Search results for: passive optical networks (PONs)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5150

Search results for: passive optical networks (PONs)

2030 Application of Electrochemically Prepared PPy/MWCNT:MnO2 Nano-Composite Film in Microbial Fuel Cells for Sustainable Power Generation

Authors: Rajeev jain, D. C. Tiwari, Praveena Mishra

Abstract:

Nano-composite of polypyrrole/multiwalled carbon nanotubes:mangenese oxide (PPy/MWCNT:MnO2) was electrochemically deposited on the surface of carbon cloth (CC). The nano-composite was structurally characterized by FTIR, SEM, TEM and UV-Vis studies. Nano-composite was also characterized by cyclic voltammetry (CV), current voltage measurements (I-V) and the optical band gaps of film were evaluated from UV-Vis absorption studies. The PPy/MWCNT:MnO2 nano-composite was used as anode in microbial fuel cell (MFC) for sewage waste water treatment, power and coulombic efficiency measurement. The prepared electrode showed good electrical conductivity (0.1185 S m-1). This was also supported by band gap measurements (direct 0.8 eV, indirect 1.3 eV). The obtained maximum power density was 1125.4 mW m-2, highest chemical oxygen demand (COD) removal efficiency was 93% and the maximum coulombic efficiency was 59%. For the first time PPy/MWCNT:MnO2 nano-composite for MFC prepared from nano-composite electrode having the potential for the use in MFC with good stability and better adhesion of microbes is being reported. The SEM images confirm the growth and development of microbe’s colony.

Keywords: carbon cloth, electro-polymerization, functionalization, microbial fuel cells, multi walled carbon nanotubes, polypyrrole

Procedia PDF Downloads 274
2029 Influence of Deposition Temperature on Supercapacitive Properties of Reduced Graphene Oxide on Carbon Cloth: New Generation of Wearable Energy Storage Electrode Material

Authors: Snehal L. Kadam, Shriniwas B. Kulkarni

Abstract:

Flexible electrode material with high surface area and good electrochemical properties is the current trend captivating the researchers across globe for application in the next generation energy storage field. In the present work, crumpled sheet like reduced graphene oxide grown on carbon cloth by the hydrothermal method with a series of different deposition temperatures at fixed time. The influence of the deposition temperature on the structural, morphological, optical and supercapacitive properties of the electrode material was investigated by XRD, RAMAN, XPS, TEM, FE-SEM, UV-VISIBLE and electrochemical characterization techniques.The results show that the hydrothermally synthesized reduced graphene oxide on carbon cloth has sheet like mesoporous structure. The reduced graphene oxide material at 160°C exhibits the best supercapacitor performance, with a specific capacitance of 443 F/g at scan rate 5mV/sec. Moreover, stability studies show 97% capacitance retention over 1000 CV cycles. This result shows that hydrothermally synthesized RGO on carbon cloth is the potential electrode material and would be used in the next-generation wearable energy storage systems. The detailed analysis and results will be presented at the conference.

Keywords: graphene oxide, reduced graphene oxide, carbon cloth, deposition temperature, supercapacitor

Procedia PDF Downloads 194
2028 An Approach to Analyze Testing of Nano On-Chip Networks

Authors: Farnaz Fotovvatikhah, Javad Akbari

Abstract:

Test time of a test architecture is an important factor which depends on the architecture's delay and test patterns. Here a new architecture to store the test results based on network on chip is presented. In addition, simple analytical model is proposed to calculate link test time for built in self-tester (BIST) and external tester (Ext) in multiprocessor systems. The results extracted from the model are verified using FPGA implementation and experimental measurements. Systems consisting 16, 25, and 36 processors are implemented and simulated and test time is calculated. In addition, BIST and Ext are compared in terms of test time at different conditions such as at different number of test patterns and nodes. Using the model the maximum frequency of testing could be calculated and the test structure could be optimized for high speed testing.

Keywords: test, nano on-chip network, JTAG, modelling

Procedia PDF Downloads 491
2027 Privacy for the Internet of Things and its Different Dimensions

Authors: Maryam M Esfahani

Abstract:

The Internet of Things is a concept that has fundamentally changed the way information technology works and communication environments. This concept, which is referred to as the next revolution in the field of information and communication technology, takes advantage of existing technologies such as wireless sensor networks, RFID, cloud computing, M2M, etc., to the final slogan of providing the possibility of connecting any object anywhere and everywhere. This use of technologies, along with the possibility of providing new services, also inherits their threats, and although the Internet of Things is facing many challenges, it can be said that its most important challenge is security and privacy, and perhaps even a more tangible challenge is privacy. In this article, we will first introduce the definition and concepts related to privacy, and then we will examine some threats against the privacy of the Internet of Things in different layers of a typical architecture. Also, while examining the differences and the relationship between security and privacy, we study different dimensions of privacy, and finally, we review some of the methods and technologies for improving the level of privacy.

Keywords: Iot, privacy, different dimension of privacy, W3model, privacy enhancing technologies

Procedia PDF Downloads 102
2026 A Survey on Genetic Algorithm for Intrusion Detection System

Authors: Prikhil Agrawal, N. Priyanka

Abstract:

With the increase of millions of users on Internet day by day, it is very essential to maintain highly reliable and secured data communication between various corporations. Although there are various traditional security imparting techniques such as antivirus software, password protection, data encryption, biometrics and firewall etc. But still network security has become the main issue in various leading companies. So IDSs have become an essential component in terms of security, as it can detect various network attacks and respond quickly to such occurrences. IDSs are used to detect unauthorized access to a computer system. This paper describes various intrusion detection techniques using GA approach. The intrusion detection problem has become a challenging task due to the conception of miscellaneous computer networks under various vulnerabilities. Thus the damage caused to various organizations by malicious intrusions can be mitigated and even be deterred by using this powerful tool.

Keywords: genetic algorithm (GA), intrusion detection system (IDS), dataset, network security

Procedia PDF Downloads 301
2025 Implementing a Prevention Network for the Ortenaukreis

Authors: Klaus Froehlich-Gildhoff, Ullrich Boettinger, Katharina Rauh, Angela Schickler

Abstract:

The Prevention Network Ortenaukreis, PNO, funded by the German Ministry of Education and Research, aims to promote physical and mental health as well as the social inclusion of 3 to 10 years old children and their families in the Ortenau district. Within a period of four years starting 11/2014 a community network will be established. One regional and five local prevention representatives are building networks with stakeholders of the prevention and health promotion field bridging the health care, educational and youth welfare system in a multidisciplinary approach. The regional prevention representative implements regularly convening prevention and health conferences. On a local level, the 5 local prevention representatives implement round tables in each area as a platform for networking. In the setting approach, educational institutions are playing a vital role when gaining access to children and their families. Thus the project will offer 18 month long organizational development processes with specially trained coaches to 25 kindergarten and 25 primary schools. The process is based on a curriculum of prevention and health promotion which is adapted to the specific needs of the institutions. Also to ensure that the entire region is reached demand oriented advanced education courses are implemented at participating day care centers, kindergartens and schools. Evaluation method: The project is accompanied by an extensive research design to evaluate the outcomes of different project components such as interview data from community prevention agents, interviews and network analysis with families at risk on their support structures, data on community network development and monitoring, as well as data from kindergarten and primary schools. The latter features a waiting-list control group evaluation in kindergarten and primary schools with a mixed methods design using questionnaires and interviews with pedagogues, teachers, parents, and children. Results: By the time of the conference pre and post test data from the kindergarten samples (treatment and control group) will be presented, as well as data from the first project phase, such as qualitative interviews with the prevention coordinators as well as mixed methods data from the community needs assessment. In supporting this project, the Federal Ministry aims to gain insight into efficient components of community prevention and health promotion networks as it is implemented and evaluated. The district will serve as a model region, so that successful components can be transferred to other regions throughout Germany. Accordingly, the transferability to other regions is of high interest in this project.

Keywords: childhood research, health promotion, physical health, prevention network, psychological well-being, social inclusion

Procedia PDF Downloads 224
2024 Market-Driven Process of Brain Circulation in Knowledge Services Industry in Sri Lanka

Authors: Panagodage Janaka Sampath Fernando

Abstract:

Brain circulation has become a buzzword in the skilled migration literature. However, promoting brain circulation; returning of skilled migrants is challenging. Success stories in Asia, for instances, Taiwan, and China, are results of rigorous policy interventions of the respective governments. Nonetheless, the same policy mix has failed in other countries making it skeptical to attribute the success of brain circulation to the policy interventions per se. The paper seeks to answer whether the success of brain circulation within the Knowledge Services Industry (KSI) in Sri Lanka is a policy driven or a market driven process. Mixed method approach, which is a combination of case study and survey methods, was employed. Qualitative data derived from ten case studies of returned entrepreneurs whereas quantitative data generated from a self-administered survey of 205 returned skilled migrants (returned skilled employees and entrepreneurs) within KSI. The pull factors have driven the current flow of brain circulation within KSI but to a lesser extent, push factors also have influenced. The founding stone of the industry has been laid by a group of returned entrepreneurs, and the subsequent growth of the industry has attracted returning skilled employees. Sri Lankan government has not actively implemented the reverse brain drain model, however, has played a passive role by creating a peaceful and healthy environment for the industry. Therefore, in contrast to the other stories, brain circulation within KSI has emerged as a market driven process with minimal government interventions. Entrepreneurs play the main role in a market-driven process of brain circulation, and it is free from the inherent limitations of the reverse brain drain model such as discriminating non-migrants and generating a sudden flow of low-skilled migrants. Thus, to experience a successful brain circulation, developing countries should promote returned entrepreneurs by creating opportunities in knowledge-based industries.

Keywords: brain circulation, knowledge services industry, return migration, Sri Lanka

Procedia PDF Downloads 281
2023 Flow-Control Effectiveness of Convergent Surface Indentations on an Aerofoil at Low Reynolds Numbers

Authors: Neel K. Shah

Abstract:

Passive flow control on aerofoils has largely been achieved through the use of protrusions such as vane-type vortex generators. Consequently, innovative flow-control concepts should be explored in an effort to improve current component performance. Therefore, experimental research has been performed at The University of Manchester to evaluate the flow-control effectiveness of a vortex generator made in the form of a surface indentation. The surface indentation has a trapezoidal planform. A spanwise array of indentations has been applied in a convergent orientation around the maximum-thickness location of the upper surface of a NACA-0015 aerofoil. The aerofoil has been tested in a two-dimensional set-up in a low-speed wind tunnel at an angle of attack (AoA) of 3° and a chord-based Reynolds number (Re) of ~2.7 x 105. The baseline model has been found to suffer from a laminar separation bubble at low AoA. The application of the indentations at 3° AoA has considerably shortened the separation bubble. The indentations achieve this by shedding up-flow pairs of streamwise vortices. Despite the considerable reduction in bubble length, the increase in leading-edge suction due to the shorter bubble is limited by the removal of surface curvature and blockage (increase in surface pressure) caused locally by the convergent indentations. Furthermore, the up-flow region of the vortices, which locally weakens the pressure recovery around the trailing edge of the aerofoil by thickening the boundary layer, also contributes to this limitation. Due to the conflicting effects of the indentations, the changes in the pressure-lift and pressure-drag coefficients, i.e., cl,p and cd,p, are small. Nevertheless, the indentations have improved cl,p and cd,p beyond the uncertainty range, i.e., by ~1.30% and ~0.30%, respectively, at 3° AoA. The wake measurements show that turbulence intensity and Reynolds stresses have considerably increased in the indented case, thus implying that the indentations increase the viscous drag on the model. In summary, the convergent indentations are able to reduce the size of the laminar separation bubble, but conversely, they are not highly effective in reducing cd,p at the tested Reynolds number.

Keywords: aerofoil flow control, laminar separation bubbles, low Reynolds-number flows, surface indentations

Procedia PDF Downloads 229
2022 Keto-Enol Tautomerism of Salicylideneaniline Substituted

Authors: Rihana Hadjeb, Djamel Barkat

Abstract:

Schiff bases derived from o-hydroxybenzaldehyde has attracted a great interest not only for its promising applications towards linear and non-linear optical properties, biological activity and technological applications but also used as model compounds for the theory of hydrogen bonding. Due to its intramolecular hydrogen bonding, depending on the position of proton in the hydrogen bond o-hydroxy salicylidene Schiff bases exhibit two tautomeric forms, enol-imine (E-form) and keto-enamine (K-form) both in solution and in crystalline state. A zwitterionic structure also appears due to a proton transfer in enol – imine and keto – amine tautomer. These classes of compounds also exhibit thermochromic and photochromic behavior. We undertook in this study the synthesis of ten compounds of hydroxy Schiff bases from the condensation of salicylic aldehyde and aniline substituted in the ortho, meta and para by the methyl, chloro and nitro groups. To study the keto-enol equilibrium of the compounds; UV-VIS spectra were studied in different polarity solvents. The compounds were in tautomeric equilibrium (enol imine O–H•••N, keto-amine O•••H–N forms). For some derivatives of salicylideneanilines the keto-amine form was observed in both ethanol and dioxane. IR results showed that all Schiff bases studied favor the enol-imine form over the keto form.

Keywords: salicylideneaniline, tautomerism, keto-enol equilibrium, UV-VIS spectroscopy, solvent effect

Procedia PDF Downloads 397
2021 Corporate Social Responsibility for Multinational Enterprises to Gain Incomparable Advantage on the Long Run without Competition

Authors: Fatima Homor

Abstract:

The new era in business has started, according to my research paper findings, corporate social responsibility leads organizations to an incomparable advantage phase, where competition is secondary and financial growth is a result. Those who join later, lose their active advantage and cause passive disadvantage for their organizations. The main purpose of this presentation is to state the obvious and shed the light of the advantages of doing good, while doing well for multinational enterprises, extremely low fluctuation (preventing one of the highest costs), significantly lower marketing budget, enhanced reputation causing customer and supplier loyalty, employee commitment results in higher motivation level leading to better quality at each stages, Corporate Social Responsibility brings Unique Selling Proposition incomparable to others. The paper is based on a large research work conducted for the University of Liverpool Masters in Business Administration program, with the title of Corporate Social Responsibility for Multinational Enterprises to gain incomparable advantage. The research is based on both recent secondary data, but most importantly on 25 interviews with Chief Executive Officers at Multinational Enterprises and / or the Human Resources / corporate communications directors. The direct gains on Corporate Social Responsibility are analyzed when it is embedded into the core of the business. It is evident that project based Corporate Social Responsibility is not effective neither from the supported topic, Non-governmental Organizations point of view nor from the organization’s long-term sustainability point of view. Surveys have been conducted, data compared and consequences drawn. Corporate Social Responsibility must be started inside of the business to strengthen it. First, commit employees. It must come from the Chief Executive Officer. It must be related to the business profile. It has to be long term. They will commit customers. B-corps are coming (e.g. Unilever); the phenomenon of social enterprises has become a leading one.

Keywords: B-corps, embedded into core business, first inside, unique advantage

Procedia PDF Downloads 207
2020 Measuring Innovative and Entrepreneurial Networks Performance

Authors: Luís Farinha, João J. Ferreira

Abstract:

Nowadays innovation represents a challenge crucial to remaining globally competitive. This study seeks to develop a conceptual model aimed at measuring the dynamic interactions of the triple/quadruple helix, balancing innovation and entrepreneurship initiatives as pillars of regional competitiveness – the Regional Helix Scoreboard (RHS). To this aim, different strands of literature are identified according to their focus on specific regional competitiveness governance mechanisms. We put forward an overview of the state-of-the-art of research and is duly assessed in order to develop and propose a framework of analysis that enables an integrated approach in the context of collaborative dynamics. We conclude by presenting the RHS for the study of regional competitiveness dynamics, which integrates and associates different backgrounds and identifies a number of key performance indicators for research challenges.

Keywords: entrepreneurship, KPIs, innovation, performance measurement, regional competitiveness, regional helix scoreboard

Procedia PDF Downloads 331
2019 Mechanical Properties and Microstructure of Ultra-High Performance Concrete Containing Fly Ash and Silica Fume

Authors: Jisong Zhang, Yinghua Zhao

Abstract:

The present study investigated the mechanical properties and microstructure of Ultra-High Performance Concrete (UHPC) containing supplementary cementitious materials (SCMs), such as fly ash (FA) and silica fume (SF), and to verify the synergistic effect in the ternary system. On the basis of 30% fly ash replacement, the incorporation of either 10% SF or 20% SF show a better performance compared to the reference sample. The efficiency factor (k-value) was calculated as a synergistic effect to predict the compressive strength of UHPC with these SCMs. The SEM of micrographs and pore volume from BJH method indicate a high correlation with compressive strength. Further, an artificial neural networks model was constructed for prediction of the compressive strength of UHPC containing these SCMs.

Keywords: artificial neural network, fly ash, mechanical properties, ultra-high performance concrete

Procedia PDF Downloads 417
2018 UniFi: Universal Filter Model for Image Enhancement

Authors: Aleksei Samarin, Artyom Nazarenko, Valentin Malykh

Abstract:

Image enhancement is becoming more and more popular, especially on mobile devices. Nowadays, it is a common approach to enhance an image using a convolutional neural network (CNN). Such a network should be of significant size; otherwise, a possibility for the artifacts to occur is overgrowing. The existing large CNNs are computationally expensive, which could be crucial for mobile devices. Another important flaw of such models is they are poorly interpretable. There is another approach to image enhancement, namely, the usage of predefined filters in combination with the prediction of their applicability. We present an approach following this paradigm, which outperforms both existing CNN-based and filter-based approaches in the image enhancement task. It is easily adaptable for mobile devices since it has only 47 thousand parameters. It shows the best SSIM 0.919 on RANDOM250 (MIT Adobe FiveK) among small models and is thrice faster than previous models.

Keywords: universal filter, image enhancement, neural networks, computer vision

Procedia PDF Downloads 103
2017 Image Processing techniques for Surveillance in Outdoor Environment

Authors: Jayanth C., Anirudh Sai Yetikuri, Kavitha S. N.

Abstract:

This paper explores the development and application of computer vision and machine learning techniques for real-time pose detection, facial recognition, and number plate extraction. Utilizing MediaPipe for pose estimation, the research presents methods for detecting hand raises and ducking postures through real-time video analysis. Complementarily, facial recognition is employed to compare and verify individual identities using the face recognition library. Additionally, the paper demonstrates a robust approach for extracting and storing vehicle number plates from images, integrating Optical Character Recognition (OCR) with a database management system. The study highlights the effectiveness and versatility of these technologies in practical scenarios, including security and surveillance applications. The findings underscore the potential of combining computer vision techniques to address diverse challenges and enhance automated systems for both individual and vehicular identification. This research contributes to the fields of computer vision and machine learning by providing scalable solutions and demonstrating their applicability in real-world contexts.

Keywords: computer vision, pose detection, facial recognition, number plate extraction, machine learning, real-time analysis, OCR, database management

Procedia PDF Downloads 30
2016 Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources

Authors: Sihem Kadem, Ratiba Irinislimane, Naima Belhaneche

Abstract:

The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation.

Keywords: alfa fiber, biocomposite, biodegradation, soil, sunflower oil

Procedia PDF Downloads 164
2015 Machining Responce of Austempered Ductile Iron with Varying Cutting Speed and Depth of Cut

Authors: Prashant Parhad, Vinayak Dakre, Ajay Likhite, Jatin Bhatt

Abstract:

This work mainly focuses on machinability studies of Austempered Ductile Iron (ADI). The Ductile Iron (DI) was austempered at 250 oC for different durations and the process window for austempering was established by studying the microstructure. The microstructural characterization of the material was done using optical microscopy, SEM and XRD. The samples austempered as per the process window were then subjected to turning using a TiAlN-coated tungsten carbide insert to study the effect of cutting parameters, namely the cutting speed and the depth of cut. The effect was investigated in terms of cutting forces required as well as the surface roughness obtained. The turning was conducted on a CNC turning machine and primary (Fx), radial (Fy) and feed (Fz) cutting forces were quantified with a three-component dynamometer. It was observed that the magnitude of radial force was more than that of primary cutting force for all cutting speed and for various depths of cut studied. It has also been seen that increasing the cutting speed improves the surface quality. The observed machinability behaviour was investigated in light of the microstructure of the material obtained under the given austempering conditions and a structure-property- co-relation was established between the two. For all cutting speed and depth of cut, the best machining response in terms of cutting forces and surface quality was obtained towards the centre of process window.

Keywords: process window, cutting speed, depth of cut, surface roughness

Procedia PDF Downloads 371
2014 Titanium Nitride Nanoparticles for Biological Applications

Authors: Nicole Nazario Bayon, Prathima Prabhu Tumkur, Nithin Krisshna Gunasekaran, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Titanium nitride (TiN) nanoparticles have sparked interest over the past decade due to their characteristics such as thermal stability, extreme hardness, low production cost, and similar optical properties to gold. In this study, TiN nanoparticles were synthesized via a thermal benzene route to obtain a black powder of nanoparticles. The final product was drop cast onto conductive carbon tape and sputter coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDX) that revealed they were spherical. ImageJ software determined the average size of the TiN nanoparticles was 79 nm in diameter. EDX revealed the elements present in the sample and showed no impurities. Further characterization by X-ray diffraction (XRD) revealed characteristic peaks of cubic phase titanium nitride, and crystallite size was calculated to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size and size distribution of the TiN nanoparticles, with average size being 154 nm. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged. Biocompatibility studies using MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay showed TiN nanoparticles are not cytotoxic at low concentrations (2, 5, 10, 25, 50, 75 mcg/well), and cell viability began to decrease at a concentration of 100 mcg/well.

Keywords: biocompatibility, characterization, cytotoxicity, nanoparticles, synthesis, titanium nitride

Procedia PDF Downloads 182
2013 Features Valuation of Intellectual Capital in the Organization

Authors: H. M. Avanesyan

Abstract:

Economists have been discussing the importance of intangible assets for the success of organization for many years. The term intellectual capital was popularized in the 1990s by Thomas Stewart. “Intellectual capital is the knowledge, applied experience, enterprise processes and technology customer relationship and professional skills which are valuable assets to an organization.” Human capital – includes employee brainpower, competence, skills, experience and knowledge. Customer capital – includes relations and networks with partners, suppliers, distributors, and customers. The objective of the article is to assess one of the key components of organizational culture – organizational values. The focus of the survey was on assessing how intellectual capital presented in these values of the organization. In the conclusion section the article refers to underestimation of intellectual capital by the organization management and the various possible negative effects of the latter.

Keywords: human capital, intellectual capital, organizational culture, management, social identity, organization

Procedia PDF Downloads 469
2012 The Impacts of an Adapted Literature Circle Model on Reading Comprehension, Engagement, and Cooperation in an EFL Reading Course

Authors: Tiantian Feng

Abstract:

There is a dearth of research on the literary circle as a teaching strategy in English as a Foreign Language (EFL) classes in Chinese colleges and universities and even fewer empirical studies on its impacts. In this one-quarter, design-based project, the researcher aims to increase students’ engagement, cooperation, and, on top of that, reading comprehension performance by utilizing a researcher-developed, adapted reading circle model in an EFL reading course at a Chinese college. The model also integrated team-based learning and portfolio assessment, with an emphasis on the specialization of individual responsibilities, contributions, and outcomes in reading projects, with the goal of addressing current issues in EFL classes at Chinese colleges, such as passive learning, test orientation, ineffective and uncooperative teamwork, and lack of dynamics. In this quasi-experimental research, two groups of students enrolled in the course were invited to participate in four in-class team projects, with the intervention class following the adapted literature circle model and team members rotating as Leader, Coordinator, Brain trust, and Reporter. The researcher/instructor used a sequential explanatory mixed-methods approach to quantitatively analyze the final grades for the pre-and post-tests, as well as individual scores for team projects and will code students' artifacts in the next step, with the results to be reported in a subsequent paper(s). Initial analysis showed that both groups saw an increase in final grades, but the intervention group enjoyed a more significant boost, suggesting that the adapted reading circle model is effective in improving students’ reading comprehension performance. This research not only closes the empirical research gap of literature circles in college EFL classes in China but also adds to the pool of effective ways to optimize reading comprehension performance and class performance in college EFL classes.

Keywords: literature circle, EFL teaching, college english reading, reading comprehension

Procedia PDF Downloads 103
2011 Preparation of Silicon-Based Oxide Hollow Nanofibers Using Single-Nozzle Electrospinning

Authors: Juiwen Liang, Choliang Chung

Abstract:

In this study, the silicon-base oxide nanofibers with hollow structure were prepared using single-nozzle electrospinning and heat treatment. Firstly, precursor solution was prepared: the Polyvinylpyrrolidone (PVP) and Tetraethyl orthosilicate (TEOS) dissolved in ethanol and to make sure the concentration of solution in appropriate using single-nozzle electrospinning to produce the nanofibers. Secondly, control morphology of the electrostatic spinning nanofibers was conducted, and design the temperature profile to created hollow nanofibers, exploring the morphology and properties of nanofibers. The characterized of nanofibers, following instruments were used: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscopy (TEM), Photoluminescence (PL), X-ray Diffraction (XRD). The AFM was used to scan the nanofibers, and 3D Graphics were applied to explore the surface morphology of fibers. FE-SEM and TEM were used to explore the morphology and diameter of nanofibers and hollow nanofiber. The excitation and emission spectra explored by PL. Finally, XRD was used for identified crystallization of ceramic nanofibers. Using electrospinning technique followed by subsequent heat treatment, we have successfully prepared silicon-base oxide nanofibers with hollow structure. Thus, the microstructure and morphology of electrostatic spinning silicon-base oxide hollow nanofibers were explored. Major characteristics of the nanofiber in terms of crystalline, optical properties and crystal structure were identified.

Keywords: electrospinning, single-nozzle, hollow, nanofibers

Procedia PDF Downloads 352
2010 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 216
2009 Filter for the Measurement of Supraharmonics in Distribution Networks

Authors: Sivaraman Karthikeyan

Abstract:

Due to rapidly developing power electronics devices and technologies such as power line communication or self-commutating converters, voltage and current distortion, as well as interferences, have increased in the frequency range of 2 kHz to 150 kHz; there is an urgent need for regulation of electromagnetic compatibility (EMC) standards in this frequency range. Measuring or testing compliance with emission and immunity limitations necessitates the use of precise, repeatable measuring methods. Appropriate filters to minimize the fundamental component and its harmonics below 2 kHz in the measuring signal would improve the measurement accuracy in this frequency range leading to better analysis. This paper discusses filter suggestions in the current measurement standard and proposes an infinite impulse response (IIR) filter design that is optimized for a low number of poles, strong fundamental damping, and high accuracy above 2 kHz. The new filter’s transfer function is delivered as a result. An analog implementation is derived from the overall design.

Keywords: supraharmonics, 2 kHz, 150 kHz, filter, analog filter

Procedia PDF Downloads 148
2008 The Role of Predictive Modeling and Optimization in Enhancing Smart Factory Efficiency

Authors: Slawomir Lasota, Tomasz Kajdanowicz

Abstract:

This research examines the application of predictive modelling and optimization algorithms to improve production efficiency in smart factories. Utilizing gradient boosting and neural networks, the study builds robust KPI estimators to predict production outcomes based on real-time data. Optimization methods, including Bayesian optimization and gradient-based algorithms, identify optimal process configurations that maximize availability, efficiency, and quality KPIs. The paper highlights the modular architecture of a recommender system that integrates predictive models, data visualization, and adaptive automation. Comparative analysis across multiple production processes reveals significant improvements in operational performance, laying the foundation for scalable, self-regulating manufacturing systems.

Keywords: predictive modeling, optimization, smart factory, efficiency

Procedia PDF Downloads 10
2007 Direct Current Grids in Urban Planning for More Sustainable Urban Energy and Mobility

Authors: B. Casper

Abstract:

The energy transition towards renewable energies and drastically reduced carbon dioxide emissions in Germany drives multiple sectors into a transformation process. Photovoltaic and on-shore wind power are predominantly feeding in the low and medium-voltage grids. The electricity grid is not laid out to allow an increasing feed-in of power in low and medium voltage grids. Electric mobility is currently in the run-up phase in Germany and still lacks a significant amount of charging stations. The additional power demand by e-mobility cannot be supplied by the existing electric grids in most cases. The future demands in heating and cooling of commercial and residential buildings are increasingly generated by heat-pumps. Yet the most important part in the energy transition is the storage of surplus energy generated by photovoltaic and wind power sources. Water electrolysis is one way to store surplus energy known as power-to-gas. With the vehicle-to-grid technology, the upcoming fleet of electric cars could be used as energy storage to stabilize the grid. All these processes use direct current (DC). The demand of bi-directional flow and higher efficiency in the future grids can be met by using DC. The Flexible Electrical Networks (FEN) research campus at RWTH Aachen investigates interdisciplinary about the advantages, opportunities, and limitations of DC grids. This paper investigates the impact of DC grids as a technological innovation on the urban form and urban life. Applying explorative scenario development, analyzation of mapped open data sources on grid networks and research-by-design as a conceptual design method, possible starting points for a transformation to DC medium voltage grids could be found. Several fields of action have emerged in which DC technology could become a catalyst for future urban development: energy transition in urban areas, e-mobility, and transformation of the network infrastructure. The investigation shows a significant potential to increase renewable energy production within cities with DC grids. The charging infrastructure for electric vehicles will predominantly be using DC in the future because fast and ultra fast charging can only be achieved with DC. Our research shows that e-mobility, combined with autonomous driving has the potential to change the urban space and urban logistics fundamentally. Furthermore, there are possible win-win-win solutions for the municipality, the grid operator and the inhabitants: replacing overhead transmission lines by underground DC cables to open up spaces in contested urban areas can lead to a positive example of how the energy transition can contribute to a more sustainable urban structure. The outlook makes clear that target grid planning and urban planning will increasingly need to be synchronized.

Keywords: direct current, e-mobility, energy transition, grid planning, renewable energy, urban planning

Procedia PDF Downloads 129
2006 Analysis of Cooperative Hybrid ARQ with Adaptive Modulation and Coding on a Correlated Fading Channel Environment

Authors: Ibrahim Ozkan

Abstract:

In this study, a cross-layer design which combines adaptive modulation and coding (AMC) and hybrid automatic repeat request (HARQ) techniques for a cooperative wireless network is investigated analytically. Previous analyses of such systems in the literature are confined to the case where the fading channel is independent at each retransmission, which can be unrealistic unless the channel is varying very fast. On the other hand, temporal channel correlation can have a significant impact on the performance of HARQ systems. In this study, utilizing a Markov channel model which accounts for the temporal correlation, the performance of non-cooperative and cooperative networks are investigated in terms of packet loss rate and throughput metrics for Chase combining HARQ strategy.

Keywords: cooperative network, adaptive modulation and coding, hybrid ARQ, correlated fading

Procedia PDF Downloads 147
2005 Speaker Recognition Using LIRA Neural Networks

Authors: Nestor A. Garcia Fragoso, Tetyana Baydyk, Ernst Kussul

Abstract:

This article contains information from our investigation in the field of voice recognition. For this purpose, we created a voice database that contains different phrases in two languages, English and Spanish, for men and women. As a classifier, the LIRA (Limited Receptive Area) grayscale neural classifier was selected. The LIRA grayscale neural classifier was developed for image recognition tasks and demonstrated good results. Therefore, we decided to develop a recognition system using this classifier for voice recognition. From a specific set of speakers, we can recognize the speaker’s voice. For this purpose, the system uses spectrograms of the voice signals as input to the system, extracts the characteristics and identifies the speaker. The results are described and analyzed in this article. The classifier can be used for speaker identification in security system or smart buildings for different types of intelligent devices.

Keywords: extreme learning, LIRA neural classifier, speaker identification, voice recognition

Procedia PDF Downloads 179
2004 Nonlinear Adaptive PID Control for a Semi-Batch Reactor Based on an RBF Network

Authors: Magdi. M. Nabi, Ding-Li Yu

Abstract:

Control of a semi-batch polymerization reactor using an adaptive radial basis function (RBF) neural network method is investigated in this paper. A neural network inverse model is used to estimate the valve position of the reactor; this method can identify the controlled system with the RBF neural network identifier. The weights of the adaptive PID controller are timely adjusted based on the identification of the plant and self-learning capability of RBFNN. A PID controller is used in the feedback control to regulate the actual temperature by compensating the neural network inverse model output. Simulation results show that the proposed control has strong adaptability, robustness and satisfactory control performance and the nonlinear system is achieved.

Keywords: Chylla-Haase polymerization reactor, RBF neural networks, feed-forward, feedback control

Procedia PDF Downloads 705
2003 Maritime Transportation and Environmental Pollution: Emerging Trends and Challenges

Authors: Emil Mathew

Abstract:

Liberalisation policies adopted by a large number of countries, implementation of technological innovations with development in communication networks and continuous reduction in transport costs contributed towards the growth of international transportation of goods over the last 50 to 60 years. The present paper examines the environmental externalities of maritime transportation, that is, externalities associated with the movement of cargoes, as distinct from those emanate from production and consumption of goods. Though shipping is less polluting compared to other modes of transportation, considering the huge volume of goods transported and future growth prospects, it is important to examine environmental externalities of maritime transportation. It focuses on varied types of environmental externalities of maritime transportation and suggests that appropriate policies may be adopted by international agencies to address this issue without adversely affecting the course of international trade and also its possibility to get diverted to alternate modes of transportation.

Keywords: externalities of globalisation, maritime environment, maritime externality, transportation externality

Procedia PDF Downloads 290
2002 Ensemble Machine Learning Approach for Estimating Missing Data from CO₂ Time Series

Authors: Atbin Mahabbati, Jason Beringer, Matthias Leopold

Abstract:

To address the global challenges of climate and environmental changes, there is a need for quantifying and reducing uncertainties in environmental data, including observations of carbon, water, and energy. Global eddy covariance flux tower networks (FLUXNET), and their regional counterparts (i.e., OzFlux, AmeriFlux, China Flux, etc.) were established in the late 1990s and early 2000s to address the demand. Despite the capability of eddy covariance in validating process modelling analyses, field surveys and remote sensing assessments, there are some serious concerns regarding the challenges associated with the technique, e.g. data gaps and uncertainties. To address these concerns, this research has developed an ensemble model to fill the data gaps of CO₂ flux to avoid the limitations of using a single algorithm, and therefore, provide less error and decline the uncertainties associated with the gap-filling process. In this study, the data of five towers in the OzFlux Network (Alice Springs Mulga, Calperum, Gingin, Howard Springs and Tumbarumba) during 2013 were used to develop an ensemble machine learning model, using five feedforward neural networks (FFNN) with different structures combined with an eXtreme Gradient Boosting (XGB) algorithm. The former methods, FFNN, provided the primary estimations in the first layer, while the later, XGB, used the outputs of the first layer as its input to provide the final estimations of CO₂ flux. The introduced model showed slight superiority over each single FFNN and the XGB, while each of these two methods was used individually, overall RMSE: 2.64, 2.91, and 3.54 g C m⁻² yr⁻¹ respectively (3.54 provided by the best FFNN). The most significant improvement happened to the estimation of the extreme diurnal values (during midday and sunrise), as well as nocturnal estimations, which is generally considered as one of the most challenging parts of CO₂ flux gap-filling. The towers, as well as seasonality, showed different levels of sensitivity to improvements provided by the ensemble model. For instance, Tumbarumba showed more sensitivity compared to Calperum, where the differences between the Ensemble model on the one hand and the FFNNs and XGB, on the other hand, were the least of all 5 sites. Besides, the performance difference between the ensemble model and its components individually were more significant during the warm season (Jan, Feb, Mar, Oct, Nov, and Dec) compared to the cold season (Apr, May, Jun, Jul, Aug, and Sep) due to the higher amount of photosynthesis of plants, which led to a larger range of CO₂ exchange. In conclusion, the introduced ensemble model slightly improved the accuracy of CO₂ flux gap-filling and robustness of the model. Therefore, using ensemble machine learning models is potentially capable of improving data estimation and regression outcome when it seems to be no more room for improvement while using a single algorithm.

Keywords: carbon flux, Eddy covariance, extreme gradient boosting, gap-filling comparison, hybrid model, OzFlux network

Procedia PDF Downloads 142
2001 Combined PV Cooling and Nighttime Power Generation through Smart Thermal Management of Photovoltaic–Thermoelectric Hybrid Systems

Authors: Abdulrahman M. Alajlan, Saichao Dang, Qiaoqiang Gan

Abstract:

Photovoltaic (PV) cells, while pivotal for solar energy harnessing, confront a challenge due to the presence of persistent residual heat. This thermal energy poses significant obstacles to the performance and longevity of PV cells. Mitigating this thermal issue is imperative, particularly in tropical regions where solar abundance coexists with elevated ambient temperatures. In response, a sustainable and economically viable solution has been devised, incorporating water-passive cooling within a Photovoltaic-Thermoelectric (PV-TEG) hybrid system to address PV cell overheating. The implemented system has significantly reduced the operating temperatures of PV cells, achieving a notable reduction of up to 15 °C below the temperature observed in standalone PV systems. In addition, a thermoelectric generator (TEG) integrated into the system significantly enhances power generation, particularly during nighttime operation. The developed hybrid system demonstrates its capability to generate power at a density of 0.5 Wm⁻² during nighttime, which is sufficient to concurrently power multiple light-emitting diodes, demonstrating practical applications for nighttime power generation. Key findings from this research include a consistent temperature reduction exceeding 10 °C for PV cells, translating to a 5% average enhancement in PV output power compared to standalone PV systems. Experimental demonstrations underscore nighttime power generation of 0.5 Wm⁻², with the potential to achieve 0.8 Wm⁻² through simple geometric optimizations. The optimal cooling of PV cells is determined by the volume of water in the heat storage unit, exhibiting an inverse relationship with the optimal performance for nighttime power generation. Furthermore, the TEG output effectively powers a lighting system with up to 5 LEDs during the night. This research not only proposes a practical solution for maximizing solar radiation utilization but also charts a course for future advancements in energy harvesting technologies.

Keywords: photovoltaic-thermoelectric systems, nighttime power generation, PV thermal management, PV cooling

Procedia PDF Downloads 89