with neuromorphic computing could revolutionize how computational systems are designed, making them more efficient, faster, and more adaptable. This research aligns with the ongoing pursuit of energy-efficient and scalable computing solutions, marking a significant step forward in the field of computational technology.

Keywords: material science, biological engineering, mechanical engineering, neuromorphic computing, spintronics, energy efficiency, computational scalability, synaptic plasticity.

Procedia PDF Downloads 13
641 Species Diversity of Coleoptera (Insecta: Coleoptera) Damaging Saxaul (Chenopodiáceae: Haloxylon spp.) in the Deserts Area of South-East Kazakhstan

Authors: B. Mombayeva

Abstract:

In the deserts area of south east of Kazakhstan, 16 species of Coleoptera from 6 families and 12 genus of insects damaging Saxaul have been revealed. The vast number of species belong to the Cerambycidae familyCapricorn Beetle (4 species) and Hemlock Borer of Melanophila genus and 3 species of weevils and flea-beetles, and 1 species of coctsinelids and carrion beetle. Some of them cause appreciable harm, and sometimes very heavy damageto saxaul. According to food specialization they are divided into polyphages and - oligophages. According to the confinement to saxaul parts, registered beetles insects mainly feed on generative parts (11 species) and leaves (5 species). 9 species from them feed on roots, leaves and generative organs. They are scarablike beetle’s larvae (Apatophysismongolica Semenov., Tursmenigenavarentzovi Melg., Phytoecia (Opsilla) coerulescens Scopoli., Apatophysismongolica Semenov.), Jewel beetles (Julodis (s. Str.) Variolaris (Pallas), Sphenoptera (s. Str.) cuprina Motschulsky, S. (s. str.) exarata (Fischer), SphenopterapotaniniJak.) and some weevil (Barisartemisiae Hbst.). The larvae eat the roots and the imago - generative organs. Their feeding noticeably has its effect on the condition of saxaul. Beetles also slightlygnaw vegetative organs of plants. Among the harmful species the desert Capricorn Beetle Julodisvariolaris (Pallas) deserved attention. Its larvae live in the soil and cause harm to the roots of Saxaul and other pasture plants. In addition, the larvae of Sphenopterapotanini, S.punctatissima colonize the roots, trunk and branches of Haloxylon. In the spring Saxaul flowers are much damaged by Ladybeetle Bulaealichatchovi.

Keywords: saxaul, coleoptera, insecta, haloxylon

Procedia PDF Downloads 239
640 High Capacity SnO₂/Graphene Composite Anode Materials for Li-Ion Batteries

Authors: Hilal Köse, Şeyma Dombaycıoğlu, Ali Osman Aydın, Hatem Akbulut

Abstract:

Rechargeable lithium-ion batteries (LIBs) have become promising power sources for a wide range of applications, such as mobile communication devices, portable electronic devices and electrical/hybrid vehicles due to their long cycle life, high voltage and high energy density. Graphite, as anode material, has been widely used owing to its extraordinary electronic transport properties, large surface area, and high electrocatalytic activities although its limited specific capacity (372 mAh g-1) cannot fulfil the increasing demand for lithium-ion batteries with higher energy density. To settle this problem, many studies have been taken into consideration to investigate new electrode materials and metal oxide/graphene composites are selected as a kind of promising material for lithium ion batteries as their specific capacities are much higher than graphene. Among them, SnO₂, an n-type and wide band gap semiconductor, has attracted much attention as an anode material for the new-generation lithium-ion batteries with its high theoretical capacity (790 mAh g-1). However, it suffers from large volume changes and agglomeration associated with the Li-ion insertion and extraction processes, which brings about failure and loss of electrical contact of the anode. In addition, there is also a huge irreversible capacity during the first cycle due to the formation of amorphous Li₂O matrix. To obtain high capacity anode materials, we studied on the synthesis and characterization of SnO₂-Graphene nanocomposites and investigated the capacity of this free-standing anode material in this work. For this aim, firstly, graphite oxide was obtained from graphite powder using the method described by Hummers method. To prepare the nanocomposites as free-standing anode, graphite oxide particles were ultrasonicated in distilled water with SnO2 nanoparticles (1:1, w/w). After vacuum filtration, the GO-SnO₂ paper was peeled off from the PVDF membrane to obtain a flexible, free-standing GO paper. Then, GO structure was reduced in hydrazine solution. Produced SnO2- graphene nanocomposites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), and X-ray diffraction (XRD) analyses. CR2016 cells were assembled in a glove box (MBraun-Labstar). The cells were charged and discharged at 25°C between fixed voltage limits (2.5 V to 0.2 V) at a constant current density on a BST8-MA MTI model battery tester with 0.2C charge-discharge rate. Cyclic voltammetry (CV) was performed at the scan rate of 0.1 mVs-1 and electrochemical impedance spectroscopy (EIS) measurements were carried out using Gamry Instrument applying a sine wave of 10 mV amplitude over a frequency range of 1000 kHz-0.01 Hz.

Keywords: SnO₂-graphene, nanocomposite, anode, Li-ion battery

Procedia PDF Downloads 218
639 Sustainable Resource Use as a Means of Preserving the Integrity of the Eco-System and Environment

Authors: N. Hedayat, E. Karamifar

Abstract:

Sustainable food and fiber production is emerging as an irresistible option in agrarian planning. Although one should not underestimate the successes of the Green Revolution in enhancing crop production, its adverse environmental and ecosystem consequences have also been remarkable. The aim of this paper is to identify ways of improving crop production to ensure agricultural sustainability and environmental integrity. Systematic observations are used for data collection on intensive farming, deforestation and the environmental implications of industrial pollutants on agricultural sustainability at national and international levels. These were achieved within a comparative analytical model of data interpretation. Results show that while multiple factors enhance yield, they have a simultaneous effect in undermining the ecosystem and environmental integrity. Results show that application of excessive agrichemical have been one of the major cause of polluting the surface and underground water bodies as well as soil layers in affected croplands. Results consider rapid deforestation in the tropical regions has been the underlying cause of impairing the integrity of biodiversity and oxygen-generation regime. These, coupled with production of greenhouse gasses, have contributed to global warming and hydrological irregularities. Continuous production of pollutants and effluents has affected marine and land biodiversity arising from acid rains generated by modern farming and deforestation. Continuous production of greenhouse gases has also been instrumental in affecting climatic behavior manifested in recurring draughts and contraction of lakes and ponds as well as emergence of potential flooding of waterways and floodplains in the future.

Keywords: agricultural sustainability, environmental integrity, pollution, eco-system

Procedia PDF Downloads 387
638 Characterization of 2,4,6-Trinitrotoluene (Tnt)-Metabolizing Bacillus Cereus Sp TUHP2 Isolated from TNT-Polluted Soils in the Vellore District, Tamilnadu, India

Authors: S. Hannah Elizabeth, A. Panneerselvam

Abstract:

Objective: The main objective was to evaluate the degradative properties of Bacillus cereus sp TUHP2 isolated from TNT-Polluted soils in the Vellore District, Tamil Nadu, India. Methods: Among the 3 bacterial genera isolated from different soil samples, one potent TNT degrading strain Bacillus cereus sp TUHP2 was identified. The morphological, physiological and the biochemical properties of the strain Bacillus cereus sp TUHP2 was confirmed by conventional methods and genotypic characterization was carried out using 16S r-DNA partial gene amplification and sequencing. The broken down by products of DNT in the extract was determined by Gas Chromatogram- Mass spectrometry (GC-MS). Supernatant samples from the broth studied at 24 h interval were analyzed by HPLC analysis and the effect on various nutritional and environmental factors were analysed and optimized for the isolate. Results: Out of three isolates one strain TUHP2 were found to have potent efficiency to degrade TNT and revealed the genus Bacillus. 16S rDNA gene sequence analysis showed highest homology (98%) with Bacillus cereus and was assigned as Bacillus cereus sp TUHP2. Based on the energy of the predicted models, the secondary structure predicted by MFE showed the more stable structure with a minimum energy. Products of TNT Transformation showed colour change in the medium during cultivation. TNT derivates such as 2HADNT and 4HADNT were detected by HPLC chromatogram and 2ADNT, 4ADNT by GC/MS analysis. Conclusion: Hence this study presents the clear evidence for the biodegradation process of TNT by strain Bacillus cereus sp TUHP2.

Keywords: bioremediation, biodegradation, biotransformation, sequencing

Procedia PDF Downloads 448
637 The Effect of the Archeological and Architectural Nature of the Cities on the Design of Public Transportation Vehicles

Authors: Mohamed Moheyeldin Mahmoud

Abstract:

Various Islamic, Coptic and Jewish archeological places are located in many Egyptian neighborhoods such as Alsayeda zainab, Aldarb Alahmar, Algammaleya and many other in which they are daily exposed to a great traffic intensity causing vibrations. Vibrations could be stated as one of the most important challenges that face the archeological buildings and threaten their survival. The impact of vibrations varies according to the nature of the soil, nature and building conditions, how far the source of vibration is and the period of exposure. Traffic vibrations could be also stated as one of the most common types of vibrations having the greatest impact on buildings and archaeological installations. These vibrations result from the way that the vehicles act with different types of roads which vary according to the shape, nature, and type of obstacles. Other elements concerning the vehicle itself such as speed, weight, and load have a direct impact on the vibrations resulting from the vehicle movement that couldn't be neglected. The research aims to determine some of the requirements that must be observed when designing the public means of transport operating in the archaeological areas, in order to preserve the archaeological nature of the place. The research concludes that light weight slow motion vehicles should be used (25-50 km/h at maximum) having a multi-leaf steel spring suspension system instead of having an air-bag one should be used in order to reduce generated vibrations that could destroy the archeological buildings. Isolation layers could be used in the engine chamber in order to reduce the resulting noise causing vibrations. Electrically operated engines that use solar photovoltaic cells as a source of electricity could be used instead of gas ones in order to reduce the resulting engine noise.

Keywords: archeological, design, isolation layers, suspension, vibrations

Procedia PDF Downloads 174
636 Diversifying from Petroleum Products to Arable Farming as Source of Revenue Generation in Nigeria: A Case Study of Ondo West Local Government

Authors: A. S. Akinbani

Abstract:

Overdependence on petroleum is causing set back in Nigeria economy. Field survey was carried out to assess the profitability and production of selected arable crops in six selected towns and villages of Ondo southwestern. Data were collected from 240 arable crop farmers with the aid of both primary and secondary data. Data were collected with the use of oral interview and structured questionnaires. Data collected were analyzed using both descriptive and inferential statistics. Forty farmers were randomly selected to give a total number of 240 respondents. 84 farmers interviewed had no formal education, 72 had primary education, 50 farmers attained secondary education while 38 attained beyond secondary education. The majority of the farmers hold less than 10 acres of land. The data collected from the field showed that 192 farmers practiced mixed cropping which includes mixtures of yam, cowpea, cocoyam, vegetable, cassava and maize while only 48 farmers practiced monocropping. Among the sampled farmers, 93% agreed that arable production is profitable while 7% disagreed. The findings show that managerial practices that conserve the soil fertility and reduce labor cost such as planting of leguminous crops and herbicide application instead of using hand held hoe for weeding should be encouraged. All the respondents agreed that yam, cowpea, cocoyam, sweet potato, rice, maize and vegetable production will solve the problem of hunger and increase standard of living compared with petroleum product that Nigeria relied on as means of livelihood.

Keywords: farmers, arable crop, cocoyam, respondents, maize

Procedia PDF Downloads 235
635 Creating Risk Maps on the Spatiotemporal Occurrence of Agricultural Insecticides in Sub-Saharan Africa

Authors: Chantal Hendriks, Harry Gibson, Anna Trett, Penny Hancock, Catherine Moyes

Abstract:

The use of modern inputs for crop protection, such as insecticides, is strongly underestimated in Sub-Saharan Africa. Several studies measured toxic concentrations of insecticides in fruits, vegetables and fish that were cultivated in Sub-Saharan Africa. The use of agricultural insecticides has impact on human and environmental health, but it also has the potential to impact on insecticide resistance in malaria transmitting mosquitos. To analyse associations between historic use of agricultural insecticides and the distribution of insecticide resistance through space and time, the use and environmental fate of agricultural insecticides needs to be mapped through the same time period. However, data on the use and environmental fate of agricultural insecticides in Africa are limited and therefore risk maps on the spatiotemporal occurrence of agricultural insecticides are created using environmental data. Environmental data on crop density and crop type were used to select the areas that most likely receive insecticides. These areas were verified by a literature review and expert knowledge. Pesticide fate models were compared to select most dominant processes that are involved in the environmental fate of insecticides and that can be mapped at a continental scale. The selected processes include: surface runoff, erosion, infiltration, volatilization and the storing and filtering capacity of soils. The processes indicate the risk for insecticide accumulation in soil, water, sediment and air. A compilation of all available data for traces of insecticides in the environment was used to validate the maps. The risk maps can result in space and time specific measures that reduce the risk of insecticide exposure to non-target organisms.

Keywords: crop protection, pesticide fate, tropics, insecticide resistance

Procedia PDF Downloads 124
634 Repeated Batch Production of Biosurfactant from Pseudomonas mendocina NK41 Using Agricultural and Agro-Industrial Wastes as Substate

Authors: Natcha Ruamyat, Nichakorn Khondee

Abstract:

The potential of an alkaliphilic bacteria isolated from soil in Thailand to utilized agro-industrial and agricultural wastes for the production of biosurfactants was evaluated in this study. Among five isolates, Pseudomonas mendocina NK41 used soapstock as substrate showing a high biosurfactant concentration of 7.10 g/L, oil displacement of 97.8 %, and surface tension reduction to 29.45 mN/m. Various agricultural residues were applied as mixed substrates with soapstock to enhance the synthesis of biosurfactants. The production of biosurfactant and bacterial growth was found to be the highest with coconut oil cake as compared to Sacha inchi shell, coconut kernel cake, and durian shell. The biodegradability of agro-industrial wastes was better than agricultural wastes, which allowed higher bacterial growth. The pretreatment of coconut oil cake by combined alkaline and hydrothermal method increased the production of biosurfactant from 12.69 g/L to 13.82 g/L. The higher microbial accessibility was improved by the swelling of the alkali-hydrothermal pretreated coconut oil cake, which enhanced its porosity and surface area. The pretreated coconut oil cake was reused twice in the repeated batch production, showing higher biosurfactant concentration up to 16.94 g/L from the second cycle. These results demonstrated the capability of using lignocellulosic wastes from agricultural and agro-industrial activities to produce a highly valuable biosurfactant. High biosurfactant yield with low-cost substrate reveals its potential towards further commercialization of biosurfactant on large-scale production.

Keywords: alkaliphilic bacteria, agricultural/agro-industrial wastes, biosurfactant, combined alkaline-hydrothermal pretreatment

Procedia PDF Downloads 238
633 Eco-Environmental Vulnerability Evaluation in Mountain Regions Using Remote Sensing and Geographical Information System: A Case Study of Pasol Gad Watershed of Garhwal Himalaya, India

Authors: Suresh Kumar Bandooni, Mirana Laishram

Abstract:

The Mid Himalaya of Garhwal Himalaya in Uttarakhand (India) has a complex Physiographic features withdiversified climatic conditions and therefore it is suspect to environmental vulnerability. Thenatural disasters and also anthropogenic activities accelerate the rate of environmental vulnerability. To analyse the environmental vulnerability, we have used geoinformatics technologies and numerical models and it is adoptedby using Spatial Principal Component Analysis (SPCA). The model consist of many factors such as slope, landuse/landcover, soil, forest fire risk, landslide susceptibility zone, human population density and vegetation index. From this model, the environmental vulnerability integrated index (EVSI) is calculated for Pasol Gad Watershed of Garhwal Himalaya for the years 1987, 2000, and 2013 and the Vulnerability is classified into five levelsi.e. Very low, low, medium, high and very highby means of cluster principle. The resultsforeco-environmental vulnerability distribution in study area shows that medium, high and very high levels are dominating in the area and it is mainly caused by the anthropogenic activities and natural disasters. Therefore, proper management forconservation of resources is utmost necessity of present century. It is strongly believed that participation at community level along with social worker, institutions and Non-governmental organization (NGOs) have become a must to conserve and protect the environment.

Keywords: eco-environment vulnerability, spatial principal component analysis, remote sensing, geographic information system, institutions, Himalaya

Procedia PDF Downloads 240
632 A Finite Element/Finite Volume Method for Dam-Break Flows over Deformable Beds

Authors: Alia Alghosoun, Ashraf Osman, Mohammed Seaid

Abstract:

A coupled two-layer finite volume/finite element method was proposed for solving dam-break flow problem over deformable beds. The governing equations consist of the well-balanced two-layer shallow water equations for the water flow and a linear elastic model for the bed deformations. Deformations in the topography can be caused by a brutal localized force or simply by a class of sliding displacements on the bathymetry. This deformation in the bed is a source of perturbations, on the water surface generating water waves which propagate with different amplitudes and frequencies. Coupling conditions at the interface are also investigated in the current study and two mesh procedure is proposed for the transfer of information through the interface. In the present work a new procedure is implemented at the soil-water interface using the finite element and two-layer finite volume meshes with a conservative distribution of the forces at their intersections. The finite element method employs quadratic elements in an unstructured triangular mesh and the finite volume method uses the Rusanove to reconstruct the numerical fluxes. The numerical coupled method is highly efficient, accurate, well balanced, and it can handle complex geometries as well as rapidly varying flows. Numerical results are presented for several test examples of dam-break flows over deformable beds. Mesh convergence study is performed for both methods, the overall model provides new insight into the problems at minimal computational cost.

Keywords: dam-break flows, deformable beds, finite element method, finite volume method, hybrid techniques, linear elasticity, shallow water equations

Procedia PDF Downloads 159
631 Seismic Evaluation of Connected and Disconnected Piled Raft Foundations

Authors: Ali Fallah Yeznabad, Mohammad H. Baziar, Alireza Saedi Azizkandi

Abstract:

Rafts may be used when a low bearing capacity exists underneath the foundation and may be combined by piles in some special circumstances; such as to reduce settlements or high groundwater to control buoyancy. From structural point of view, these piles could be both connected or disconnected from the raft and are to be classified as Piled Rafts (PR) or Disconnected Piled Rafts (DPR). Although the researches about the behavior of piled rafts subjected to vertical loading is really extensive, in the context of dynamic load and earthquake loading, the studies are very limited. In this study, to clarify these foundations’ performance under dynamic loading, series of Shaking Table tests have been performed. The square raft and four piles in connected and disconnected configurations were used in dry silica sand and the model was experimented using a shaking table under 1-g conditions. Moreover, numerical investigation using finite element software have been conducted to better understand the differences and advantages. Our observations demonstrates that in connected Piled Rafts piles have to bear greater amount of moment in their upper parts, however this moments are approximately 40% lower in disconnected piled rafts in the same conditions and loading. Considering the Rafts’ lateral movement which be of crucial importance in foundations performance evaluation, connected piled rafts show much better performance with about 30% less lateral movement. Further, it was observed on confirmed both through laboratory tests and numerical analysis, that adding the superstructure over the piled raft foundation the raft separates from the soil and it significantly increases rocking of the raft which was observed to be the main reason of increase in piles’ moments under superstructure interaction with the foundation.

Keywords: Piled Rafts (PR), Disconnected Piled Rafts (DPR), dynamic loading, shaking table, seismic performance

Procedia PDF Downloads 417
630 Antifungal Potential of the Plant Growth-Promoting Rhizobacteria Infecting Kidney Beans

Authors: Zhazira Shemsheyeva, Zhanara Suleimenova, Olga Shemshura, Gulnaz Mombekova, Zhanar Rakhmetova

Abstract:

Bacteria that colonize plant roots and promote plant growth are referred to as plant growth-promoting rhizobacteria (PGPR). They not only provide nutrients to the plants (direct plant growth promotion) and protect plants against the phytopathogens (indirect plant growth promotion) but also increase the soil fertility. Indirectly PGPRs improve the plant growth by becoming a biocontrol agent for a fungal pathogen. The antifungal activities of the PGPrhizobacteria were assayed against different species of phytopathogenic fungi such as Fusarium tricinctum, Fusarium oxysporum, Sclerotiniasclerotiorum, and Botrytis cinerea. Pseudomonas putidaSM-1, Azotobacter sp., and Bacillus thuringiensis AKS/16 strains have been used in experimental tests on growth inhibition of phytopathogenic fungi infecting Kidney beans. Agar well diffusion method was used in this study. Diameters of the zones of inhibition were measured in millimeters. It was found that Bacillus thuringiensis AKS/16 strain showed the lowest antifungal activity against all fungal pathogens tested. Zones of inhibition were 15-18 mm. In contrast, Pseudomonas putida SM-1 exhibited good antifungal activity against Fusarium oxysporum and Fusarium tricinctum by producing 29-30 mm clear zones of inhibition. The moderate inhibitory effect was shown by Azotobacter sp. against all fungal pathogens tested with zones of inhibition from24 to 26 mm. In summary, Pseudomonas putida SM-1 strain demonstrated the potential of controlling root rot diseases in kidney beans.

Keywords: PGPR, pseudomonas putida, kindey beans, antifungal activity

Procedia PDF Downloads 139
629 Mannose-Functionalized Lipopolysaccharide Nanoparticles for Macrophage-Targeted Dual Delivery of Rifampicin and Isoniazid

Authors: Mumuni Sumaila, Viness Pillay, Yahya E. Choonara, Pradeep Kumar, Pierre P. Kondiah

Abstract:

Tuberculosis (TB) remains a serious challenge to public health globally, despite every effort put together to curb the disease. Current TB therapeutics available have proven to be inefficient due to a multitude of drawbacks that range from serious adverse effects/drug toxicity to inconsistent bioavailability, which ultimately contributes to the emergence of drug-resistant TB. An effective ‘cargo’ system designed to cleverly deliver therapeutic doses of anti-TB drugs to infection sites and in a sustained-release manner may provide a better therapeutic choice towards winning the war against TB. In the current study, we investigated mannose-functionalized lipopolysaccharide hybrid nanoparticles for safety and efficacy towards macrophage-targeted simultaneous delivery of the two first-line anti-TB drugs, rifampicin (RF) and isoniazid (IS). RF-IS-loaded lipopolysaccharide hybrid nanoparticles were fabricated using the solvent injection technique (SIT), incorporating soy lecithin (SL) and low molecular weight chitosan (CS) as the lipid and polysaccharide components, respectively. Surface-functionalized nanoparticles were obtained through the reaction of the aldehyde group of mannose with free amine functionality present at the surface of the nanoparticles. The functionalized nanocarriers were spherical with average particle size and surface charge of 107.83 nm and +21.77 mV, respectively, and entrapment efficiencies (EE) were 53.52% and 69.80% for RF and IS, respectively. FTIR spectrum revealed high-intensity bands between 1663 cm⁻¹ and 1408 cm⁻¹ wavenumbers (absent in non-functionalized nanoparticles), which could be attributed to the C=N stretching vibration produced by the formation of Schiff’s base (–N=CH–) during the mannosylation reaction. In vitro release studies showed a sustained-release profile for RF and IS, with less than half of the total payload released over a 48-hour period. The nanocarriers were biocompatible and safe, with more than 80% cell viability achieved when incubated with RAW 264.7 cells at concentrations 30 to 500 μg/mL over a 24-hour period. Cellular uptake studies (after a 24-hour incubation period with the murine macrophage cells, RAW 264.7) revealed a 13- and a 9-fold increase in intracellular accumulation of RF and IS, respectively, when compared with the unformulated RF+IS solution. A 6- and a 3-fold increase in intracellular accumulation of RF and IS, respectively, were observed when compared with the non-functionalized nanoparticles. Furthermore, fluorescent microscopy images showed nanoparticle internalization and accumulation within the RAW 264.7 cells, which was more significant in the mannose-functionalized system compared to the non-functionalized nanoparticles. The overall results suggested that the fabricated mannose-functionalized lipopolysaccharide nanoparticles are a safe and promising platform for macrophage-targeted delivery of anti-TB therapeutics. However, in vivo pharmacokinetic/pharmacodynamics studies are required to further substantiate the therapeutic efficacy of the nanosystem.

Keywords: anti-tuberculosis therapeutics, hybrid nanosystem, lipopolysaccharide nanoparticles, macrophage-targeted delivery

Procedia PDF Downloads 155
628 Energy Budgeting, Carbon and Water Footprints Under Conventional and Conservation Tillage Practices of Rice-Wheat Double Cropping System

Authors: Ahmad Latif Virk, Naeem Ahmad, Muhammad Ishaq Asif Rehmani

Abstract:

Amid the present environmental crises, developing environment-resilient and cost-effective conservation agriculture strategies to feed the world's ever-growing population is pertinent. Therefore, a field study was conducted to test the hypothesis that residue retention under no-till (NTR) would enhance energy productivity (EP) and energy use efficiency (EUE) while offsetting the carbon footprints (CF), water footprints (WF) and greenhouse gases emissions (GHGs) in rice (Oryza sativa L.)-wheat (Triticum aestivum L.) double cropping system. Two tillage systems viz., conventional tillage (CT) and conservation tillage (no-till; NT), with or without residue retention, were combined into four treatments as CT0 (puddled rice, conventional wheat - residue); CTR (puddled rice, conventional wheat + residue); NT0 (direct rice seeding, zero-tilled wheat - residue); NTR (direct rice seeding, zero-tilled wheat + residue) were evaluated. Overall, results showed that the NT system had 34.2% lower energy consumption, 1.2 times more EP than CT system. Moreover, NTR had 19.8% higher EUE than CT0. The overall system grain yield ranged from 7.8 to 9.3 Mg ha−1 under NT0 and CTR, respectively. The NTR had 56.6% and 17.9% lesser CF and WF, respectively, than CT0. The net GHGs emissions (CO2-eq kg ha−1) under CT0 were the highest, while NTR had the lowest emissions. The NTR enhanced carbon sequestration in soil that can offset half of the system's CO2 emissions. The findings of this study might help develop a suitable strategy for resource/energy conservation and higher productivity while offsetting GHGs emissions in the Indo-Gangetic Plains.

Keywords: residue, yield, indirect emissions, energy use efficiency, carbon sequestration

Procedia PDF Downloads 66
627 Contact Toxicity Effects of Different Formulations of Artemisia Absinthium Extracts on Rose Aphid

Authors: Maryam Atapour

Abstract:

Chemical pesticides, which are widely used in agriculture, cause problems such as soil and water pollution, reducing biodiversity and creating pest resistance. These problems have led to increased attention to alternative and more sustainable methods such as natural-based pesticides. Herbal pesticides have been developed based on essential oils or extracts from different parts of plants, such as leaves, roots, and flowers. Herbal pesticides are compatible with the environment and can be used in integrated pest management programs. Despite the many benefits, herbal pesticides, especially essential oil-based compounds, have low durability in the environment, and their production costs are high, so the use of herbal extracts with appropriate formulations is more justified in all aspects. In the current study and based on the results of previous studies, aqueous and 70% ethanolic extract of Artemisia absinthium L. was prepared by the percolation method and formulated as an emulsion and water-soluble powder. To produce powder formulation, 20% maltodextrin was used with the spray-dryer method. Different concentrations of these compounds were sprayed on bushes infected with rose aphid Macrosiphum rosae (L.). Sampling was done randomly and the percentage of aphids’ mortality was checked. The results showed that the use of different concentrations of ethanolic extracts created a significant difference in the mortality rate of aphids, while water-soluble powder formulation caused less mortality. The current results showed that the extract of this plant has practical usability to control aphids, and with the appropriate formulation, it can be used as a good alternative to chemical pesticides.

Keywords: contact toxicity, formulation, extract, aphid, Artemisia absinthium.

Procedia PDF Downloads 8
626 Construction of Submerged Aquatic Vegetation Index through Global Sensitivity Analysis of Radiative Transfer Model

Authors: Guanhua Zhou, Zhongqi Ma

Abstract:

Submerged aquatic vegetation (SAV) in wetlands can absorb nitrogen and phosphorus effectively to prevent the eutrophication of water. It is feasible to monitor the distribution of SAV through remote sensing, but for the reason of weak vegetation signals affected by water body, traditional terrestrial vegetation indices are not applicable. This paper aims at constructing SAV index to enhance the vegetation signals and distinguish SAV from water body. The methodology is as follows: (1) select the bands sensitive to the vegetation parameters based on global sensitivity analysis of SAV canopy radiative transfer model; (2) take the soil line concept as reference, analyze the distribution of SAV and water reflectance simulated by SAV canopy model and semi-analytical water model in the two-dimensional space built by different sensitive bands; (3)select the band combinations which have better separation performance between SAV and water, and use them to build the SAVI indices in the form of normalized difference vegetation index(NDVI); (4)analyze the sensitivity of indices to the water and vegetation parameters, choose the one more sensitive to vegetation parameters. It is proved that index formed of the bands with central wavelengths in 705nm and 842nm has high sensitivity to chlorophyll content in leaves while it is less affected by water constituents. The model simulation shows a general negative, little correlation of SAV index with increasing water depth. Moreover, the index enhances capabilities in separating SAV from water compared to NDVI. The SAV index is expected to have potential in parameter inversion of wetland remote sensing.

Keywords: global sensitivity analysis, radiative transfer model, submerged aquatic vegetation, vegetation indices

Procedia PDF Downloads 239
625 Environment-Friendly Biogas Technology: Comparative Analysis of Benefits as Perceived by Biogas Users and Non-User Livestock Farmers of Tehsil Jhang

Authors: Anees Raza, Liu Chunyan

Abstract:

Renewable energy technologies are need of the time and are already making the big impact in the climatic outlook of the world. Biogas technology is one of those, and it has a lot of benefits for its users. It is cost effective because it is produced from the raw material which is available free of cost to the livestock farmers. Bio-slurry, a by-product of biogas, is being used as fertilizer for the crops production and increasing soil fertility. There are many other household benefits of technology. Research paper discusses the benefits of biogas as perceived by the biogas users as well as non-users of Tehsil Jhang. Data were collected from 60 respondents (30 users and 30 non-users) selected purposively through validated and pre-tested interview schedule from the respondents. Collected data were analyzed by using Statistical Package for Social Sciences (SPSS). Household benefits like ‘makes cooking easy,’ ‘Less breathing issues for working women in kitchens’ and ‘Use of bio-slurry as organic fertilizer’ had the highly significant relationship between them with t-values of 3.24, 4.39 and 2.80 respectively. Responses of the respondents about environmental benefits of biogas technology showed that ‘less air pollution’ had a significant relationship between them while ‘less temperature rise up than due to the burning of wood /dung’ had the non-significant relationship in the responses of interviewed respondents. It was clear from the research that biogas users were becoming influential in convincing non-users to adopt this technology due to its noticeable benefits. Research area where people were depending on wood to be used as fire fuel could be helped in reduction of cutting of trees which will help in controlling deforestation and saving the environment.People should be encouraged in using of biogas technology through providing them subsidies and low mark up loans.

Keywords: biogas technology, deforestation, environmental benefits, renewable energy

Procedia PDF Downloads 239
624 The Effect of Chitosan and Mycorrhization on Some Growth-Physiological Indices of Salvia leriifolia Benth.

Authors: Marzieh Fotovvat, Farzaneh Najafi, Ramazan Ali Khavari-Nejad, Daryush Talei, Farhad Rejali

Abstract:

Salvia leriifolia Benth. is one of the valuable and perennial medicinal plants of the Lamiaceae family, geographically growing in the south and tropical regions of Khorassan and Semnan provinces in Iran. In recent years, several medicinal properties such as antimicrobial, antifungal, anti-diabetic, analgesic, and anti-inflammatory effects have been reported from this plant. The use of elicitors such as chitosan and Arbuscular mycorrhizal fungi (AMF) symbiosis are the main methods for increasing the production of secondary metabolites, growth, and physiological factors in plants. The main aim of this study was to investigate the effects of foliar spraying applications by chitosan and/or the contribution of AMF (Glomus interaradices) on some growth factors and chlorophyll content of S. leriifolia under glasshouse conditions. The sterilized seeds were germinated by placing them into a cocopeat. After one month, seedlings that were in the 2-4 leaf stage were transferred to plastic pots (garden soil and pumice at 2:1) with or without mycorrhizal fungi. Chitosan (0, 50, 100, 200, and 400 mg L-1) was sprayed four times in the fourth month of the vegetative period. The results showed that fresh leaf weight, fresh root weight, root height, and chlorophyll content could change in the plant treated with chitosan and AMF symbiosis. So that the highest chlorophyll content and fresh weight of roots and leaves were observed in the interaction of chitosan and G. interaradices. In general, by optimizing the chitosan concentration and the use of appropriate AMF symbiosis, it is possible to improve the growth and quality of the medicinal plant S. leriifolia.

Keywords: chitosan, chlorophyll, growth factors, mycorrhiza

Procedia PDF Downloads 65
623 Antibacterial Activity of Bacillus thuringiensis Activated Delta-endotoxins

Authors: R. Gounina-Allouane, N. Ouali, F. Z. Berrabah, A. Bentaleb

Abstract:

For a long time, the Gram-positive spore-forming bacteria Bacillus thuringiensis (Bt) has been widely used in biological control against devastating and disease vectors insects. This is due to the insecticidal activity of its crystalline parasporal inclusion (crystals) predominantly comprised of one or more proteins (Cry and Cyt proteins) also called δ-endotoxins, produced during sporulation. The shape and composition of Bt crystals vary among strains and crystalline proteins are extremely varied (more than 475 cry gene were discovered). The insecticidal activity of Bt crystals is very well studied, thus their insecticidal mode of action is well established, however, their antimicrobial effect is largely unknown. The lack of data on the antimicrobial effect of crystalline proteins of Bt and the need for searching new antimicrobial molecules encouraged us to carried out this study. The antibacterial effect of δ-endotoxines produced by two Bt stains; a strain isolated from soil at northern of Algeria (Bt 7.2.B), and a strain isolated from a bioinsecticide (Bacillus thuringiensis var aizawai), activated by proteolysis, was assayed on clinical bacterial strains and ATCC collection ones respectively. Gram positive and negative clinical bacterial strains (Escherichia coli, Klebsiella pneumonaie, Pseudomonas aeruginosa, Staphylococcus aureus) were sensitive to activated Bt 72B endotoxins. Similarly, bacterial strains from ATCC collection (Escherichia coli ATCC 25922, Pseudomonas aerugenosa ATCC 27853, Staphylococcus aureus ATCC 25923) were sensitive to activated B. thuringiensis var aizawai δ-endotoxines. The activated δ-endotoxins were separated by SDS-PAGE.

Keywords: Bacillus thuringiensis, crystals, cry proteins, δ-endotoxins, antibacterial activity

Procedia PDF Downloads 435
622 Photoemission Momentum Microscopy of Graphene on Ir (111)

Authors: Anna V. Zaporozhchenko, Dmytro Kutnyakhov, Katherina Medjanik, Christian Tusche, Hans-Joachim Elmers, Olena Fedchenko, Sergey Chernov, Martin Ellguth, Sergej A. Nepijko, Gerd Schoenhense

Abstract:

Graphene reveals a unique electronic structure that predetermines many intriguing properties such as massless charge carriers, optical transparency and high velocity of fermions at the Fermi level, opening a wide horizon of future applications. Hence, a detailed investigation of the electronic structure of graphene is crucial. The method of choice is angular resolved photoelectron spectroscopy ARPES. Here we present experiments using time-of-flight (ToF) momentum microscopy, being an alternative way of ARPES using full-field imaging of the whole Brillouin zone (BZ) and simultaneous acquisition of up to several 100 energy slices. Unlike conventional ARPES, k-microscopy is not limited in simultaneous k-space access. We have recorded the whole first BZ of graphene on Ir(111) including all six Dirac cones. As excitation source we used synchrotron radiation from BESSY II (Berlin) at the U125-2 NIM, providing linearly polarized (both polarizations p- and s-) VUV radiation. The instrument uses a delay-line detector for single-particle detection up the 5 Mcps range and parallel energy detection via ToF recording. In this way, we gather a 3D data stack I(E,kx,ky) of the full valence electronic structure in approx. 20 mins. Band dispersion stacks were measured in the energy range of 14 eV up to 23 eV with steps of 1 eV. The linearly-dispersing graphene bands for all six K and K’ points were simultaneously recorded. We find clear features of hybridization with the substrate, in particular in the linear dichroism in the angular distribution (LDAD). Recording of the whole Brillouin zone of graphene/Ir(111) revealed new features. First, the intensity differences (i.e. the LDAD) are very sensitive to the interaction of graphene bands with substrate bands. Second, the dark corridors are investigated in detail for both, p- and s- polarized radiation. They appear as local distortions of photoelectron current distribution and are induced by quantum mechanical interference of graphene sublattices. The dark corridors are located in different areas of the 6 Dirac cones and show chirality behaviour with a mirror plane along vertical axis. Moreover, two out of six show an oval shape while the rest are more circular. It clearly indicates orientation dependence with respect to E vector of incident light. Third, a pattern of faint but very sharp lines is visible at energies around 22eV that strongly remind on Kikuchi lines in diffraction. In conclusion, the simultaneous study of all six Dirac cones is crucial for a complete understanding of dichroism phenomena and the dark corridor.

Keywords: band structure, graphene, momentum microscopy, LDAD

Procedia PDF Downloads 324
621 Modulation of Alternative Respiration Pathyway under Salt Stress in Exogenous Estrogen-Treated Maize Seedlings

Authors: Farideh K. Khosroushahi, Serkan Erdal, Mucip Geni̇şel

Abstract:

Soil salinity is one of the major abiotic stress factors that restricts arable land and reduces crop productivity worldwide. High salt concentration adversely affects plant growth and development inducing water deficit, ionic toxicity, nutrient imbalance, and lead to oxidative stress. Although the stimulating role of mammalian sex hormones on various biological and biochemical processes under normal and stress condition have been proven, there is no study regarding with these hormone's effect on modulation of the alternative respiration pathway and AOX gene expression. In this study, changes in alternative respiration pathway in leaves of maize seedlings under salinity and the possible modulating effect of estrogen on these changes were investigated. Maize seedlings were grown in a hydroponic media for 11 days and then were exposed to salt stress for 3 days after being sprayed estrogen. The data obtained from oxygen consumption revealed that salt stress elevated cellular respiration value in the leaves. In addition, a marked increase was observed at alternative respiration level in salt-stressed seedlings. Compared to salt application alone, supplementation with estrogen resulted in a significant rise in alternative oxidase (AOX) activities. Similarly, while salt stress caused to rise in expressions of AOX gene compared to control seedlings, estrogen application resulted in further activation of these genes’ expression compared to stressed-seedlings alone. These data revealed that mitigating role of estrogen against the detrimental effects of salt stress is linked to modulation of alternative respiration pathway.

Keywords: alternative oxidase, estrogen, Ssalt stress, AOX, maize

Procedia PDF Downloads 196
620 Beyond the Water Seal: On-Field Observations of Occupational Hazards of Faecal Sludge Management in Southern Karnataka

Authors: Anissa Mary Thomas Thattil, Nancy Angeline Gnanaselvam, B. Ramakrishna Goud

Abstract:

Faecal sludge management (FSM) is an unorganized sector, and in India, there is an absence of regulations regarding the collection, transport, treatment, and disposal of faecal sludge. FSM has a high degree of occupational hazards that need to be thoroughly understood in order to shape effective solutions. On-field observations of five FSM operations were conducted in Anekal Taluk of southern Karnataka. All five of the FSM operations were privately owned and snowball method of sampling was employed. Two types of FS operations observed were: mechanical emptying involving direct human contact with faecal sludge and mechanical emptying without direct human contact with faecal sludge. Each operation was manned by 3-4 faecal sludge operators (FSOs). None of the observed FSOs used personal protective equipment. According to the WHO semi-quantitative risk assessment, the very high risk occupational hazards identified were dermal contact with faecal sludge, inhalation of toxic gases, and social stigma. The high risk hazards identified were trips and falls, injuries, ergonomic hazards, substance abuse, and mental health problems. In all five FSM operations, the collected faecal sludge was discharged untreated onto abandoned land. FSM in India is fraught with occupational and environmental hazards which need to be urgently addressed. This includes formalizing the institution of FSM, contextualized behaviour change communication, capacity building of local bodies, awareness programmes among agriculturists and FSOs, and designation of sites for the safe harnessing of faecal sludge as soil nutrient.

Keywords: faecal sludge, faecal sludge management, FSM, occupational hazards, sanitation

Procedia PDF Downloads 159
619 Effect of Deficit Irrigation on Photosynthesis Pigments, Proline Accumulation and Oil Quantity of Sweet Basil (Ocimum basilicum L.) in Flowering and Seed Formation Stages

Authors: Batoul Mohamed Abdullatif, Nouf Ali Asiri

Abstract:

O. basilicum plant was subjected to deficit irrigation using four treatments viz. control, irrigated with 70% of soil water capacity (SWC), Treatment 1, irrigated with 50% SWC, Treatment 2, irrigated with 30% SWC and Treatment 3, irrigated with 10 % SWC. Photosynthesis pigments viz. chlorophyll a, b, and the carotenoids, proline accumulation, and oil quantity were investigated under these irrigation treatments. The results indicate that photosynthesis pigments and oil content of deficit irrigation treatments did not significantly reduced than that of the full irrigation control. Photosynthesis pigments were affected by the stage of growth and not by irrigation treatments. They were high during flowering stage and low during seed formation stage for all treatments. The lowest irrigation plants (10 % SWC) achieved, during flowering stage, 0.72 mg\g\fresh weight of chlorophyll a, compared to 0.43 mg\g\fresh weight in control plant, 0.40 mg\g\fresh weight of chlorophyll b, compared to 0.19 mg\g\fresh weight in control plants and 0.29 mg\g\fresh weight of carotenoids, compared to 0.21 mg\g\fresh weight in control plants. It has been shown that reduced irrigation rates tend to enhance O. basilicum to have high oil quantity reaching a value of 63.37 % in a very low irrigation rate (10 % SWC) compared to 45.38 of control in seeds. Proline was shown to be accumulated in roots to almost double the amount in shoot during flowering stage in treatment 3. This accumulation seems to have a pronounce effect on O. basilicum acclimation to deficit irrigation.

Keywords: deficit irrigation, photosynthesis pigments, proline accumulation, oil quantity, sweet basil flowering formation, seed formation

Procedia PDF Downloads 400
618 Modeling Breathable Particulate Matter Concentrations over Mexico City Retrieved from Landsat 8 Satellite Imagery

Authors: Rodrigo T. Sepulveda-Hirose, Ana B. Carrera-Aguilar, Magnolia G. Martinez-Rivera, Pablo de J. Angeles-Salto, Carlos Herrera-Ventosa

Abstract:

In order to diminish health risks, it is of major importance to monitor air quality. However, this process is accompanied by the high costs of physical and human resources. In this context, this research is carried out with the main objective of developing a predictive model for concentrations of inhalable particles (PM10-2.5) using remote sensing. To develop the model, satellite images, mainly from Landsat 8, of the Mexico City’s Metropolitan Area were used. Using historical PM10 and PM2.5 measurements of the RAMA (Automatic Environmental Monitoring Network of Mexico City) and through the processing of the available satellite images, a preliminary model was generated in which it was possible to observe critical opportunity areas that will allow the generation of a robust model. Through the preliminary model applied to the scenes of Mexico City, three areas were identified that cause great interest due to the presumed high concentration of PM; the zones are those that present high plant density, bodies of water and soil without constructions or vegetation. To date, work continues on this line to improve the preliminary model that has been proposed. In addition, a brief analysis was made of six models, presented in articles developed in different parts of the world, this in order to visualize the optimal bands for the generation of a suitable model for Mexico City. It was found that infrared bands have helped to model in other cities, but the effectiveness that these bands could provide for the geographic and climatic conditions of Mexico City is still being evaluated.

Keywords: air quality, modeling pollution, particulate matter, remote sensing

Procedia PDF Downloads 139
617 Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Turkiye

Authors: Ahmet Yetik, Seyit Ali Kara, Cevat Özarpa

Abstract:

Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Cracks and breaks on the pipes cause damage to people and the environment due to reasons such as explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has more damage in the regions followed. It has been determined that the earthquakes in Turkey caused permanent damage to the pipelines. This project was designed and realized because it was determined that there were cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, A new SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The newly developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and sustainability.

Keywords: earthquake, natural gas pipes, oil pipes, strain measurement, stress measurement, landslide

Procedia PDF Downloads 58