Search results for: clinical simulation
5469 A Longitudinal Study of Social Engagement in Classroom in Children with Autism Spectrum Disorder
Authors: Cecile Garry, Katia Rovira, Julie Brisson
Abstract:
Autism Spectrum Disorder (ASD) is defined by a qualitative and quantitative impairment of social interaction. Indeed early intervention programs, such as the Early Start Denver Model (ESDM), aimed at encouraging the development of social skills. In classroom, the children need to be socially engaged to learn. Early intervention programs can thus be implemented in kindergarten schools. In these schools, ASD children have more opportunities to interact with their peers or adults than in elementary schools. However, the preschool children with ASD are less socially engaged than their typically developing peers in the classroom. They initiate, respond and maintain less the social interactions. In addition, they produce more responses than initiations. When they interact, the non verbal communication is more used than verbal or symbolic communication forms and they are more engaged with adults than with peers. Nevertheless, communicative patterns may vary according to the clinical profiles of ASD children. Indeed, the ASD children with better cognitive skills interact more with their peers and use more symbolic communication than the ASD children with a low cognitive level. ASD children with the less severe symptoms use more the verbal communication than ASD children with the more severe symptoms. Small groups and structured activities encourage coordinated joint engagement episodes in ASD children. Our goal is to evaluate ASD children’s social engagement development in class, with their peers or adults, during dyadic or group activities. Participants were 19 preschool children with ASD aged from 3 to 6 years old that benefited of an early intervention in special kindergarten schools. Severity of ASD symptoms was measured with the CARS at the beginning of the follow-up. Classroom situations of interaction were recorded during 10 minutes (5 minutes of dyadic interaction and 5 minutes of a group activity), every 2 months, during 10 months. Social engagement behaviors of children, including initiations, responses and imitation, directed to a peer or an adult, were then coded. The Observer software (Noldus) that allows to annotate behaviors was the coding system used. A double coding was conducted and revealed a good inter judges fidelity. Results show that ASD children were more often and longer socially engaged in dyadic than in groups situations. They were also more engaged with adults than with peers. Children with the less severe symptoms of ASD were more socially engaged in groups situations than children with the more severe symptoms of ASD. Then, ASD children with the less severe symptoms of ASD were more engaged with their peers than ASD children with the more severe symptoms of ASD. However, the engagement frequency increased during the 10 month of follow-up but only for ASD children with the more severe symptoms at the beginning. To conclude, these results highlighted the necessity of individualizing early intervention programs according to the clinical profile of the child.Keywords: autism spectrum disorder, preschool children, developmental psychology, early interventions, social interactions
Procedia PDF Downloads 1635468 Predicting Reading Comprehension in Spanish: The Evidence for the Simple View Model
Authors: Gabriela Silva-Maceda, Silvia Romero-Contreras
Abstract:
Spanish is a more transparent language than English given that it has more direct correspondences between sounds and letters. It has become important to understand how decoding and linguistic comprehension contribute to reading comprehension in the framework of the widely known Simple View Model. This study aimed to identify the level of prediction by these two components in a sample of 1st to 4th grade children attending two schools in central Mexico (one public and one private). Within each school, ten children were randomly selected in each grade level, and their parents were asked about reading habits and socioeconomic information. In total, 79 children completed three standardized tests measuring decoding (pseudo-word reading), linguistic comprehension (understanding of paragraphs) and reading comprehension using subtests from the Clinical Evaluation of Language Fundamentals-Spanish, Fourth Edition, and the Test de Lectura y Escritura en Español (LEE). The data were analyzed using hierarchical regression, with decoding as a first step and linguistic comprehension as a second step. Results showed that decoding accounted for 19.2% of the variance in reading comprehension, while linguistic comprehension accounted for an additional 10%, adding up to 29.2% of variance explained: F (2, 75)= 15.45, p <.001. Socioeconomic status derived from parental questionnaires showed a statistically significant association with the type of school attended, X2 (3, N= 79) = 14.33, p =.002. Nonetheless when analyzing the Simple View components, only decoding differences were statistically significant (t = -6.92, df = 76.81, p < .001, two-tailed); reading comprehension differences were also significant (t = -3.44, df = 76, p = .001, two-tailed). When socioeconomic status was included in the model, it predicted a 5.9% unique variance, even when already accounting for Simple View components, adding to a 35.1% total variance explained. This three-predictor model was also significant: F (3, 72)= 12.99, p <.001. In addition, socioeconomic status was significantly correlated with the amount of non-textbook books parents reported to have at home for both adults (rho = .61, p<.001) and children (rho= .47, p<.001). Results converge with a large body of literature finding socioeconomic differences in reading comprehension; in addition this study suggests that these differences were also present in decoding skills. Although linguistic comprehension differences between schools were expected, it is argued that the test used to collect this variable was not sensitive to linguistic differences, since it came from a test to diagnose clinical language disabilities. Even with this caveat, results show that the components of the Simple View Model can predict less than a third of the variance in reading comprehension in Spanish. However, the results also suggest that a fuller model of reading comprehension is obtained when considering the family’s socioeconomic status, given the potential differences shown by the socioeconomic status association with books at home, factors that are particularly important in countries where inequality gaps are relatively large.Keywords: decoding, linguistic comprehension, reading comprehension, simple view model, socioeconomic status, Spanish
Procedia PDF Downloads 3335467 Numerical Study of the Breakdown of Surface Divergence Based Models for Interfacial Gas Transfer Velocity at Large Contamination Levels
Authors: Yasemin Akar, Jan G. Wissink, Herlina Herlina
Abstract:
The effect of various levels of contamination on the interfacial air–water gas transfer velocity is studied by Direct Numerical Simulation (DNS). The interfacial gas transfer is driven by isotropic turbulence, introduced at the bottom of the computational domain, diffusing upwards. The isotropic turbulence is generated in a separate, concurrently running the large-eddy simulation (LES). The flow fields in the main DNS and the LES are solved using fourth-order discretisations of convection and diffusion. To solve the transport of dissolved gases in water, a fifth-order-accurate WENO scheme is used for scalar convection combined with a fourth-order central discretisation for scalar diffusion. The damping effect of the surfactant contamination on the near surface (horizontal) velocities in the DNS is modelled using horizontal gradients of the surfactant concentration. An important parameter in this model, which corresponds to the level of contamination, is ReMa⁄We, where Re is the Reynolds number, Ma is the Marangoni number, and We is the Weber number. It was previously found that even small levels of contamination (ReMa⁄We small) lead to a significant drop in the interfacial gas transfer velocity KL. It is known that KL depends on both the Schmidt number Sc (ratio of the kinematic viscosity and the gas diffusivity in water) and the surface divergence β, i.e. K_L∝√(β⁄Sc). Previously it has been shown that this relation works well for surfaces with low to moderate contamination. However, it will break down for β close to zero. To study the validity of this dependence in the presence of surface contamination, simulations were carried out for ReMa⁄We=0,0.12,0.6,1.2,6,30 and Sc = 2, 4, 8, 16, 32. First, it will be shown that the scaling of KL with Sc remains valid also for larger ReMa⁄We. This is an important result that indicates that - for various levels of contamination - the numerical results obtained at low Schmidt numbers are also valid for significantly higher and more realistic Sc. Subsequently, it will be shown that - with increasing levels of ReMa⁄We - the dependency of KL on β begins to break down as the increased damping of near surface fluctuations results in an increased damping of β. Especially for large levels of contamination, this damping is so severe that KL is found to be underestimated significantly.Keywords: contamination, gas transfer, surfactants, turbulence
Procedia PDF Downloads 3005466 Biocompatibilities of Various Calcium Silicate Cements
Authors: Seok Woo Chang, Kee Yeon Kum, Kwang Shik Bae, WooCheol Lee
Abstract:
Aim: The objective of this study was to compare the biocompatibilities and mineralization potential of ProRoot MTA and newly developed calcium phosphate based cement, Capseal. Materials and Methods: The biocompatibilities and mineralization-related gene expressions (Bone sialoprotein (BSP) and osteocalcin (OCN)) of ProRoot MTA and Capseal were also compared by a methylthiazol tetrazolium (MTT) assay and reverse transcription-polymerization chain reaction (RT-PCR) analysis on 1, 3, and 7 days, respectively. Empty rings were used as control group. The results were statistically analyzed by Kruskal-Wallis test with a Bonferroni correction. P-value of < 0.05 was considered significant. Results: The biocompatibilities of ProRoot MTA and Capseal were equally favorable. ProRoot MTA and Capseal affected the messenger RNA expression of osteocalcin and osteonectin. Conclusions: Based on the results, both ProRoot MTA and Capseal could be a useful biomaterial in clinical endodontics.Keywords: biocompatibility, calcium silicate cement, MTT, RT-PCR
Procedia PDF Downloads 3955465 Building a Framework for Digital Emergency Response System for Aged, Long Term Care and Chronic Disease Patients in Asia Pacific Region
Authors: Nadeem Yousuf Khan
Abstract:
This paper proposes the formation of a digital emergency response system (dERS) in the aged, long-term care, and chronic disease setups in the post-COVID healthcare ecosystem, focusing on the Asia Pacific market where the aging population is increasing significantly. It focuses on the use of digital technologies such as wearables, a global positioning system (GPS), and mobile applications to build an integrated care system for old folks with co-morbidities and other chronic diseases. The paper presents a conceptual framework of a connected digital health ecosystem that not only provides proactive care to registered patients but also prevents the damages due to sudden conditions such as strokes by alerting and treating the patients in a digitally connected and coordinated manner. A detailed review of existing digital health technologies such as wearables, GPS, and mobile apps was conducted in context with the new post-COVID healthcare paradigm, along with a detailed literature review on the digital health policies and usability. A good amount of research papers is available in the application of digital health, but very few of them discuss the formation of a new framework for a connected digital ecosystem for the aged care population, which is increasing around the globe. A connected digital emergency response system has been proposed by the author whereby all registered patients (chronic disease and aged/long term care) will be connected to the proposed digital emergency response system (dERS). In the proposed ecosystem, patients will be provided with a tracking wrist band and a mobile app through which the control room will be monitoring the mobility and vitals such as atrial fibrillation (AF), blood sugar, blood pressure, and other vital signs. In addition to that, an alert in case if the patient falls down will add value to this system. In case of any variation in the vitals, an alert is sent to the dERS 24/7, and dERS clinical staff immediately trigger that alert which goes to the connected hospital and the adulatory service providers, and the patient is escorted to the nearest connected tertiary care hospital. By the time, the patient reaches the hospital, dERS team is ready to take appropriate clinical action to save the life of the patient. Strokes or myocardial infarction patients can be prevented from disaster if they are accessible to engagement healthcare. This dERS will play an effective role in saving the lives of aged patients or patients with chronic co-morbidities.Keywords: aged care, atrial fibrillation, digital health, digital emergency response system, digital technology
Procedia PDF Downloads 1255464 Improved Performance Using Adaptive Pre-Coding in the Cellular Network
Authors: Yong-Jun Kim, Jae-Hyun Ro, Chang-Bin Ha, Hyoung-Kyu Song
Abstract:
This paper proposes the cooperative transmission scheme with pre-coding because the cellular communication requires high reliability. The cooperative transmission scheme uses pre-coding method with limited feedback information among small cells. Particularly, the proposed scheme has adaptive mode according to the position of mobile station. Thus, demand of recent wireless communication is resolved by this scheme. From the simulation results, the proposed scheme has better performance compared to the conventional scheme in the cellular network.Keywords: CDD, cellular network, pre-coding, SPC
Procedia PDF Downloads 5725463 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning
Authors: Pei Yi Lin
Abstract:
Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model
Procedia PDF Downloads 805462 Physics-Informed Neural Network for Predicting Strain Demand in Inelastic Pipes under Ground Movement with Geometric and Soil Resistance Nonlinearities
Authors: Pouya Taraghi, Yong Li, Nader Yoosef-Ghodsi, Muntaseer Kainat, Samer Adeeb
Abstract:
Buried pipelines play a crucial role in the transportation of energy products such as oil, gas, and various chemical fluids, ensuring their efficient and safe distribution. However, these pipelines are often susceptible to ground movements caused by geohazards like landslides, fault movements, lateral spreading, and more. Such ground movements can lead to strain-induced failures in pipes, resulting in leaks or explosions, leading to fires, financial losses, environmental contamination, and even loss of human life. Therefore, it is essential to study how buried pipelines respond when traversing geohazard-prone areas to assess the potential impact of ground movement on pipeline design. As such, this study introduces an approach called the Physics-Informed Neural Network (PINN) to predict the strain demand in inelastic pipes subjected to permanent ground displacement (PGD). This method uses a deep learning framework that does not require training data and makes it feasible to consider more realistic assumptions regarding existing nonlinearities. It leverages the underlying physics described by differential equations to approximate the solution. The study analyzes various scenarios involving different geohazard types, PGD values, and crossing angles, comparing the predictions with results obtained from finite element methods. The findings demonstrate a good agreement between the results of the proposed method and the finite element method, highlighting its potential as a simulation-free, data-free, and meshless alternative. This study paves the way for further advancements, such as the simulation-free reliability assessment of pipes subjected to PGD, as part of ongoing research that leverages the proposed method.Keywords: strain demand, inelastic pipe, permanent ground displacement, machine learning, physics-informed neural network
Procedia PDF Downloads 655461 Links between Inflammation and Insulin Resistance in Children with Morbid Obesity and Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity is a clinical state associated with low-grade inflammation. It is also a major risk factor for insulin resistance (IR). In its advanced stages, metabolic syndrome (MetS), a much more complicated disease which may lead to life-threatening problems, may develop. Obesity-mediated IR seems to correlate with the inflammation. Human studies performed particularly on pediatric population are scarce. The aim of this study is to detect possible associations between inflammation and IR in terms of some related ratios. 549 children were grouped according to their age- and sex-based body mass index (BMI) percentile tables of WHO. MetS components were determined. Informed consent and approval from the Ethics Committee for Clinical Investigations were obtained. The principles of the Declaration of Helsinki were followed. The exclusion criteria were infection, inflammation, chronic diseases and those under drug treatment. Anthropometric measurements were obtained. Complete blood cell, fasting blood glucose, insulin, and C-reactive protein (CRP) analyses were performed. Homeostasis model assessment of insulin resistance (HOMA-IR), systemic immune inflammation (SII) index, tense index, alanine aminotransferase to aspartate aminotransferase ratio (ALT/AST), neutrophils to lymphocyte (NLR), platelet to lymphocyte, and lymphocyte to monocyte ratios were calculated. Data were evaluated by statistical analyses. The degree for statistical significance was 0.05. Statistically significant differences were found among the BMI values of the groups (p < 0.001). Strong correlations were detected between the BMI and waist circumference (WC) values in all groups. Tense index values were also correlated with both BMI and WC values in all groups except overweight (OW) children. SII index values of children with normal BMI were significantly different from the values obtained in OW, obese, morbid obese and MetS groups. Among all the other lymphocyte ratios, NLR exhibited a similar profile. Both HOMA-IR and ALT/AST values displayed an increasing profile from N towards MetS3 group. BMI and WC values were correlated with HOMA-IR and ALT/AST. Both in morbid obese and MetS groups, significant correlations between CRP versus SII index as well as HOMA-IR versus ALT/AST were found. ALT/AST and HOMA-IR values were correlated with NLR in morbid obese group and with SII index in MetS group, (p < 0.05), respectively. In conclusion, these findings showed that some parameters may exhibit informative differences between the early and late stages of obesity. Important associations among HOMA-IR, ALT/AST, NLR and SII index have come to light in the morbid obese and MetS groups. This study introduced the SII index and NLR as important inflammatory markers for the discrimination of normal and obese children. Interesting links were observed between inflammation and IR in morbid obese children and those with MetS, both being late stages of obesity.Keywords: children, inflammation, insulin resistance, metabolic syndrome, obesity
Procedia PDF Downloads 1405460 Covid Medical Imaging Trial: Utilising Artificial Intelligence to Identify Changes on Chest X-Ray of COVID
Authors: Leonard Tiong, Sonit Singh, Kevin Ho Shon, Sarah Lewis
Abstract:
Investigation into the use of artificial intelligence in radiology continues to develop at a rapid rate. During the coronavirus pandemic, the combination of an exponential increase in chest x-rays and unpredictable staff shortages resulted in a huge strain on the department's workload. There is a World Health Organisation estimate that two-thirds of the global population does not have access to diagnostic radiology. Therefore, there could be demand for a program that could detect acute changes in imaging compatible with infection to assist with screening. We generated a conventional neural network and tested its efficacy in recognizing changes compatible with coronavirus infection. Following ethics approval, a deidentified set of 77 normal and 77 abnormal chest x-rays in patients with confirmed coronavirus infection were used to generate an algorithm that could train, validate and then test itself. DICOM and PNG image formats were selected due to their lossless file format. The model was trained with 100 images (50 positive, 50 negative), validated against 28 samples (14 positive, 14 negative), and tested against 26 samples (13 positive, 13 negative). The initial training of the model involved training a conventional neural network in what constituted a normal study and changes on the x-rays compatible with coronavirus infection. The weightings were then modified, and the model was executed again. The training samples were in batch sizes of 8 and underwent 25 epochs of training. The results trended towards an 85.71% true positive/true negative detection rate and an area under the curve trending towards 0.95, indicating approximately 95% accuracy in detecting changes on chest X-rays compatible with coronavirus infection. Study limitations include access to only a small dataset and no specificity in the diagnosis. Following a discussion with our programmer, there are areas where modifications in the weighting of the algorithm can be made in order to improve the detection rates. Given the high detection rate of the program, and the potential ease of implementation, this would be effective in assisting staff that is not trained in radiology in detecting otherwise subtle changes that might not be appreciated on imaging. Limitations include the lack of a differential diagnosis and application of the appropriate clinical history, although this may be less of a problem in day-to-day clinical practice. It is nonetheless our belief that implementing this program and widening its scope to detecting multiple pathologies such as lung masses will greatly assist both the radiology department and our colleagues in increasing workflow and detection rate.Keywords: artificial intelligence, COVID, neural network, machine learning
Procedia PDF Downloads 1005459 The Use of Video Conferencing to Aid the Decision in Whether Vulnerable Patients Should Attend In-Person Appointments during a COVID Pandemic
Authors: Nadia Arikat, Katharine Blain
Abstract:
During the worst of the COVID pandemic, only essential treatment was provided for patients needing urgent care. With the prolonged extent of the pandemic, there has been a return to more routine referrals for paediatric dentistry advice and treatment for specialist conditions. However, some of these patients and/or their carers may have significant medical issues meaning that attending in-person appointments carries additional risks. This poses an ethical dilemma for clinicians. This project looks at how a secure video conferencing platform (“Near Me”) has been used to assess the need and urgency for in-person new patient visits, particularly for patients and families with additional risks. “Near Me” is a secure online video consulting service used by NHS Scotland. In deciding whether to bring a new patient to the hospital for an appointment, the clinical condition of the teeth together with the urgency for treatment need to be assessed. This is not always apparent from the referral letter. In addition, it is important to judge the risks to the patients and carers of such visits, particularly if they have medical issues. The use and effectiveness of “Near Me” consultations to help decide whether vulnerable paediatric patients should have in-person appointments will be illustrated and discussed using two families: one where the child is medically compromised (Alagille syndrome with previous liver transplant), and the other where there is a medically compromised parent (undergoing chemotherapy and a bone marrow transplant). In both cases, it was necessary to take into consideration the risks and moral implications of requesting that they attend the dental hospital during a pandemic. The option of remote consultation allowed further clinical information to be evaluated and the families take part in the decision-making process about whether and when such visits should be scheduled. These cases will demonstrate how medically compromised patients (or patients with vulnerable carers), could have their dental needs assessed in a socially distanced manner by video consultation. Together, the clinician and the patient’s family can weigh up the risks, with regards to COVID-19, of attending for in-person appointments against the benefit of having treatment. This is particularly important for new paediatric patients who have not yet had a formal assessment. The limitations of this technology will also be discussed. It is limited by internet availability, the strength of the connection, the video quality and families owning a device which allows video calls. For those from a lower socio-economic background or living in some rural areas, this may not be possible or limit its usefulness. For the two patients discussed in this project, where the urgency of their dental condition was unclear, video consultation proved beneficial in deciding an appropriate outcome and preventing unnecessary exposure of vulnerable people to a hospital environment during a pandemic, demonstrating the usefulness of such technology when it is used appropriately.Keywords: COVID-19, paediatrics, triage, video consultations
Procedia PDF Downloads 1035458 Music Piracy Revisited: Agent-Based Modelling and Simulation of Illegal Consumption Behavior
Authors: U. S. Putro, L. Mayangsari, M. Siallagan, N. P. Tjahyani
Abstract:
National Collective Management Institute (LKMN) in Indonesia stated that legal music products were about 77.552.008 unit while illegal music products were about 22.0688.225 unit in 1996 and this number keeps getting worse every year. Consequently, Indonesia named as one of the countries with high piracy levels in 2005. This study models people decision toward unlawful behavior, music content piracy in particular, using agent-based modeling and simulation (ABMS). The classification of actors in the model constructed in this study are legal consumer, illegal consumer, and neutral consumer. The decision toward piracy among the actors is a manifestation of the social norm which attributes are social pressure, peer pressure, social approval, and perceived prevalence of piracy. The influencing attributes fluctuate depending on the majority of surrounding behavior called social network. There are two main interventions undertaken in the model, campaign and peer influence, which leads to scenarios in the simulation: positively-framed descriptive norm message, negatively-framed descriptive norm message, positively-framed injunctive norm with benefits message, and negatively-framed injunctive norm with costs message. Using NetLogo, the model is simulated in 30 runs with 10.000 iteration for each run. The initial number of agent was set 100 proportion of 95:5 for illegal consumption. The assumption of proportion is based on the data stated that 95% sales of music industry are pirated. The finding of this study is that negatively-framed descriptive norm message has a worse reversed effect toward music piracy. The study discovers that selecting the context-based campaign is the key process to reduce the level of intention toward music piracy as unlawful behavior by increasing the compliance awareness. The context of Indonesia reveals that that majority of people has actively engaged in music piracy as unlawful behavior, so that people think that this illegal act is common behavior. Therefore, providing the information about how widespread and big this problem is could make people do the illegal consumption behavior instead. The positively-framed descriptive norm message scenario works best to reduce music piracy numbers as it focuses on supporting positive behavior and subject to the right perception on this phenomenon. Music piracy is not merely economical, but rather social phenomenon due to the underlying motivation of the actors which has shifted toward community sharing. The indication of misconception of value co-creation in the context of music piracy in Indonesia is also discussed. This study contributes theoretically that understanding how social norm configures the behavior of decision-making process is essential to breakdown the phenomenon of unlawful behavior in music industry. In practice, this study proposes that reward-based and context-based strategy is the most relevant strategy for stakeholders in music industry. Furthermore, this study provides an opportunity that findings may generalize well beyond music piracy context. As an emerging body of work that systematically constructs the backstage of law and social affect decision-making process, it is interesting to see how the model is implemented in other decision-behavior related situation.Keywords: music piracy, social norm, behavioral decision-making, agent-based model, value co-creation
Procedia PDF Downloads 1905457 CFD Simulation of the Pressure Distribution in the Upper Airway of an Obstructive Sleep Apnea Patient
Authors: Christina Hagen, Pragathi Kamale Gurmurthy, Thorsten M. Buzug
Abstract:
CFD simulations are performed in the upper airway of a patient suffering from obstructive sleep apnea (OSA) that is a sleep related breathing disorder characterized by repetitive partial or complete closures of the upper airways. The simulations are aimed at getting a better understanding of the pathophysiological flow patterns in an OSA patient. The simulation is compared to medical data of a sleep endoscopic examination under sedation. A digital model consisting of surface triangles of the upper airway is extracted from the MR images by a region growing segmentation process and is followed by a careful manual refinement. The computational domain includes the nasal cavity with the nostrils as the inlet areas and the pharyngeal volume with an outlet underneath the larynx. At the nostrils a flat inflow velocity profile is prescribed by choosing the velocity such that a volume flow rate of 150 ml/s is reached. Behind the larynx at the outlet a pressure of -10 Pa is prescribed. The stationary incompressible Navier-Stokes equations are numerically solved using finite elements. A grid convergence study has been performed. The results show an amplification of the maximal velocity of about 2.5 times the inlet velocity at a constriction of the pharyngeal volume in the area of the tongue. It is the same region that also shows the highest pressure drop from about 5 Pa. This is in agreement with the sleep endoscopic examinations of the same patient under sedation showing complete contractions in the area of the tongue. CFD simulations can become a useful tool in the diagnosis and therapy of obstructive sleep apnea by giving insight into the patient’s individual fluid dynamical situation in the upper airways giving a better understanding of the disease where experimental measurements are not feasible. Within this study, it could been shown on one hand that constriction areas within the upper airway lead to a significant pressure drop and on the other hand a good agreement of the area of pressure drop and the area of contraction could be shown.Keywords: biomedical engineering, obstructive sleep apnea, pharynx, upper airways
Procedia PDF Downloads 3075456 Factors Influencing Family Resilience and Quality of Life in Pediatric Cancer Patients and Their Caregivers: A Cluster Analysis
Authors: Li Wang, Dan Shu, Shiguang Pang, Lixiu Wang, Bing Xiang Yang, Qian Liu
Abstract:
Background: Cancer is one of the most severe diseases in childhood; long-term treatment and its side effects significantly impact the patient's physical, psychological, social functioning and quality of life while also placing substantial physical and psychological burdens on caregivers and families. Family resilience is crucial for children with cancer, helping them cope better with the disease and supporting the family in facing challenges together. As a family-level variable, family resilience requires information from multiple family members. However, to our best knowledge, there is currently no research investigating family resilience from both the perspectives of pediatric cancer patients and their caregivers. Therefore, this study aims to investigate the family resilience and quality of life of pediatric cancer patients from a patient–caregiver dyadic perspective. Methods: A total of 149 dyads of patients diagnosed with pediatric cancer patients and their principal caregivers were recruited from oncology departments of 4 tertiary hospitals in Wuhan and Taiyuan, China. All participants completed questionnaires that identified their demographic and clinical characteristics as well as assessed their family resilience and quality of life for both the patients and their caregivers. K-means cluster analysis was used to identify different clusters of family resilience based on the reports from patients and caregivers. Multivariate logistic regression and linear regression are used to analyze the factors influencing family resilience and quality of life, as well as the relationship between the two. Results: Three clusters of family resilience were identified: a cluster of high family resilience (HR), a cluster of low family resilience (LR), and a cluster of discrepant family resilience (DR). Most (67.1%) families fell into the cluster with low resilience. Characteristics such as the types of caregivers perceived social support of the patient were different among the three clusters. Compared to the LR group, families where the mother is the caregiver and where the patient has high social support are more likely to be assigned to the HR. The quality of life for caregivers was consistently highest in the HR cluster and lowest in the LR cluster. The patient's quality of life is not related to family resilience. In the linear regression analysis of the patient's quality of life, patients who are the first-born have higher quality of life, while those living with their parents have lower quality of life. The participants' characteristics were not associated with the quality of life for caregivers. Conclusions: In most families, family resilience was low. Families with maternal caregivers and patients receiving high levels of social support are more inclined to be higher levels of family resilience. Family resilience was linked to the quality of life of caregivers of pediatric cancer patients. The clinical implications of this findings suggest that healthcare and social support organizations should prioritize and support the participation of mothers in caregiving responsibilities. Furthermore, they should assist families in accessing social support to enhance family resilience. This study also emphasizes the importance of promoting family resilience for enhancing family health and happiness, as well as improving the quality of life for caregivers.Keywords: pediatric cancer, cluster analysis, family resilience, quality of life
Procedia PDF Downloads 425455 Design and Simulation Interface Circuit for Piezoresistive Accelerometers with Offset Cancellation Ability
Authors: Mohsen Bagheri, Ahmad Afifi
Abstract:
This paper presents a new method for read out of the piezoresistive accelerometer sensors. The circuit works based on instrumentation amplifier and it is useful for reducing offset in Wheatstone bridge. The obtained gain is 645 with 1 μv/°c equivalent drift and 1.58 mw power consumption. A Schmitt trigger and multiplexer circuit control output node. A high speed counter is designed in this work. The proposed circuit is designed and simulated in 0.18 μm CMOS technology with 1.8 v power supply.Keywords: piezoresistive accelerometer, zero offset, Schmitt trigger, bidirectional reversible counter
Procedia PDF Downloads 3185454 Modelling and Simulation of Hysteresis Current Controlled Single-Phase Grid-Connected Inverter
Authors: Evren Isen
Abstract:
In grid-connected renewable energy systems, input power is controlled by AC/DC converter or/and DC/DC converter depending on output voltage of input source. The power is injected to DC-link, and DC-link voltage is regulated by inverter controlling the grid current. Inverter performance is considerable in grid-connected renewable energy systems to meet the utility standards. In this paper, modelling and simulation of hysteresis current controlled single-phase grid-connected inverter that is utilized in renewable energy systems, such as wind and solar systems, are presented. 2 kW single-phase grid-connected inverter is simulated in Simulink and modeled in Matlab-m-file. The grid current synchronization is obtained by phase locked loop (PLL) technique in dq synchronous rotating frame. Although dq-PLL can be easily implemented in three-phase systems, there is difficulty to generate β component of grid voltage in single-phase system because single-phase grid voltage exists. Inverse-Park PLL with low-pass filter is used to generate β component for grid angle determination. As grid current is controlled by constant bandwidth hysteresis current control (HCC) technique, average switching frequency and variation of switching frequency in a fundamental period are considered. 3.56% total harmonic distortion value of grid current is achieved with 0.5 A bandwidth. Average value of switching frequency and total harmonic distortion curves for different hysteresis bandwidth are obtained from model in m-file. Average switching frequency is 25.6 kHz while switching frequency varies between 14 kHz-38 kHz in a fundamental period. The average and maximum frequency difference should be considered for selection of solid state switching device, and designing driver circuit. Steady-state and dynamic response performances of the inverter depending on the input power are presented with waveforms. The control algorithm regulates the DC-link voltage by adjusting the output power.Keywords: grid-connected inverter, hysteresis current control, inverter modelling, single-phase inverter
Procedia PDF Downloads 4805453 Spin Rate Decaying Law of Projectile with Hemispherical Head in Exterior Trajectory
Authors: Quan Wen, Tianxiao Chang, Shaolu Shi, Yushi Wang, Guangyu Wang
Abstract:
As a kind of working environment of the fuze, the spin rate decaying law of projectile in exterior trajectory is of great value in the design of the rotation count fixed distance fuze. In addition, it is significant in the field of devices for simulation tests of fuze exterior ballistic environment, flight stability, and dispersion accuracy of gun projectile and opening and scattering design of submunition and illuminating cartridges. Besides, the self-destroying mechanism of the fuze in small-caliber projectile often works by utilizing the attenuation of centrifugal force. In the theory of projectile aerodynamics and fuze design, there are many formulas describing the change law of projectile angular velocity in external ballistic such as Roggla formula, exponential function formula, and power function formula. However, these formulas are mostly semi-empirical due to the poor test conditions and insufficient test data at that time. These formulas are difficult to meet the design requirements of modern fuze because they are not accurate enough and have a narrow range of applications now. In order to provide more accurate ballistic environment parameters for the design of a hemispherical head projectile fuze, the projectile’s spin rate decaying law in exterior trajectory under the effect of air resistance was studied. In the analysis, the projectile shape was simplified as hemisphere head, cylindrical part, rotating band part, and anti-truncated conical tail. The main assumptions are as follows: a) The shape and mass are symmetrical about the longitudinal axis, b) There is a smooth transition between the ball hea, c) The air flow on the outer surface is set as a flat plate flow with the same area as the expanded outer surface of the projectile, and the boundary layer is turbulent, d) The polar damping moment attributed to the wrench hole and rifling mark on the projectile is not considered, e) The groove of the rifle on the rotating band is uniform, smooth and regular. The impacts of the four parts on aerodynamic moment of the projectile rotation were obtained by aerodynamic theory. The surface friction stress of the projectile, the polar damping moment formed by the head of the projectile, the surface friction moment formed by the cylindrical part, the rotating band, and the anti-truncated conical tail were obtained by mathematical derivation. After that, the mathematical model of angular spin rate attenuation was established. In the whole trajectory with the maximum range angle (38°), the absolute error of the polar damping torque coefficient obtained by simulation and the coefficient calculated by the mathematical model established in this paper is not more than 7%. Therefore, the credibility of the mathematical model was verified. The mathematical model can be described as a first-order nonlinear differential equation, which has no analytical solution. The solution can be only gained as a numerical solution by connecting the model with projectile mass motion equations in exterior ballistics.Keywords: ammunition engineering, fuze technology, spin rate, numerical simulation
Procedia PDF Downloads 1525452 A Congenital Case of Dandy-Walker Malformation
Authors: Neerja Meena, Paresh Sukhani
Abstract:
Dandy walker malformation is a generalised disorder of mesenchymal development that affect both the cerebellum and overlying meninges. Classically dandy-walker malformation consists of a triad of- 1:vermian and hemispheric cerebellar hypoplasia 2:cystic dilatation of 4th ventricle 3: enlarged posterior fossa with the upward migration of tentorium(lambdoid- torcular inversion). Clinical presentation: four months old female child with hydrocephalus and neurological symptoms. Generally- early death is common in classic dandy walker malformation. However, if it is relatively mild and uncomplicated by other CNS anomalies, intelligence can be normal and neurologic deficits minimal. Usually, VP shunting is the treatment of choice for this hydrocephalus. Conclusion: MRI is the modality of choice to diagnose posterior fossa malformation. However, it can be ruled out through using during the antenatal check as the prognosis of this malformation is not good; it's better to diagnose it inutero.Keywords: Dandy Walker, Mri, Earlydaignosis, Treatment
Procedia PDF Downloads 805451 The Validation of RadCalc for Clinical Use: An Independent Monitor Unit Verification Software
Authors: Junior Akunzi
Abstract:
In the matter of patient treatment planning quality assurance in 3D conformational therapy (3D-CRT) and volumetric arc therapy (VMAT or RapidArc), the independent monitor unit verification calculation (MUVC) is an indispensable part of the process. Concerning 3D-CRT treatment planning, the MUVC can be performed manually applying the standard ESTRO formalism. However, due to the complex shape and the amount of beams in advanced treatment planning technic such as RapidArc, the manual independent MUVC is inadequate. Therefore, commercially available software such as RadCalc can be used to perform the MUVC in complex treatment planning been. Indeed, RadCalc (version 6.3 LifeLine Inc.) uses a simplified Clarkson algorithm to compute the dose contribution for individual RapidArc fields to the isocenter. The purpose of this project is the validation of RadCalc in 3D-CRT and RapidArc for treatment planning dosimetry quality assurance at Antoine Lacassagne center (Nice, France). Firstly, the interfaces between RadCalc and our treatment planning systems (TPS) Isogray (version 4.2) and Eclipse (version13.6) were checked for data transfer accuracy. Secondly, we created test plans in both Isogray and Eclipse featuring open fields, wedges fields, and irregular MLC fields. These test plans were transferred from TPSs according to the radiotherapy protocol of DICOM RT to RadCalc and the linac via Mosaiq (version 2.5). Measurements were performed in water phantom using a PTW cylindrical semiflex ionisation chamber (0.3 cm³, 31010) and compared with the TPSs and RadCalc calculation. Finally, 30 3D-CRT plans and 40 RapidArc plans created with patients CT scan were recalculated using the CT scan of a solid PMMA water equivalent phantom for 3D-CRT and the Octavius II phantom (PTW) CT scan for RapidArc. Next, we measure the doses delivered into these phantoms for each plan with a 0.3 cm³ PTW 31010 cylindrical semiflex ionisation chamber (3D-CRT) and 0.015 cm³ PTW PinPoint ionisation chamber (Rapidarc). For our test plans, good agreements were found between calculation (RadCalc and TPSs) and measurement (mean: 1.3%; standard deviation: ± 0.8%). Regarding the patient plans, the measured doses were compared to the calculation in RadCalc and in our TPSs. Moreover, RadCalc calculations were compared to Isogray and Eclispse ones. Agreements better than (2.8%; ± 1.2%) were found between RadCalc and TPSs. As for the comparison between calculation and measurement the agreement for all of our plans was better than (2.3%; ± 1.1%). The independent MU verification calculation software RadCal has been validated for clinical use and for both 3D-CRT and RapidArc techniques. The perspective of this project includes the validation of RadCal for the Tomotherapy machine installed at centre Antoine Lacassagne.Keywords: 3D conformational radiotherapy, intensity modulated radiotherapy, monitor unit calculation, dosimetry quality assurance
Procedia PDF Downloads 2185450 Environmental Conditions Simulation Device for Evaluating Fungal Growth on Wooden Surfaces
Authors: Riccardo Cacciotti, Jiri Frankl, Benjamin Wolf, Michael Machacek
Abstract:
Moisture fluctuations govern the occurrence of fungi-related problems in buildings, which may impose significant health risks for users and even lead to structural failures. Several numerical engineering models attempt to capture the complexity of mold growth on building materials. From real life observations, in cases with suppressed daily variations of boundary conditions, e.g. in crawlspaces, mold growth model predictions well correspond with the observed mold growth. On the other hand, in cases with substantial diurnal variations of boundary conditions, e.g. in the ventilated cavity of a cold flat roof, mold growth predicted by the models is significantly overestimated. This study, founded by the Grant Agency of the Czech Republic (GAČR 20-12941S), aims at gaining a better understanding of mold growth behavior on solid wood, under varying boundary conditions. In particular, the experimental investigation focuses on the response of mold to changing conditions in the boundary layer and its influence on heat and moisture transfer across the surface. The main results include the design and construction at the facilities of ITAM (Prague, Czech Republic) of an innovative device allowing for the simulation of changing environmental conditions in buildings. It consists of a square section closed circuit with rough dimensions 200 × 180 cm and cross section roughly 30 × 30 cm. The circuit is thermally insulated and equipped with an electric fan to control air flow inside the tunnel, a heat and humidity exchange unit to control the internal RH and variations in temperature. Several measuring points, including an anemometer, temperature and humidity sensor, a loading cell in the test section for recording mass changes, are provided to monitor the variations of parameters during the experiments. The research is ongoing and it is expected to provide the final results of the experimental investigation at the end of 2022.Keywords: moisture, mold growth, testing, wood
Procedia PDF Downloads 1365449 Reduction of Speckle Noise in Echocardiographic Images: A Survey
Authors: Fathi Kallel, Saida Khachira, Mohamed Ben Slima, Ahmed Ben Hamida
Abstract:
Speckle noise is a main characteristic of cardiac ultrasound images, it corresponding to grainy appearance that degrades the image quality. For this reason, the ultrasound images are difficult to use automatically in clinical use, then treatments are required for this type of images. Then a filtering procedure of these images is necessary to eliminate the speckle noise and to improve the quality of ultrasound images which will be then segmented to extract the necessary forms that exist. In this paper, we present the importance of the pre-treatment step for segmentation. This work is applied to cardiac ultrasound images. In a first step, a comparative study of speckle filtering method will be presented and then we use a segmentation algorithm to locate and extract cardiac structures.Keywords: medical image processing, ultrasound images, Speckle noise, image enhancement, speckle filtering, segmentation, snakes
Procedia PDF Downloads 5345448 Advanced Palliative Aquatics Care Multi-Device AuBento for Symptom and Pain Management by Sensorial Integration and Electromagnetic Fields: A Preliminary Design Study
Authors: J. F. Pollo Gaspary, F. Peron Gaspary, E. M. Simão, R. Concatto Beltrame, G. Orengo de Oliveira, M. S. Ristow Ferreira, J.C. Mairesse Siluk, I. F. Minello, F. dos Santos de Oliveira
Abstract:
Background: Although palliative care policies and services have been developed, research in this area continues to lag. An integrated model of palliative care is suggested, which includes complementary and alternative services aimed at improving the well-being of patients and their families. The palliative aquatics care multi-device (AuBento) uses several electromagnetic techniques to decrease pain and promote well-being through relaxation and interaction among patients, specialists, and family members. Aim: The scope of this paper is to present a preliminary design study of a device capable of exploring the various existing theories on the biomedical application of magnetic fields. This will be achieved by standardizing clinical data collection with sensory integration, and adding new therapeutic options to develop an advanced palliative aquatics care, innovating in symptom and pain management. Methods: The research methodology was based on the Work Package Methodology for the development of projects, separating the activities into seven different Work Packages. The theoretical basis was carried out through an integrative literature review according to the specific objectives of each Work Package and provided a broad analysis, which, together with the multiplicity of proposals and the interdisciplinarity of the research team involved, generated consistent and understandable complex concepts in the biomedical application of magnetic fields for palliative care. Results: Aubento ambience was idealized with restricted electromagnetic exposure (avoiding data collection bias) and sensory integration (allowing relaxation associated with hydrotherapy, music therapy, and chromotherapy or like floating tank). This device has a multipurpose configuration enabling classic or exploratory options on the use of the biomedical application of magnetic fields at the researcher's discretion. Conclusions: Several patients in diverse therapeutic contexts may benefit from the use of magnetic fields or fluids, thus validating the stimuli to clinical research in this area. A device in controlled and multipurpose environments may contribute to standardizing research and exploring new theories. Future research may demonstrate the possible benefits of the aquatics care multi-device AuBento to improve the well-being and symptom control in palliative care patients and their families.Keywords: advanced palliative aquatics care, magnetic field therapy, medical device, research design
Procedia PDF Downloads 1305447 Malnutrition Among Adult Hospitalized Orthopedic Patients: Nursing Role And Nutrition Screening
Authors: Ehsan Ahmed Yahia
Abstract:
Introduction: The nursing role in nutrition screening and assessing hospitalized patients is important. Malnutrition is a common and costly problem, particularly among hospitalized patients, and can have an adverse effect on the healing process. The study's goal is to assess the prevalence of malnutrition among adult hospitalized orthopedic patients and to detect the barriers to the nutrition screening process. Aim of the study: This study aimed to (a) assess the prevalence of malnutrition in hospitalized orthopedic patients and (b) evaluate the relationship between malnutrition and selected clinical outcomes. Material and Methods: This prospective field study was conducted for three months between 03/2022 and 06/2022 in the selected orthopedic departments in a teaching hospital affiliated withCairo University, Egypt. with a total number of one hundred twenty (120) patients. Patients' assessment included checking for malnutrition using the Nutritional Risk Screening Questionnaire. Patients at risk for malnourishment were defined as NRS score ≥ 3. Clinical outcomes under consideration included 1) length of hospitalization, 2) mobilization after surgery and conservative treatment, and 3) rate of adverse events. Results: This study found that malnutrition is a significant problem among patients hospitalized in an orthopedic ward. The prevalence of malnutrition was the highest in patients with lumbar spine and pelvis fractures, followed by the proximal femur and proximal humerus fractures. Patients at risk for malnutrition had significantly prolonged hospitalization, delayed postoperative mobilization, and increased incidence of adverse events.27.8% of the study sample were at risk for malnutrition. The highest prevalence of malnourishment was found in Septic Surgery with 32%, followed by Traumatology with 19.6% and Arthroplasty with 15.3%. A higher prevalence of malnutrition was detected among patients with typical fractures, such as lumbar spine and pelvis (46.7%), proximal femur (34.4%), and proximal humeral (23.7%) fractures. Additionally, patients at risk for malnutrition showed prolonged hospitalization (14.7 ± 11.1 vs. 21.2 ± 11.7 days), delayed postoperative mobilization (2.3 ± 2.9 vs. 4.1 ± 4.9 days), and delayed to mobilize after conservative treatment (1.1 ± 2.7 vs. 1.8 ± 1.9 days). A significant statistical correlation of NRS with individual parameters (Spearman's rank correlation, p < 0.05) was observed. The rate of adverse incidents in patients at risk for malnutrition was significantly higher than that of patients with a regular nutritional status (37.2% vs. 21.1%, p < 0.001). Conclusions: Our results indicate that the prevalence of malnutrition in surgical patients is significant. The nutritional status of patients with typical fractures is especially at risk. Prolonged hospitalization, delayed postoperative mobilization, and delayed mobilization after conservative treatment is significantly associated with malnutrition. In addition, the incidence of adverse events in patients at risk for malnutrition is significantly higher.Keywords: malnutrition, nutritional risk screening, surgery, nursing, orthopedic nurse
Procedia PDF Downloads 1035446 The Unscented Kalman Filter Implementation for the Sensorless Speed Control of a Permanent Magnet Synchronous Motor
Authors: Justas Dilys
Abstract:
ThispaperaddressestheimplementationandoptimizationofanUnscentedKalmanFilter(UKF) for the Permanent Magnet Synchronous Motor (PMSM) sensorless control using an ARM Cortex- M3 microcontroller. A various optimization levels based on arithmetic calculation reduction was implemented in ARM Cortex-M3 microcontroller. The execution time of UKF estimator was up to 90µs without loss of accuracy. Moreover, simulation studies on the Unscented Kalman filters are carried out using Matlab to explore the usability of the UKF in a sensorless PMSMdrive.Keywords: unscented kalman filter, ARM, PMSM, implementation
Procedia PDF Downloads 1755445 A Comparison of Three Protocols Weight-Loss Interventions for Obese Females
Authors: Nayera E. Hassan, Sahar A. El-Masry, Rokia El-Banna, Mohamed S. El Hussieny
Abstract:
There are several different modalities for treatment of obesity. Common intervention methods for obesity include low-calorie diet, exercise. Also acupuncture has shown good therapeutic results in the treatment of obesity. A recent clinical observation showed that laser acupuncture could reduce body weight and body mass index in obese persons. So, the aim of this research is focused on body composition changes as related to type of intervention, before and after intentional weight loss in overweight and obesity. 76 subjects were included in the study analysis. The present study recommended that every obese female must do lipid profile and fasting blood sugar analysis before weight-loss intervention to take the decision of which method should be used.Keywords: obesity, weight-loss, body composition, modalities
Procedia PDF Downloads 4915444 Multimodal Integration of EEG, fMRI and Positron Emission Tomography Data Using Principal Component Analysis for Prognosis in Coma Patients
Authors: Denis Jordan, Daniel Golkowski, Mathias Lukas, Katharina Merz, Caroline Mlynarcik, Max Maurer, Valentin Riedl, Stefan Foerster, Eberhard F. Kochs, Andreas Bender, Ruediger Ilg
Abstract:
Introduction: So far, clinical assessments that rely on behavioral responses to differentiate coma states or even predict outcome in coma patients are unreliable, e.g. because of some patients’ motor disabilities. The present study was aimed to provide prognosis in coma patients using markers from electroencephalogram (EEG), blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET). Unsuperwised principal component analysis (PCA) was used for multimodal integration of markers. Methods: Approved by the local ethics committee of the Technical University of Munich (Germany) 20 patients (aged 18-89) with severe brain damage were acquired through intensive care units at the Klinikum rechts der Isar in Munich and at the Therapiezentrum Burgau (Germany). At the day of EEG/fMRI/PET measurement (date I) patients (<3.5 month in coma) were grouped in the minimal conscious state (MCS) or vegetative state (VS) on the basis of their clinical presentation (coma recovery scale-revised, CRS-R). Follow-up assessment (date II) was also based on CRS-R in a period of 8 to 24 month after date I. At date I, 63 channel EEG (Brain Products, Gilching, Germany) was recorded outside the scanner, and subsequently simultaneous FDG-PET/fMRI was acquired on an integrated Siemens Biograph mMR 3T scanner (Siemens Healthineers, Erlangen Germany). Power spectral densities, permutation entropy (PE) and symbolic transfer entropy (STE) were calculated in/between frontal, temporal, parietal and occipital EEG channels. PE and STE are based on symbolic time series analysis and were already introduced as robust markers separating wakefulness from unconsciousness in EEG during general anesthesia. While PE quantifies the regularity structure of the neighboring order of signal values (a surrogate of cortical information processing), STE reflects information transfer between two signals (a surrogate of directed connectivity in cortical networks). fMRI was carried out using SPM12 (Wellcome Trust Center for Neuroimaging, University of London, UK). Functional images were realigned, segmented, normalized and smoothed. PET was acquired for 45 minutes in list-mode. For absolute quantification of brain’s glucose consumption rate in FDG-PET, kinetic modelling was performed with Patlak’s plot method. BOLD signal intensity in fMRI and glucose uptake in PET was calculated in 8 distinct cortical areas. PCA was performed over all markers from EEG/fMRI/PET. Prognosis (persistent VS and deceased patients vs. recovery to MCS/awake from date I to date II) was evaluated using the area under the curve (AUC) including bootstrap confidence intervals (CI, *: p<0.05). Results: Prognosis was reliably indicated by the first component of PCA (AUC=0.99*, CI=0.92-1.00) showing a higher AUC when compared to the best single markers (EEG: AUC<0.96*, fMRI: AUC<0.86*, PET: AUC<0.60). CRS-R did not show prediction (AUC=0.51, CI=0.29-0.78). Conclusion: In a multimodal analysis of EEG/fMRI/PET in coma patients, PCA lead to a reliable prognosis. The impact of this result is evident, as clinical estimates of prognosis are inapt at time and could be supported by quantitative biomarkers from EEG, fMRI and PET. Due to the small sample size, further investigations are required, in particular allowing superwised learning instead of the basic approach of unsuperwised PCA.Keywords: coma states and prognosis, electroencephalogram, entropy, functional magnetic resonance imaging, machine learning, positron emission tomography, principal component analysis
Procedia PDF Downloads 3465443 Improving Neonatal Abstinence Syndrome Assessments
Authors: Nancy Wilson
Abstract:
In utero, fetal drug exposure is prevalent amongst birthing facilities. Assessment tools for neonatal abstinence syndrome (NAS) are often cumbersome and ill-fitting, harboring immense subjectivity. This paradox often leads the clinical assessor to be hypervigilant when assessing the newborn for subtle symptoms of NAS, often mistaken for normal newborn behaviors. As a quality improvement initiative, this project led to a more adaptable NAS tool termed eat, sleep, console (ESC). This function-based NAS assessment scores the infant based on the ability to accomplish three basic newborn necessities- to sleep, to eat, and to be consoled. Literature supports that ESC methodology improves patient and family outcomes while providing more cost-effective care.Keywords: neonatal abstinence syndrome, neonatal opioid withdrawal, maternal substance abuse, pregnancy, and addiction, Finnegan neonatal abstinence syndrome tool, eat, sleep, console
Procedia PDF Downloads 1575442 Latent Heat Storage Using Phase Change Materials
Authors: Debashree Ghosh, Preethi Sridhar, Shloka Atul Dhavle
Abstract:
The judicious and economic consumption of energy for sustainable growth and development is nowadays a thing of primary importance; Phase Change Materials (PCM) provide an ingenious option of storing energy in the form of Latent Heat. Energy storing mechanism incorporating phase change material increases the efficiency of the process by minimizing the difference between supply and demand; PCM heat exchangers are used to storing the heat or non-convectional energy within the PCM as the heat of fusion. The experimental study evaluates the effect of thermo-physical properties, variation in inlet temperature, and flow rate on charging period of a coiled heat exchanger. Secondly, a numerical study is performed on a PCM double pipe heat exchanger packed with two different PCMs, namely, RT50 and Fatty Acid, in the annular region. In this work, the simulation of charging of paraffin wax (RT50) using water as high-temperature fluid (HTF) is performed. Commercial software Ansys-Fluent 15 is used for simulation, and hence charging of PCM is studied. In the Enthalpy-porosity model, a single momentum equation is applicable to describe the motion of both solid and liquid phases. The details of the progress of phase change with time are presented through the contours of melt-fraction, temperature. The velocity contour is shown to describe the motion of the liquid phase. The experimental study revealed that paraffin wax melts with almost the same temperature variation at the two Intermediate positions. Fatty acid, on the other hand, melts faster owing to greater thermal conductivity and low melting temperature. It was also observed that an increase in flow rate leads to a reduction in the charging period. The numerical study also supports some of the observations found in the experimental study like the significant dependence of driving force on the process of melting. The numerical study also clarifies the melting pattern of the PCM, which cannot be observed in the experimental study.Keywords: latent heat storage, charging period, discharging period, coiled heat exchanger
Procedia PDF Downloads 1255441 Renewable Energy and Environment: Design of a Decision Aided Tool for Sustainable Development
Authors: Mustapha Ouardouz, Mina Amharref, Abdessamed Bernoussi
Abstract:
The future energy, for limited energy resources countries, goes through renewable energies (solar, wind etc.). The renewable energies constitute a major component of the energy strategy to cover a substantial part of the growing needs and contribute to environmental protection by replacing fossil fuels. Indeed, sustainable development involves the promotion of renewable energy and the preservation of the environment by the use of clean energy technologies to limit emissions of greenhouse gases and reducing the pressure exerted on the forest cover. So the impact studies, of the energy use on the environment and farm-related risks are necessary. For that, a global approach integrating all the various sectors involved in such project seems to be the best approach. In this paper we present an approach based on the multi criteria analysis and the realization of one pilot to achieve the development of an innovative geo-intelligent environmental platform. An implementation of this platform will collect, process, analyze and manage environmental data in connection with the nature of used energy in the studied region. As an application we consider a region in the north of Morocco characterized by intense agricultural and industrials activities and using diverse renewable energy. The strategic goals of this platform are; the decision support for better governance, improving the responsiveness of public and private companies connected by providing them in real time with reliable data, modeling and simulation possibilities of energy scenarios, the identification of socio-technical solutions to introduce renewable energies and estimate technical and implantable potential by socio-economic analyzes and the assessment of infrastructure for the region and the communities, the preservation and enhancement of natural resources for better citizenship governance through democratization of access to environmental information, the tool will also perform simulations integrating environmental impacts of natural disasters, particularly those linked to climate change. Indeed extreme cases such as floods, droughts and storms will be no longer rare and therefore should be integrated into such projects.Keywords: renewable energies, decision aided tool, environment, simulation
Procedia PDF Downloads 4655440 Monte Carlo Simulations of LSO/YSO for Dose Evaluation in Photon Beam Radiotherapy
Authors: H. Donya
Abstract:
Monte Carlo (MC) techniques play a fundamental role in radiotherapy. A two non-water-equivalent of different media were used to evaluate the dose in water. For such purpose, Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates scintillators are chosen for MC simulation using Penelope code. To get higher efficiency in dose calculation, variance reduction techniques are discussed. Overall results of this investigation ensured that the LSO/YSO bi-media a good combination to tackle over-response issue in dynamic photon radiotherapy.Keywords: Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates, Monte Carlo, correlated sampling, radiotherapy
Procedia PDF Downloads 410