Search results for: data mining applications and discovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30893

Search results for: data mining applications and discovery

27743 A Review Paper on Data Security in Precision Agriculture Using Internet of Things

Authors: Tonderai Muchenje, Xolani Mkhwanazi

Abstract:

Precision agriculture uses a number of technologies, devices, protocols, and computing paradigms to optimize agricultural processes. Big data, artificial intelligence, cloud computing, and edge computing are all used to handle the huge amounts of data generated by precision agriculture. However, precision agriculture is still emerging and has a low level of security features. Furthermore, future solutions will demand data availability and accuracy as key points to help farmers, and security is important to build robust and efficient systems. Since precision agriculture comprises a wide variety and quantity of resources, security addresses issues such as compatibility, constrained resources, and massive data. Moreover, conventional protection schemes used in the traditional internet may not be useful for agricultural systems, creating extra demands and opportunities. Therefore, this paper aims at reviewing state of the art of precision agriculture security, particularly in open field agriculture, discussing its architecture, describing security issues, and presenting the major challenges and future directions.

Keywords: precision agriculture, security, IoT, EIDE

Procedia PDF Downloads 93
27742 Tsada-MobiMinder: A Location Based Alarm Mobile Reminder

Authors: Marylene S. Eder

Abstract:

Existing location based alarm applications has inability to give information to user’s particular direction to a specified place of destination and does not display a particular scenic spot from its current location going to the destination. With this problem, a location based alarm mobile reminder was developed. The application is implemented on Android based smart phones to provide services like providing routing information, helping to find nearby hotels, restaurants and scenic spots and offer many advantages to the mobile users to retrieve the information about their current location and process that data to get more useful information near to their location. It reminds the user about the location when the user enters some predefined location. All the user needs to have is the mobile phone with android platform with version 4.0 and above, and then the user can select the destination and find the destination on the application. The main objective of the project is to develop a location based application that provides tourists with real time information for scenic spots and provides alarm to a specified place of destination. This mobile application service will act as assistance for the frequent travelers to visit new places around the City.

Keywords: location based alarm, mobile application, mobile reminder, tourist’s spots

Procedia PDF Downloads 384
27741 Ground Improvement with Basal Reinforcement with High Strength Geogrids and PVDs for Embankment over Soft Soils

Authors: Ratnakar Mahajan, Matteo Lelli, Kinjal Parmar

Abstract:

Ground improvement is a very important aspect of infrastructure development, especially when it comes to deep-ground improvement. The use of various geosynthetic applications is very common these days for ground improvement. This paper presents a case study where the combination of two geosynthetic applications was used in order to optimize the design as well as to control the settlements through uniform load distribution. The Agartala-Akaura rail project was made to help increase railway connectivity between India and Bangladesh. Both countries have started the construction of the same. The project requires high railway embankments to be built for the rail link. However, the challenge was to design a proper ground improvement solution as the entire area comprises very soft soil for an average depth of 15m. After due diligence, a combination of two methods was worked out by Maccaferri. PVDs were provided for the consolidation, and on top of that, a layer of high-strength geogrids (Paralink) was proposed as a basal reinforcement. The design approach was followed as described in Indian standards as well as British standards. By introducing a basal reinforcement, the spacing of PVDs could be increased, which allowed quick installation and less material consumption while keeping the consolidation time within the project duration.

Keywords: ground improvement, basal reinforcement, PVDs, high strength geogrids, Paralink

Procedia PDF Downloads 78
27740 Optimization and Simulation Models Applied in Engineering Planning and Management

Authors: Abiodun Ladanu Ajala, Wuyi Oke

Abstract:

Mathematical simulation and optimization models packaged within interactive computer programs provide a common way for planners and managers to predict the behaviour of any proposed water resources system design or management policy before it is implemented. Modeling presents a principal technique of predicting the behaviour of the proposed infrastructural designs or management policies. Models can be developed and used to help identify specific alternative plans that best meet those objectives. This study discusses various types of models, their development, architecture, data requirements, and applications in the field of engineering. It also outlines the advantages and limitations of each the optimization and simulation models presented. The techniques explored in this review include; dynamic programming, linear programming, fuzzy optimization, evolutionary algorithms and finally artificial intelligence techniques. Previous studies carried out using some of the techniques mentioned above were reviewed, and most of the results from different researches showed that indeed optimization and simulation provides viable alternatives and predictions which form a basis for decision making in building engineering structures and also in engineering planning and management.

Keywords: linear programming, mutation, optimization, simulation

Procedia PDF Downloads 595
27739 Modeling Pan Evaporation Using Intelligent Methods of ANN, LSSVM and Tree Model M5 (Case Study: Shahroud and Mayamey Stations)

Authors: Hamidreza Ghazvinian, Khosro Ghazvinian, Touba Khodaiean

Abstract:

The importance of evaporation estimation in water resources and agricultural studies is undeniable. Pan evaporation are used as an indicator to determine the evaporation of lakes and reservoirs around the world due to the ease of interpreting its data. In this research, intelligent models were investigated in estimating pan evaporation on a daily basis. Shahroud and Mayamey were considered as the studied cities. These two cities are located in Semnan province in Iran. The mentioned cities have dry weather conditions that are susceptible to high evaporation potential. Meteorological data of 11 years of synoptic stations of Shahrood and Mayamey cities were used. The intelligent models used in this study are Artificial Neural Network (ANN), Least Squares Support Vector Machine (LSSVM), and M5 tree models. Meteorological parameters of minimum and maximum air temperature (Tmax, Tmin), wind speed (WS), sunshine hours (SH), air pressure (PA), relative humidity (RH) as selected input data and evaporation data from pan (EP) to The output data was considered. 70% of data is used at the education level, and 30 % of the data is used at the test level. Models used with explanation coefficient evaluation (R2) Root of Mean Squares Error (RMSE) and Mean Absolute Error (MAE). The results for the two Shahroud and Mayamey stations showed that the above three models' operations are rather appropriate.

Keywords: pan evaporation, intelligent methods, shahroud, mayamey

Procedia PDF Downloads 80
27738 Effects of Different Organic Manures on the Antioxidant Activity, Vitamin C and Nitrate Concentrations of Broccoli (Brassica oleracea L. var italica)

Authors: Sahriye Sonmez, Sedat Citak

Abstract:

The objective of this study was to evaluate the effects of different organic manures on antioxidant activity, vitamin C and nitrate concentrations of broccoli (Brassica oleracea L. var italica) plants. For this purpose, broccoli plants were grown on open field conditions in 2 successive years (2011-2013) including 4 different seasons [(Spring 1 (March-June, 2011), Autumn 1 (September 2011-January 2012), Spring 2 (March-June, 2012), Autumn 2 (September 2012-January 2013)]. Organic manures (Farm manure (FM), vermicompost (VC) and leonardite (L) and its mixture (50 % FM+50% L, 50 % VC+50% FM, 50% L+50% VC and 33% FM+33% VC+33% L), one chemical fertilizer and one control, collectively 9 applications was investigated. The results indicated that the vitamin C concentrations of broccoli plants ranged from 31.4-55.8 mg/100 g, 43-631 mg/kg in nitrate concentrations and 11.0-56.7 mg/ml as IC50 inhibition values in antioxidant activities of broccoli plants. Also, it was determined that the effective applications were at the 50 % VC+50% FM for vitamin C concentrations, at the chemical fertilizer for nitrate concentrations and at the 100 % FM for antioxidant activities.

Keywords: broccoli, chemical fertilizer, farm manure, leonardite, vermicompost

Procedia PDF Downloads 383
27737 Structural, Magnetic, and Dielectric Studies of Tetragonally Ordered Sm₂Fe₂O₇ Pyrochlore Nanostructures for Spintronic Application

Authors: S. Nqayi

Abstract:

Understanding the structural, electronic, and magnetic properties of nanomaterials is essential for developing next-generation electronic and spintronic devices, contributing to the progress of nanoscience and nanotechnology applications. Multiferroic materials, with intimately coupled ferroic-order parameters, are widely considered to breed fascinating physical properties and provide unique opportunities for the development of next-generation devices, like multistate non-volatile memory. In this study, we are set to investigate the structural, electronic, and magnetic properties of the frustrated Feᴵᴵ/Smⱽᴵ sublattice in relation to the widely studied perovskites for spintronics applications. The atomic composition, microstructure, crystallography, magnetization, thermal, and dielectric properties of a pyrochlore Sm₂Fe₂O₇ system synthesized using sol-gel methods are currently being investigated. Precursor powders were dissolved in citric acid monohydrate to obtain a solution. The obtained solution was stirred and heated using a magnetic stirrer to obtain the gel phase. Then, the gel was dried at 200°C to remove water and organic compounds and form an orange powder. The X-ray diffraction analysis confirms that the structure crystallized as a pyrochlore structure with a tetragonal F4mm (107) symmetry. The presence of Fe³⁺/Fe⁴⁺ mixed states is also revealed by XPS analysis.

Keywords: nanostructures, multiferroic materials, pyrochlores, spintronics

Procedia PDF Downloads 60
27736 Screening of Antioxidant Activity of Exopolysaccharides Produced by Lactic Acid Bacteria From Human Origin

Authors: Piña-Ronces Laura Gabriela, Reyes-Escogido María de Lourdes

Abstract:

Exist a large variability in Exopolysaccharides (EPS) produced by LAB depending on carbon source, they have multiple applications in food industry mainly, but they have become important for the health. In this study, we identified EPS-producing strains belonging to the BAL group; they were previously isolated from humans. After that, we extracted and evaluated the antioxidant activity of EPS produced by all strains. Antioxidant activity was determined by DPPH method using ascorbic acid as standard for both comparison and quantification. 31 strains (51.66 %) produced EPS at concentrations between 451 and 1.561 mg/l, 16 of EPS extracted showed antioxidant effect superior to ascorbic acid at the same concentrations. EPS-producing strains were L. plantarum, L. sp and L. fermentum corresponding to Lactobacillus genus and, E. faecium, E. durans, and E. hirae of Enterococcus genus. Antioxidant activity showed by EPS from 3 strains of L. plantarum and 3 strains of E. faecium was different into specie, while the antioxidant activity determined for EPS obtained from the other strains did not show difference at specie level, but was superior to ascorbic acid. EPS produced by L. plantarum and E. hirae had the best activity, it could be considerate for selection them as a possible new alternative for therapy or treatment of diseases related whit oxidative stress. Further studies about biological functions of EPS have to be conducted for new applications in health.

Keywords: oxidative stress, lactic acid bacteria, exopolysaccharides, antioxidant activity

Procedia PDF Downloads 364
27735 Intelligent Control of Agricultural Farms, Gardens, Greenhouses, Livestock

Authors: Vahid Bairami Rad

Abstract:

The intelligentization of agricultural fields can control the temperature, humidity, and variables affecting the growth of agricultural products online and on a mobile phone or computer. Smarting agricultural fields and gardens is one of the best and best ways to optimize agricultural equipment and has a 100 percent direct effect on the growth of plants and agricultural products and farms. Smart farms are the topic that we are going to discuss today, the Internet of Things and artificial intelligence. Agriculture is becoming smarter every day. From large industrial operations to individuals growing organic produce locally, technology is at the forefront of reducing costs, improving results and ensuring optimal delivery to market. A key element to having a smart agriculture is the use of useful data. Modern farmers have more tools to collect intelligent data than in previous years. Data related to soil chemistry also allows people to make informed decisions about fertilizing farmland. Moisture meter sensors and accurate irrigation controllers have made the irrigation processes to be optimized and at the same time reduce the cost of water consumption. Drones can apply pesticides precisely on the desired point. Automated harvesting machines navigate crop fields based on position and capacity sensors. The list goes on. Almost any process related to agriculture can use sensors that collect data to optimize existing processes and make informed decisions. The Internet of Things (IoT) is at the center of this great transformation. Internet of Things hardware has grown and developed rapidly to provide low-cost sensors for people's needs. These sensors are embedded in IoT devices with a battery and can be evaluated over the years and have access to a low-power and cost-effective mobile network. IoT device management platforms have also evolved rapidly and can now be used securely and manage existing devices at scale. IoT cloud services also provide a set of application enablement services that can be easily used by developers and allow them to build application business logic. Focus on yourself. These development processes have created powerful and new applications in the field of Internet of Things, and these programs can be used in various industries such as agriculture and building smart farms. But the question is, what makes today's farms truly smart farms? Let us put this question in another way. When will the technologies associated with smart farms reach the point where the range of intelligence they provide can exceed the intelligence of experienced and professional farmers?

Keywords: food security, IoT automation, wireless communication, hybrid lifestyle, arduino Uno

Procedia PDF Downloads 60
27734 Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA

Authors: Manh-Dung Ho, Van-Giap Pham, Van-Doanh Ho, Quang-Thien Tran, Tuan-Anh Tran

Abstract:

The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides.

Keywords: neutron activation analysis, k0-based method, k0 factor, Q0 factor, effective resonance energy

Procedia PDF Downloads 130
27733 A Mathematical Based Prediction of the Forming Limit of Thin-Walled Sheet Metals

Authors: Masoud Ghermezi

Abstract:

Studying the sheet metals is one of the most important research areas in the field of metal forming due to their extensive applications in the aerospace industries. A useful method for determining the forming limit of these materials and consequently preventing the rupture of sheet metals during the forming process is the use of the forming limit curve (FLC). In addition to specifying the forming limit, this curve also delineates a boundary for the allowed values of strain in sheet metal forming; these characteristics of the FLC along with its accuracy of computation and wide range of applications have made this curve the basis of research in the present paper. This study presents a new model that not only agrees with the results obtained from the above mentioned theory, but also eliminates its shortcomings. In this theory, like in the M-K theory, a thin sheet with an inhomogeneity as a gradient thickness reduction with a sinusoidal function has been chosen and subjected to two-dimensional stress. Through analytical evaluation, ultimately, a governing differential equation has been obtained. The numerical solution of this equation for the range of positive strains (stretched region) yields the results that agree with the results obtained from M-K theory. Also the solution of this equation for the range of negative strains (tension region) completes the FLC curve. The findings obtained by applying this equation on two alloys with the hardening exponents of 0.4 and 0.24 indicate the validity of the presented equation.

Keywords: sheet metal, metal forming, forming limit curve (FLC), M-K theory

Procedia PDF Downloads 368
27732 The Influence of Fashion Bloggers on the Pre-Purchase Decision for Online Fashion Products among Generation Y Female Malaysian Consumers

Authors: Mohd Zaimmudin Mohd Zain, Patsy Perry, Lee Quinn

Abstract:

This study explores how fashion consumers are influenced by fashion bloggers towards pre-purchase decision for online fashion products in a non-Western context. Malaysians rank among the world’s most avid online shoppers, with apparel the third most popular purchase category. However, extant research on fashion blogging focuses on the developed Western market context. Numerous international fashion retailers have entered the Malaysian market from luxury to fast fashion segments of the market; however Malaysian fashion consumers must balance religious and social norms for modesty with their dress style and adoption of fashion trends. Consumers increasingly mix and match Islamic and Western elements of dress to create new styles enabling them to follow Western fashion trends whilst paying respect to social and religious norms. Social media have revolutionised the way that consumers can search for and find information about fashion products. For online fashion brands with no physical presence, social media provide a means of discovery for consumers. By allowing the creation and exchange of user-generated content (UGC) online, they provide a public forum that gives individual consumers their own voices, as well as access to product information that facilitates their purchase decisions. Social media empower consumers and brands have important roles in facilitating conversations among consumers and themselves, to help consumers connect with them and one another. Fashion blogs have become an important fashion information sources. By sharing their personal style and inspiring their followers with what they wear on popular social media platforms such as Instagram, fashion bloggers have become fashion opinion leaders. By creating UGC to spread useful information to their followers, they influence the pre-purchase decision. Hence, successful Western fashion bloggers such as Chiara Ferragni may earn millions of US dollars every year, and some have created their own fashion ranges and beauty products, become judges in fashion reality shows, won awards, and collaborated with high street and luxury brands. As fashion blogging has become more established worldwide, increasing numbers of fashion bloggers have emerged from non-Western backgrounds to promote Islamic fashion styles, such as Hassanah El-Yacoubi and Dian Pelangi. This study adopts a qualitative approach using netnographic content analysis of consumer comments on two famous Malaysian fashion bloggers’ Instagram accounts during January-March 2016 and qualitative interviews with 16 Malaysian Generation Y fashion consumers during September-October 2016. Netnography adapts ethnographic techniques to the study of online communities or computer-mediated communications. Template analysis of the data involved coding comments according to the theoretical framework, which was developed from the literature review. Initial data analysis shows the strong influence of Malaysian fashion bloggers on their followers in terms of lifestyle and morals as well as fashion style. Followers were guided towards the mix and match trend of dress with Western and Islamic elements, for example, showing how vivid colours or accessories could be worked into an outfit whilst still respecting social and religious norms. The blogger’s Instagram account is a form of online community where followers can communicate and gain guidance and support from other followers, as well as from the blogger.

Keywords: fashion bloggers, Malaysia, qualitative, social media

Procedia PDF Downloads 223
27731 Optimizing Electric Vehicle Charging with Charging Data Analytics

Authors: Tayyibah Khanam, Mohammad Saad Alam, Sanchari Deb, Yasser Rafat

Abstract:

Electric vehicles are considered as viable replacements to gasoline cars since they help in reducing harmful emissions and stimulate power generation through renewable energy sources, hence contributing to sustainability. However, one of the significant obstacles in the mass deployment of electric vehicles is the charging time anxiety among users and, thus, the subsequent large waiting times for available chargers at charging stations. Data analytics, on the other hand, has revolutionized the decision-making tasks of management and operating systems since its arrival. In this paper, we attempt to optimize the choice of EV charging stations for users in their vicinity by minimizing the time taken to reach the charging stations and the waiting times for available chargers. Time taken to travel to the charging station is calculated by the Google Maps API and the waiting times are predicted by polynomial regression of the historical data stored. The proposed framework utilizes real-time data and historical data from all operating charging stations in the city and assists the user in finding the best suitable charging station for their current situation and can be implemented in a mobile phone application. The algorithm successfully predicts the most optimal choice of a charging station and the minimum required time for various sample data sets.

Keywords: charging data, electric vehicles, machine learning, waiting times

Procedia PDF Downloads 200
27730 The Effect of Using LDOCE on Iranian EFL Learners’ Pronunciation Accuracy

Authors: Mohammad Hadi Mahmoodi, Elahe Saedpanah

Abstract:

Since pronunciation is among those factors that can have strong effects on EFL learners’ successful communication, instructional programs with accurate pronunciation purposes seem to be a necessity in any L2 teaching context. The widespread use of smart mobile phones brings with itself various educational applications, which can assist foreign language learners in learning and speaking another language other than their L1. In line with this supportive innovation, the present study investigated the role of LDOCE (Longman Dictionary of Contemporary English), a mobile application, on improving Iranian EFL learners’ pronunciation accuracy. To this aim, 40 EFL learners studying English at the intermediate level participated in the current study. This was an experimental research with two groups of 20 students in an experimental and a control group. The data were collected through the administration of a pronunciation pretest before the instruction and a post-test after the treatment. In addition, the assessment was based on the pupils’ recorded voices while reading the selected words. The results of the independent samples t-test indicated that using LDOCE significantly affected Iranian EFL learners' pronunciation accuracy with those in the experimental group outperforming their control group counterparts.

Keywords: LDOCE, EFL learners, pronunciation accuracy, CALL, MALL

Procedia PDF Downloads 552
27729 Finding Data Envelopment Analysis Targets Using Multi-Objective Programming in DEA-R with Stochastic Data

Authors: R. Shamsi, F. Sharifi

Abstract:

In this paper, we obtain the projection of inefficient units in data envelopment analysis (DEA) in the case of stochastic inputs and outputs using the multi-objective programming (MOP) structure. In some problems, the inputs might be stochastic while the outputs are deterministic, and vice versa. In such cases, we propose a multi-objective DEA-R model because in some cases (e.g., when unnecessary and irrational weights by the BCC model reduce the efficiency score), an efficient decision-making unit (DMU) is introduced as inefficient by the BCC model, whereas the DMU is considered efficient by the DEA-R model. In some other cases, only the ratio of stochastic data may be available (e.g., the ratio of stochastic inputs to stochastic outputs). Thus, we provide a multi-objective DEA model without explicit outputs and prove that the input-oriented MOP DEA-R model in the invariable return to scale case can be replaced by the MOP-DEA model without explicit outputs in the variable return to scale and vice versa. Using the interactive methods for solving the proposed model yields a projection corresponding to the viewpoint of the DM and the analyst, which is nearer to reality and more practical. Finally, an application is provided.

Keywords: DEA-R, multi-objective programming, stochastic data, data envelopment analysis

Procedia PDF Downloads 111
27728 Biodegradable Magnesium Alloys with Addition of Rare Earth Elements for Biomedical Applications

Authors: Yuncang Li, Cuie Wen

Abstract:

Biodegradable metallic materials such as magnesium (Mg)-based alloys have attracted extensive interest for use as bone implant materials. However, the high biodegradation rate of existing Mg alloys in the physiological environment of human body leads to losing mechanical integrity before adequate bone healing and producing a large volume of hydrogen gas. Therefore, slowing down the biodegradation rate of Mg alloys is a critical task in developing new biodegradable Mg alloy implant materials. One of the most effective approaches to achieve this is to strategically design new Mg alloys with low biodegradation rate, excellent biocompatibility, and enhanced mechanical properties. Our research selected biocompatible and biofunctional alloying elements such as zirconium (Zr), strontium (Sr), and rare earth elements (REEs) to alloy Mg and has developed a new series of Mg-Zr-Sr-REEs alloys for biodegradable implant applications. Research results indicated that Sr and Zr additions could refine the grain size, decrease the biodegradation rate, and enhance the biological behaviors of the Mg alloys. The REE addition, such as holmium (Ho) and dysprosium (Dy) to Mg-Zr-Sr alloys resulted in enhanced mechanical strength and decreased biodegradation rate. In addition, Ho and Dy additions (≤ 5 wt.%) to Mg-Zr-Sr alloys led to enhancement of cell adhesion and proliferation of osteoblast cells on the Mg-Zr-Sr-Ho/Dy alloys.

Keywords: biocompatibility, magnesium, mechanical and biodegrade properties, rare earth elements

Procedia PDF Downloads 125
27727 Evaluation of IMERG Performance at Estimating the Rainfall Properties through Convective and Stratiform Rain Events in a Semi-Arid Region of Mexico

Authors: Eric Muñoz de la Torre, Julián González Trinidad, Efrén González Ramírez

Abstract:

Rain varies greatly in its duration, intensity, and spatial coverage, it is important to have sub-daily rainfall data for various applications, including risk prevention. However, the ground measurements are limited by the low and irregular density of rain gauges. An alternative to this problem are the Satellite Precipitation Products (SPPs) that use passive microwave and infrared sensors to estimate rainfall, as IMERG, however, these SPPs have to be validated before their application. The aim of this study is to evaluate the performance of the IMERG: Integrated Multi-satellitE Retrievals for Global Precipitation Measurament final run V06B SPP in a semi-arid region of Mexico, using 4 automatic rain gauges (pluviographs) sub-daily data of October 2019 and June to September 2021, using the Minimum inter-event Time (MIT) criterion to separate unique rain events with a dry period of 10 hrs. for the purpose of evaluating the rainfall properties (depth, duration and intensity). Point to pixel analysis, continuous, categorical, and volumetric statistical metrics were used. Results show that IMERG is capable to estimate the rainfall depth with a slight overestimation but is unable to identify the real duration and intensity of the rain events, showing large overestimations and underestimations, respectively. The study zone presented 80 to 85 % of convective rain events, the rest were stratiform rain events, classified by the depth magnitude variation of IMERG pixels and pluviographs. IMERG showed poorer performance at detecting the first ones but had a good performance at estimating stratiform rain events that are originated by Cold Fronts.

Keywords: IMERG, rainfall, rain gauge, remote sensing, statistical evaluation

Procedia PDF Downloads 74
27726 Wear Assessment of SS316l-Al2O3 Composites for Heavy Wear Applications

Authors: Catherine Kuforiji, Michel Nganbe

Abstract:

The abrasive wear of composite materials is a major challenge in highly demanding wear applications. Therefore, this study focuses on fabricating, testing and assessing the properties of 50wt% SS316L stainless steel–50wt% Al2O3 particle composites. Composite samples were fabricated using the powder metallurgy route. The effects of the powder metallurgy processing parameters and hard particle reinforcement were studied. The microstructure, density, hardness and toughness were characterized. The wear behaviour was studied using pin-on-disc testing under dry sliding conditions. The highest hardness of 1085.2 HV, the highest theoretical density of 94.7% and the lowest wear rate of 0.00397 mm3/m were obtained at a milling speed of 720 rpm, a compaction pressure of 794.4 MPa and sintering at 1400 °C in an argon atmosphere. Compared to commercial SS316 and fabricated SS316L, the composites had 7.4 times and 11 times lower wear rate, respectively. However, the commercial 90WC-10Co showed 2.2 times lower wear rate compared to the fabricated SS316L-Al2O3 composites primarily due to the higher ceramic content of 90 wt.% in the reference WC-Co. However, eliminating the relatively high porosity of about 5 vol% using processes such as HIP and hot pressing can be expected to lead to further substantial improvements of the composites wear resistance.

Keywords: SS316L, Al2O3, powder metallurgy, wear characterization

Procedia PDF Downloads 306
27725 Integrated Model for Enhancing Data Security Processing Time in Cloud Computing

Authors: Amani A. Saad, Ahmed A. El-Farag, El-Sayed A. Helali

Abstract:

Cloud computing is an important and promising field in the recent decade. Cloud computing allows sharing resources, services and information among the people of the whole world. Although the advantages of using clouds are great, but there are many risks in a cloud. The data security is the most important and critical problem of cloud computing. In this research a new security model for cloud computing is proposed for ensuring secure communication system, hiding information from other users and saving the user's times. In this proposed model Blowfish encryption algorithm is used for exchanging information or data, and SHA-2 cryptographic hash algorithm is used for data integrity. For user authentication process a simple user-name and password is used, the password uses SHA-2 for one way encryption. The proposed system shows an improvement of the processing time of uploading and downloading files on the cloud in secure form.

Keywords: cloud computing, data security, SAAS, PAAS, IAAS, Blowfish

Procedia PDF Downloads 361
27724 Performance Evaluation of an Ontology-Based Arabic Sentiment Analysis

Authors: Salima Behdenna, Fatiha Barigou, Ghalem Belalem

Abstract:

Due to the quick increase in the volume of Arabic opinions posted on various social media, Arabic sentiment analysis has become one of the most important areas of research. Compared to English, there is very little works on Arabic sentiment analysis, in particular aspect-based sentiment analysis (ABSA). In ABSA, aspect extraction is the most important task. In this paper, we propose a semantic aspect-based sentiment analysis approach for standard Arabic reviews to extract explicit aspect terms and identify the polarity of the extracted aspects. The proposed approach was evaluated using HAAD datasets. Experiments showed that the proposed approach achieved a good level of performance compared with baseline results. The F-measure was improved by 19% for the aspect term extraction tasks and 55% aspect term polarity task.

Keywords: sentiment analysis, opinion mining, Arabic, aspect level, opinion, polarity

Procedia PDF Downloads 166
27723 Topic Sentiments toward the COVID-19 Vaccine on Twitter

Authors: Melissa Vang, Raheyma Khan, Haihua Chen

Abstract:

The coronavirus disease 2019 (COVID‐19) pandemic has changed people's lives from all over the world. More people have turned to Twitter to engage online and discuss the COVID-19 vaccine. This study aims to present a text mining approach to identify people's attitudes towards the COVID-19 vaccine on Twitter. To achieve this purpose, we collected 54,268 COVID-19 vaccine tweets from September 01, 2020, to November 01, 2020, then the BERT model is used for the sentiment and topic analysis. The results show that people had more negative than positive attitudes about the vaccine, and countries with an increasing number of confirmed cases had a higher percentage of negative attitudes. Additionally, the topics discussed in positive and negative tweets are different. The tweet datasets can be helpful to information professionals to inform the public about vaccine-related informational resources. Our findings may have implications for understanding people's cognitions and feelings about the vaccine.

Keywords: BERT, COVID-19 vaccine, sentiment analysis, topic modeling

Procedia PDF Downloads 158
27722 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia

Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza

Abstract:

In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.

Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant

Procedia PDF Downloads 470
27721 Explanation of Sentinel-1 Sigma 0 by Sentinel-2 Products in Terms of Crop Water Stress Monitoring

Authors: Katerina Krizova, Inigo Molina

Abstract:

The ongoing climate change affects various natural processes resulting in significant changes in human life. Since there is still a growing human population on the planet with more or less limited resources, agricultural production became an issue and a satisfactory amount of food has to be reassured. To achieve this, agriculture is being studied in a very wide context. The main aim here is to increase primary production on a spatial unit while consuming as low amounts of resources as possible. In Europe, nowadays, the staple issue comes from significantly changing the spatial and temporal distribution of precipitation. Recent growing seasons have been considerably affected by long drought periods that have led to quantitative as well as qualitative yield losses. To cope with such kind of conditions, new techniques and technologies are being implemented in current practices. However, behind assessing the right management, there is always a set of the necessary information about plot properties that need to be acquired. Remotely sensed data had gained attention in recent decades since they provide spatial information about the studied surface based on its spectral behavior. A number of space platforms have been launched carrying various types of sensors. Spectral indices based on calculations with reflectance in visible and NIR bands are nowadays quite commonly used to describe the crop status. However, there is still the staple limit by this kind of data - cloudiness. Relatively frequent revisit of modern satellites cannot be fully utilized since the information is hidden under the clouds. Therefore, microwave remote sensing, which can penetrate the atmosphere, is on its rise today. The scientific literature describes the potential of radar data to estimate staple soil (roughness, moisture) and vegetation (LAI, biomass, height) properties. Although all of these are highly demanded in terms of agricultural monitoring, the crop moisture content is the utmost important parameter in terms of agricultural drought monitoring. The idea behind this study was to exploit the unique combination of SAR (Sentinel-1) and optical (Sentinel-2) data from one provider (ESA) to describe potential crop water stress during dry cropping season of 2019 at six winter wheat plots in the central Czech Republic. For the period of January to August, Sentinel-1 and Sentinel-2 images were obtained and processed. Sentinel-1 imagery carries information about C-band backscatter in two polarisations (VV, VH). Sentinel-2 was used to derive vegetation properties (LAI, FCV, NDWI, and SAVI) as support for Sentinel-1 results. For each term and plot, summary statistics were performed, including precipitation data and soil moisture content obtained through data loggers. Results were presented as summary layouts of VV and VH polarisations and related plots describing other properties. All plots performed along with the principle of the basic SAR backscatter equation. Considering the needs of practical applications, the vegetation moisture content may be assessed using SAR data to predict the drought impact on the final product quality and yields independently of cloud cover over the studied scene.

Keywords: precision agriculture, remote sensing, Sentinel-1, SAR, water content

Procedia PDF Downloads 129
27720 Optimization of Pressure in Deep Drawing Process

Authors: Ajay Kumar Choubey, Geeta Agnihotri, C. Sasikumar, Rashmi Dwivedi

Abstract:

Deep-drawing operations are performed widely in industrial applications. It is very important for efficiency to achieve parts with no or minimum defects. Deep drawn parts are used in high performance, high strength and high reliability applications where tension, stress, load and human safety are critical considerations. Wrinkling is a kind of defect caused by stresses in the flange part of the blank during metal forming operations. To avoid wrinkling appropriate blank-holder pressure/force or drawbead can be applied. Now-a-day computer simulation plays a vital role in the field of manufacturing process. So computer simulation of manufacturing has much advantage over previous conventional process i.e. mass production, good quality of product, fast working etc. In this study, a two dimensional elasto-plastic Finite Element (F.E.) model for Mild Steel material blank has been developed to study the behavior of the flange wrinkling and deep drawing parameters under different Blank-Holder Pressure (B.H.P.). For this, commercially available Finite Element software ANSYS 14 has been used in this study. Simulation results are critically studied and salient conclusions have been drawn.

Keywords: ANSYS, deep drawing, BHP, finite element simulation, wrinkling

Procedia PDF Downloads 453
27719 Initial Dip: An Early Indicator of Neural Activity in Functional Near Infrared Spectroscopy Waveform

Authors: Mannan Malik Muhammad Naeem, Jeong Myung Yung

Abstract:

Functional near infrared spectroscopy (fNIRS) has a favorable position in non-invasive brain imaging techniques. The concentration change of oxygenated hemoglobin and de-oxygenated hemoglobin during particular cognitive activity is the basis for this neuro-imaging modality. Two wavelengths of near-infrared light can be used with modified Beer-Lambert law to explain the indirect status of neuronal activity inside brain. The temporal resolution of fNIRS is very good for real-time brain computer-interface applications. The portability, low cost and an acceptable temporal resolution of fNIRS put it on a better position in neuro-imaging modalities. In this study, an optimization model for impulse response function has been used to estimate/predict initial dip using fNIRS data. In addition, the activity strength parameter related to motor based cognitive task has been analyzed. We found an initial dip that remains around 200-300 millisecond and better localize neural activity.

Keywords: fNIRS, brain-computer interface, optimization algorithm, adaptive signal processing

Procedia PDF Downloads 228
27718 Hyperspectral Data Classification Algorithm Based on the Deep Belief and Self-Organizing Neural Network

Authors: Li Qingjian, Li Ke, He Chun, Huang Yong

Abstract:

In this paper, the method of combining the Pohl Seidman's deep belief network with the self-organizing neural network is proposed to classify the target. This method is mainly aimed at the high nonlinearity of the hyperspectral image, the high sample dimension and the difficulty in designing the classifier. The main feature of original data is extracted by deep belief network. In the process of extracting features, adding known labels samples to fine tune the network, enriching the main characteristics. Then, the extracted feature vectors are classified into the self-organizing neural network. This method can effectively reduce the dimensions of data in the spectrum dimension in the preservation of large amounts of raw data information, to solve the traditional clustering and the long training time when labeled samples less deep learning algorithm for training problems, improve the classification accuracy and robustness. Through the data simulation, the results show that the proposed network structure can get a higher classification precision in the case of a small number of known label samples.

Keywords: DBN, SOM, pattern classification, hyperspectral, data compression

Procedia PDF Downloads 344
27717 Fault Tolerant (n,k)-star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj K. Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 514
27716 Fault Tolerant (n, k)-Star Power Network Topology for Multi-Agent Communication in Automated Power Distribution Systems

Authors: Ning Gong, Michael Korostelev, Qiangguo Ren, Li Bai, Saroj Biswas, Frank Ferrese

Abstract:

This paper investigates the joint effect of the interconnected (n,k)-star network topology and Multi-Agent automated control on restoration and reconfiguration of power systems. With the increasing trend in development in Multi-Agent control technologies applied to power system reconfiguration in presence of faulty components or nodes. Fault tolerance is becoming an important challenge in the design processes of the distributed power system topology. Since the reconfiguration of a power system is performed by agent communication, the (n,k)-star interconnected network topology is studied and modeled in this paper to optimize the process of power reconfiguration. In this paper, we discuss the recently proposed (n,k)-star topology and examine its properties and advantages as compared to the traditional multi-bus power topologies. We design and simulate the topology model for distributed power system test cases. A related lemma based on the fault tolerance and conditional diagnosability properties is presented and proved both theoretically and practically. The conclusion is reached that (n,k)-star topology model has measurable advantages compared to standard bus power systems while exhibiting fault tolerance properties in power restoration, as well as showing efficiency when applied to power system route discovery.

Keywords: (n, k)-star topology, fault tolerance, conditional diagnosability, multi-agent system, automated power system

Procedia PDF Downloads 468
27715 Assessing Performance of Data Augmentation Techniques for a Convolutional Network Trained for Recognizing Humans in Drone Images

Authors: Masood Varshosaz, Kamyar Hasanpour

Abstract:

In recent years, we have seen growing interest in recognizing humans in drone images for post-disaster search and rescue operations. Deep learning algorithms have shown great promise in this area, but they often require large amounts of labeled data to train the models. To keep the data acquisition cost low, augmentation techniques can be used to create additional data from existing images. There are many techniques of such that can help generate variations of an original image to improve the performance of deep learning algorithms. While data augmentation is potentially assumed to improve the accuracy and robustness of the models, it is important to ensure that the performance gains are not outweighed by the additional computational cost or complexity of implementing the techniques. To this end, it is important to evaluate the impact of data augmentation on the performance of the deep learning models. In this paper, we evaluated the most currently available 2D data augmentation techniques on a standard convolutional network which was trained for recognizing humans in drone images. The techniques include rotation, scaling, random cropping, flipping, shifting, and their combination. The results showed that the augmented models perform 1-3% better compared to a base network. However, as the augmented images only contain the human parts already visible in the original images, a new data augmentation approach is needed to include the invisible parts of the human body. Thus, we suggest a new method that employs simulated 3D human models to generate new data for training the network.

Keywords: human recognition, deep learning, drones, disaster mitigation

Procedia PDF Downloads 101
27714 'iTheory': Mobile Way to Music Fundamentals

Authors: Marina Karaseva

Abstract:

The beginning of our century became a new digital epoch in the educational situation. Last decade the newest stage of this process had been initialized by the touch-screen mobile devices with program applications for them. The touch possibilities for learning fundamentals of music are of especially importance for music majors. The phenomenon of touching, firstly, makes it realistic to play on the screen as on music instrument, secondly, helps students to learn music theory while listening in its sound elements by music ear. Nowadays we can detect several levels of such mobile applications: from the basic ones devoting to the elementary music training such as intervals and chords recognition, to the more advanced applications which deal with music perception of non-major and minor modes, ethnic timbres, and complicated rhythms. The main purpose of the proposed paper is to disclose the main tendencies in this process and to demonstrate the most innovative features of music theory applications on the base of iOS and Android systems as the most common used. Methodological recommendations how to use these digital material musicologically will be done for the professional music education of different levels. These recommendations are based on more than ten year ‘iTheory’ teaching experience of the author. In this paper, we try to logically classify all types of ‘iTheory’mobile applications into several groups, according to their methodological goals. General concepts given below will be demonstrated in concrete examples. The most numerous group of programs is formed with simulators for studying notes with audio-visual links. There are link-pair types as follows: sound — musical notation which may be used as flashcards for studying words and letters, sound — key, sound — string (basically, guitar’s). The second large group of programs is programs-tests containing a game component. As a rule, their basis is made with exercises on ear identification and reconstruction by voice: sounds and intervals on their sounding — harmonical and melodical, music modes, rhythmic patterns, chords, selected instrumental timbres. Some programs are aimed at an establishment of acoustical communications between concepts of the musical theory and their musical embodiments. There are also programs focused on progress of operative musical memory (with repeating of sounding phrases and their transposing in a new pitch), as well as on perfect pitch training In addition a number of programs improvisation skills have been developed. An absolute pitch-system of solmisation is a common base for mobile programs. However, it is possible to find also the programs focused on the relative pitch system of solfegе. In App Store and Google Play Market online store there are also many free programs-simulators of musical instruments — piano, guitars, celesta, violin, organ. These programs may be effective for individual and group exercises in ear training or composition classes. Great variety and good sound quality of these programs give now a unique opportunity to musicians to master their music abilities in a shorter time. That is why such teaching material may be a way to effective study of music theory.

Keywords: ear training, innovation in music education, music theory, mobile devices

Procedia PDF Downloads 208