Search results for: advanced fuel fusion reactors
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4328

Search results for: advanced fuel fusion reactors

1208 Monocytic Paraoxonase 2 (PON 2) Lactonase Activity Is Related to Myocardial Infarction

Authors: Mukund Ramchandra Mogarekar, Pankaj Kumar, Shraddha V. More

Abstract:

Background: Total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), Apo B, and lipoprotein(a) was found as atherogenic factors while high-density lipoprotein cholesterol (HDL-C) was anti-atherogenic. Methods and Results: The study group consists of 40 MI subjects as cases and 40 healthy as controls. Monocytic PON 2 Lactonase (LACT) activity was measured by using Dihydrocoumarine (DHC) as substrate. Phenotyping was done by method of Mogarekar MR et al, serum AOPP by modified method of Witko-Sarsat V et al and Apo B by Turbidimetric immunoassay. PON 2 LACT activities were significantly lower (p< 0.05) and AOPPs & Apo B were higher in MI subjects (p> 0.05). Trimodal distribution of QQ, QR & RR phenotypes of study population showed no significant difference among cases and controls (p> 0.05). Univariate binary logistic regression analysis showed independent association of TC, HDL, LDL, AOPP, Apo B, and PON 2 LACT activity with MI and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI. Conclusions- Decrease in PON 2 LACT activity in MI subjects than in controls suggests increased oxidative stress in MI which is reflected by significantly increased AOPP and Apo B. PON 1 polymorphism of QQ, QR and RR showed no significant difference in protection against MI. Univariate and multiple forward binary logistic regression showed PON 2 LACT activity and serum Apo B as an independent predictor of MI.

Keywords: advanced oxidation protein products, apolipoprotein-B, myocardial infarction, paraoxonase 2 lactonase

Procedia PDF Downloads 227
1207 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 212
1206 Applications of Drones in Infrastructures: Challenges and Opportunities

Authors: Jin Fan, M. Ala Saadeghvaziri

Abstract:

Unmanned aerial vehicles (UAVs), also referred to as drones, equipped with various kinds of advanced detecting or surveying systems, are effective and low-cost in data acquisition, data delivery and sharing, which can benefit the building of infrastructures. This paper will give an overview of applications of drones in planning, designing, construction and maintenance of infrastructures. The drone platform, detecting and surveying systems, and post-data processing systems will be introduced, followed by cases with details of the applications. Challenges from different aspects will be addressed. Opportunities of drones in infrastructure include but not limited to the following. Firstly, UAVs equipped with high definition cameras or other detecting equipment are capable of inspecting the hard to reach infrastructure assets. Secondly, UAVs can be used as effective tools to survey and map the landscape to collect necessary information before infrastructure construction. Furthermore, an UAV or multi-UVAs are useful in construction management. UVAs can also be used in collecting roads and building information by taking high-resolution photos for future infrastructure planning. UAVs can be used to provide reliable and dynamic traffic information, which is potentially helpful in building smart cities. The main challenges are: limited flight time, the robustness of signal, post data analyze, multi-drone collaboration, weather condition, distractions to the traffic caused by drones. This paper aims to help owners, designers, engineers and architects to improve the building process of infrastructures for higher efficiency and better performance.

Keywords: bridge, construction, drones, infrastructure, information

Procedia PDF Downloads 109
1205 Investigations on the Fatigue Behavior of Welded Details with Imperfections

Authors: Helen Bartsch, Markus Feldmann

Abstract:

The dimensioning of steel structures subject to fatigue loads, such as wind turbines, bridges, masts and towers, crane runways and weirs or components in crane construction, is often dominated by fatigue verification. The fatigue details defined by the welded connections, such as butt or cruciform joints, longitudinal welds, welded-on or welded-in stiffeners, etc., are decisive. In Europe, the verification is usually carried out according to EN 1993-1-9 on a nominal stress basis. The basis is the detailed catalog, which specifies the fatigue strength of the various weld and construction details according to fatigue classes. Until now, a relation between fatigue classes and weld imperfection sizes is not included. Quality levels for imperfections in fusion-welded joints in steel, nickel, titanium and their alloys are regulated in EN ISO 5817, which, however, doesn’t contain direct correlations to fatigue resistances. The question arises whether some imperfections might be tolerable to a certain extent since they may be present in the test data used for detail classifications dating back decades ago. Although current standardization requires proof of satisfying limits of imperfection sizes, it would also be possible to tolerate welds with certain irregularities if these can be reliably quantified by non-destructive testing. Fabricators would be prepared to undertake carefully and sustained weld inspection in view of the significant economic consequences of such unfavorable fatigue classes. This paper presents investigations on the fatigue behavior of common welded details containing imperfections. In contrast to the common nominal stress concept, local fatigue concepts were used to consider the true stress increase, i.e., local stresses at the weld toe and root. The actual shape of a weld comprising imperfections, e.g., gaps or undercuts, can be incorporated into the fatigue evaluation, usually on a numerical basis. With the help of the effective notch stress concept, the fatigue resistance of detailed local weld shapes is assessed. Validated numerical models serve to investigate notch factors of fatigue details with different geometries. By utilizing parametrized ABAQUS routines, detailed numerical studies have been performed. Depending on the shape and size of different weld irregularities, fatigue classes can be defined. As well load-carrying welded details, such as the cruciform joint, as non-load carrying welded details, e.g., welded-on or welded-in stiffeners, are regarded. The investigated imperfections include, among others, undercuts, excessive convexity, incorrect weld toe, excessive asymmetry and insufficient or excessive throat thickness. Comparisons of the impact of different imperfections on the different types of fatigue details are made. Moreover, the influence of a combination of crucial weld imperfections on the fatigue resistance is analyzed. With regard to the trend of increasing efficiency in steel construction, the overall aim of the investigations is to include a more economical differentiation of fatigue details with regard to tolerance sizes. In the long term, the harmonization of design standards, execution standards and regulations of weld imperfections is intended.

Keywords: effective notch stress, fatigue, fatigue design, weld imperfections

Procedia PDF Downloads 245
1204 Processing Studies and Challenges Faced in Development of High-Pressure Titanium Alloy Cryogenic Gas Bottles

Authors: Bhanu Pant, Sanjay H. Upadhyay

Abstract:

Frequently, the upper stage of high-performance launch vehicles utilizes cryogenic tank-submerged pressurization gas bottles with high volume-to-weight efficiency to achieve a direct gain in the satellite payload. Titanium alloys, owing to their high specific strength coupled with excellent compatibility with various fluids, are the materials of choice for these applications. Amongst the Titanium alloys, there are two alloys suitable for cryogenic applications, namely Ti6Al4V-ELI and Ti5Al2.5Sn-ELI. The two-phase alpha-beta alloy Ti6Al4V-ELI is usable up to LOX temperature of 90K, while the single-phase alpha alloy Ti5Al2.5Sn-ELI can be used down to LHe temperature of 4 K. The high-pressure gas bottles submerged in the LH2 (20K) can store more amount of gas in as compared to those submerged in LOX (90K) bottles the same volume. Thus, the use of these alpha alloy gas bottles stored at 20K gives a distinct advantage with respect to the need for a lesser number of gas bottles to store the same amount of high-pressure gas, which in turn leads to a one-to-one advantage in the payload in the satellite. The cost advantage to the tune of 15000$/ kg of weight is saved in the upper stages, and, thereby, the satellite payload gain is expected by this change. However, the processing of alpha Ti5Al2.5Sn-ELI alloy gas bottles poses challenges due to the lower forgeability of the alloy and mode of qualification for the critical severe application environment. The present paper describes the processing and challenges/ solutions during the development of these advanced gas bottles for LH2 (20K) applications.

Keywords: titanium alloys, cryogenic gas bottles, alpha titanium alloy, alpha-beta titanium alloy

Procedia PDF Downloads 42
1203 Contamination with Heavy Metals of Frozen Fish Sold in Open Markets in Ondo City, Southwest Nigeria

Authors: Adebisi M. Tiamiyu, Adewale F. Adeyemi, Olu-Ayobamikale V. Irewunmi

Abstract:

Fish consumption has increased in recent years in both developing and advanced countries, owing to increased awareness of its nutritional and therapeutic benefits and its availability and affordability relative to other animal protein sources. Fish and fish products, however, are extremely prone to contamination by a wide range of hazardous organic and inorganic substances. This study assessed the levels of three heavy metals, copper (Cu), iron (Fe), and zinc (Zn), in frozen fish imported into Nigeria and sold in Ondo City for their safety for human consumption as recommended by WHO and FEPA. Three species of frozen fish (Scombrus scombrus, Merluccius merluccius, and Clupea harengus) were purchased, and the wet tissues (gills, muscles, and liver) were digested using a 3:1 mixture of nitric acid (HNO3) and hydrochloric acid (HCL). An atomic absorption spectrophotometer (AAS) was used to detect the amount of metal in the tissues. The levels of heavy metals in different fish species' organs varied. The fish had Zn > Fe > Cu heavy metal concentrations in that order. While the concentration of Cu and Fe in the tissues of all three fish species studied were within the WHO and FEPA prescribed limits for food fish, the concentration of Zn in the muscles of M. merluccius (0.262±0.052), C. harengus harengus (0.327±0.099), and S. scombrus (0.362±0.119) was above the prescribed limit (0.075 ppm) set by FEPA. An excessive amount of zinc in the body can cause nausea, headaches, decreased immunity, and appetite loss.

Keywords: heavy metal, atomic absorption spectrophotometer, fish, agencies

Procedia PDF Downloads 55
1202 Particle Size Dependent Enhancement of Compressive Strength and Carbonation Efficiency in Steel Slag Cementitious Composites

Authors: Jason Ting Jing Cheng, Lee Foo Wei, Yew Ming Kun, Chin Ren Jie, Yip Chun Chieh

Abstract:

The utilization of industrial by-products, such as steel slag in cementitious materials, not only mitigates environmental impact but also enhances material properties. This study investigates the dual influence of steel slag particle size on the compressive strength and carbonation efficiency of cementitious composites. Through a systematic experimental approach, steel slag particles were incorporated into cement at varying sizes, and the resulting composites were subjected to mechanical and carbonation tests. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) are conducted in this paper. The findings reveal a positive correlation between increased particle size and compressive strength, attributed to the improved interfacial transition zone and packing density. Conversely, smaller particle sizes exhibited enhanced carbonation efficiency, likely due to the increased surface area facilitating the carbonation reaction. The presence of higher silica and calcium content in finer particles was confirmed by EDX, which contributed to the accelerated carbonation process. This study underscores the importance of particle size optimization in designing sustainable cementitious materials with balanced mechanical performance and carbon sequestration potential. The insights gained from the advanced analytical techniques offer a comprehensive understanding of the mechanisms at play, paving the way for the strategic use of steel slag in eco-friendly construction practices.

Keywords: steel slag, carbonation efficiency, particle size enhancement, compressive strength

Procedia PDF Downloads 41
1201 Nitrogen/Platinum Co-Doped TiO₂ for Enhanced Visible Light Photocatalytic Degradation of Brilliant Black

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

Elimination of toxic organic compounds from wastewater is currently one of the most important subjects in water pollution control. The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N,Pt) co-doped TiO₂ photocatalyts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. SEM/ EDX, TEM, XRD, XPS, TGA, FTIR, RS, PL and UV-Vis were used to characterize the prepared nanomaterials. The synthesized photocatalysts exhibited lower band gap energies as compared to the commercial TiO₂ revealing a shift in band gap towards the visible light absorption region. Photocatalytic activity of N,Pt co-doped TiO₂ was measured by the reaction of photocatalytic degradation of BB dye. Enhanced photodegradation efficiency of BB was achieved after 180 min reaction time with initial concentration of 50 ppm BB solution. This was attributed to the rod-like shape of the materials, larger surface area, and enhanced absorption of visible light induced by N,Pt co-doping. The co-doped N,Pt also exhibited pseudo-first order kinetic behaviour with half-life and rate constant of 0.37 min 0.1984 min⁻¹ and respectively. N doped TiO₂ and N,Pt co-doped TiO₂ exhibited enhanced photocatalytic performances for the removal of BB from water.

Keywords: N, Pt co-doped TiO₂, dendrimer, photodegradation, visible-light

Procedia PDF Downloads 158
1200 Luminescence Dating of Ancient Agricultural Terraced Landscapes: Prospects for Heritage Protection

Authors: Lisa Snape, Andreas Lang, Tony Brown, Dan Fallu, Ben Pears

Abstract:

Agricultural terraced landscapes are widespread in mountainous areas in a variety of climatic zones around the World. The most famous are those found associated with the famous Inca site of Machu Pichu in the Andes, the arid lands in upland areas of Yemen, and the abundant rice terraces covering the hilltops in tropical areas such as Thailand, Vietnam, and China and also Bali. Terraces were designed using advanced engineered techniques, requiring specialist knowledge of bedrock geology, soil cultivation and maintenance, and ecosystem management to grow a variety of crops in specific environmental conditions. These enigmatic landscapes were often overlooked in the past but have now received widespread attention to further understand their age, origins, and evolution as the landscapes and environment changed over time. By understanding the age and chronologies of agricultural terrace technology, we can enhance our understanding of these unique features considered widely as important ecosystem services in the present day. We present distinct luminescence dating evidence from a variety of terraced systems found in different European environmental settings, such as the UK, Italy and Belgium, as part of the wider ERC-funded TerrACE Project. Our research aims to better understand their history and advocate for their protection and effective management as important cultural, heritage and environmental assets, creating new avenues for future scientific research.

Keywords: terraces, agriculture, luminescence dating, heritage protection

Procedia PDF Downloads 42
1199 Insight into the Electrocatalytic Activities of Nitrogen-Doped Graphyne and Graphdiyne Families: A First-Principles Study

Authors: Bikram K. Das, Kalyan K. Chattopadhyay

Abstract:

The advent of 2-D materials in the last decade has induced a fresh spur of growth in fuel cell technology as these materials have some highly promising traits that can be exploited to felicitate Oxygen Reduction Reaction (ORR) in an efficient way. Among the various 2-D carbon materials, graphyne (Gy) and graphdiyne (Gdy)1 with their intrinsic non-uniform charge distribution holds promises in this purpose and it is expected2 that substitutional Nitrogen (N) doping could further enhance their efficiency. In this regard, dispersive force corrected density functional theory is used to map the oxygen reduction reaction (ORR) kinetics of five different kinds of N doped graphyne and graphdiyne systems (namely αGy, βGy, γGy, RGy and 6,6,12Gy and Gdy) in alkaline medium. The best doping site for each of the Gy/ Gdy system is determined comparing the formation energies of the possible doping configurations. Similarly, the best di-oxygen (O₂) adsorption sites for the doped systems are identified by comparing the adsorption energies. O₂ adsorption on all N doped Gy/ Gdy systems is found to be energetically favorable. ORR on a catalyst surface may occur either via the Eley-Rideal (ER) or the Langmuir–Hinschelwood (LH) pathway. Systematic studies performed on the considered systems reveal that all of them favor the ER pathway. Further, depending on the nature of di-oxygen adsorption ORR can follow either associative or dissociative mechanism; the possibility of occurrence of both the mechanisms is tested thoroughly for each N doped Gy/ Gdy. For the ORR process, all the Gy/Gdy systems are observed to prefer the efficient four-electron pathway but the expected monotonically exothermic reaction pathway is found only for N doped 6,6,12Gy and RGy following the associative pathway and for N doped βGy, γGy and Gdy following the dissociative pathway. Further computation performed for these systems reveals that for N doped 6,6,12Gy, RGy, βGy, γGy and Gdy the overpotentials are 1.08 V, 0.94 V, 1.17 V, 1.21 V and 1.04 V respectively depicting N doped RGy is the most promising material, to carry out ORR in alkaline medium, among the considered ones. The stability of the ORR intermediate states with the variation of pH and electrode potentials is further explored with Pourbiax diagrams and the activities of these systems in the alkaline medium are compared with the prior reported B/N doped identical systems for ORR in an acidic medium in terms of a common descriptor.

Keywords: graphdiyne, graphyne, nitrogen-doped, ORR

Procedia PDF Downloads 113
1198 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods

Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana

Abstract:

Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.

Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management

Procedia PDF Downloads 181
1197 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier

Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh

Abstract:

This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.

Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems

Procedia PDF Downloads 26
1196 Thermodynamic Analysis and Experimental Study of Agricultural Waste Plasma Processing

Authors: V. E. Messerle, A. B. Ustimenko, O. A. Lavrichshev

Abstract:

A large amount of manure and its irrational use negatively affect the environment. As compared with biomass fermentation, plasma processing of manure enhances makes it possible to intensify the process of obtaining fuel gas, which consists mainly of synthesis gas (CO + H₂), and increase plant productivity by 150–200 times. This is achieved due to the high temperature in the plasma reactor and a multiple reduction in waste processing time. This paper examines the plasma processing of biomass using the example of dried mixed animal manure (dung with a moisture content of 30%). Characteristic composition of dung, wt.%: Н₂О – 30, С – 29.07, Н – 4.06, О – 32.08, S – 0.26, N – 1.22, P₂O₅ – 0.61, K₂O – 1.47, СаО – 0.86, MgO – 0.37. The thermodynamic code TERRA was used to numerically analyze dung plasma gasification and pyrolysis. Plasma gasification and pyrolysis of dung were analyzed in the temperature range 300–3,000 K and pressure 0.1 MPa for the following thermodynamic systems: 100% dung + 25% air (plasma gasification) and 100% dung + 25% nitrogen (plasma pyrolysis). Calculations were conducted to determine the composition of the gas phase, the degree of carbon gasification, and the specific energy consumption of the processes. At an optimum temperature of 1,500 K, which provides both complete gasification of dung carbon and the maximum yield of combustible components (99.4 vol.% during dung gasification and 99.5 vol.% during pyrolysis), and decomposition of toxic compounds of furan, dioxin, and benz(a)pyrene, the following composition of combustible gas was obtained, vol.%: СО – 29.6, Н₂ – 35.6, СО₂ – 5.7, N₂ – 10.6, H₂O – 17.9 (gasification) and СО – 30.2, Н₂ – 38.3, СО₂ – 4.1, N₂ – 13.3, H₂O – 13.6 (pyrolysis). The specific energy consumption of gasification and pyrolysis of dung at 1,500 K is 1.28 and 1.33 kWh/kg, respectively. An installation with a DC plasma torch with a rated power of 100 kW and a plasma reactor with a dung capacity of 50 kg/h was used for dung processing experiments. The dung was gasified in an air (or nitrogen during pyrolysis) plasma jet, which provided a mass-average temperature in the reactor volume of at least 1,600 K. The organic part of the dung was gasified, and the inorganic part of the waste was melted. For pyrolysis and gasification of dung, the specific energy consumption was 1.5 kWh/kg and 1.4 kWh/kg, respectively. The maximum temperature in the reactor reached 1,887 K. At the outlet of the reactor, a gas of the following composition was obtained, vol.%: СO – 25.9, H₂ – 32.9, СO₂ – 3.5, N₂ – 37.3 (pyrolysis in nitrogen plasma); СO – 32.6, H₂ – 24.1, СO₂ – 5.7, N₂ – 35.8 (air plasma gasification). The specific heat of combustion of the combustible gas formed during pyrolysis and plasma-air gasification of agricultural waste is 10,500 and 10,340 kJ/kg, respectively. Comparison of the integral indicators of dung plasma processing showed satisfactory agreement between the calculation and experiment.

Keywords: agricultural waste, experiment, plasma gasification, thermodynamic calculation

Procedia PDF Downloads 31
1195 Religion and Suicide: Exploration of the Relationship Between Religiosity and Suicidal Ideation among Young Adults

Authors: Sandra D. Prewitt

Abstract:

Introduction—The purpose of the extant study was to explore the relationship between religiosity and suicidal ideation. Through this exploration, further knowledge was sought relevant to gaining a better understanding regarding the higher suicide rate continuing to be experienced by young adults. Endeavoring to discover why the suicide rate continues to increase for the subject population, depression and anxiety emerged as major contributory risk factors. Although religiosity has been shown to be related to the reduced risk of suicidal behavior, the curative value of religion relevant to suicide prevention and treatment has not been sufficiently recognized. Considering the enormity of the current suicide problem, pursuits relevant to discovering effective tools enabling impactful prevention and treatment strategies remain essential to reducing suicide deaths. Methodology—The subject study was conducted utilizing a systematic literature review (SLR) which required the researcher to perform searches of appropriate databases, toward the goal of acquiring advanced knowledge based upon existing studies relevant to the subject matter under consideration. Major Findings—Depression and anxiety have been identified as two potential pathways leading to increased suicidal behavior. On the contrary, religiosity emerged as an important protective factor associated with less depression and therefore, fewer instances of suicidal thoughts. The protective nature of religion has been shown to extend to young adults without regard to the presence of identified potential suicidal behavior pathways.

Keywords: anxiety, depression, religion, suicide

Procedia PDF Downloads 204
1194 Comparison of the Factor of Safety and Strength Reduction Factor Values from Slope Stability Analysis of a Large Open Pit

Authors: James Killian, Sarah Cox

Abstract:

The use of stability criteria within geotechnical engineering is the way the results of analyses are conveyed, and sensitivities and risk assessments are performed. Historically, the primary stability criteria for slope design has been the Factor of Safety (FOS) coming from a limit calculation. Increasingly, the value derived from Strength Reduction Factor (SRF) analysis is being used as the criteria for stability analysis. The purpose of this work was to study in detail the relationship between SRF values produced from a numerical modeling technique and the traditional FOS values produced from Limit Equilibrium (LEM) analyses. This study utilized a model of a 3000-foot-high slope with a 45-degree slope angle, assuming a perfectly plastic mohr-coulomb constitutive model with high cohesion and friction angle values typical of a large hard rock mine slope. A number of variables affecting the values of the SRF in a numerical analysis were tested, including zone size, in-situ stress, tensile strength, and dilation angle. This paper demonstrates that in most cases, SRF values are lower than the corresponding LEM FOS values. Modeled zone size has the greatest effect on the estimated SRF value, which can vary as much as 15% to the downside compared to FOS. For consistency when using SRF as a stability criteria, the authors suggest that numerical model zone sizes should not be constructed to be smaller than about 1% of the overall problem slope height and shouldn’t be greater than 2%. Future work could include investigations of the effect of anisotropic strength assumptions or advanced constitutive models.

Keywords: FOS, SRF, LEM, comparison

Procedia PDF Downloads 285
1193 Multi-Stream Graph Attention Network for Recommendation with Knowledge Graph

Authors: Zhifei Hu, Feng Xia

Abstract:

In recent years, Graph neural network has been widely used in knowledge graph recommendation. The existing recommendation methods based on graph neural network extract information from knowledge graph through entity and relation, which may not be efficient in the way of information extraction. In order to better propose useful entity information for the current recommendation task in the knowledge graph, we propose an end-to-end Neural network Model based on multi-stream graph attentional Mechanism (MSGAT), which can effectively integrate the knowledge graph into the recommendation system by evaluating the importance of entities from both users and items. Specifically, we use the attention mechanism from the user's perspective to distil the domain nodes information of the predicted item in the knowledge graph, to enhance the user's information on items, and generate the feature representation of the predicted item. Due to user history, click items can reflect the user's interest distribution, we propose a multi-stream attention mechanism, based on the user's preference for entities and relationships, and the similarity between items to be predicted and entities, aggregate user history click item's neighborhood entity information in the knowledge graph and generate the user's feature representation. We evaluate our model on three real recommendation datasets: Movielens-1M (ML-1M), LFM-1B 2015 (LFM-1B), and Amazon-Book (AZ-book). Experimental results show that compared with the most advanced models, our proposed model can better capture the entity information in the knowledge graph, which proves the validity and accuracy of the model.

Keywords: graph attention network, knowledge graph, recommendation, information propagation

Procedia PDF Downloads 101
1192 Estimation of the Seismic Response Modification Coefficient in the Superframe Structural System

Authors: Ali Reza Ghanbarnezhad Ghazvini, Seyyed Hamid Reza Mosayyebi

Abstract:

In recent years, an earthquake has occurred approximately every five years in certain regions of Iran. To mitigate the impact of these seismic events, it is crucial to identify and thoroughly assess the vulnerability of buildings and infrastructure, ensuring their safety through principled reinforcement. By adopting new methods of risk assessment, we can effectively reduce the potential risks associated with future earthquakes. In our research, we have observed that the coefficient of behavior in the fourth chapter is 1.65 for the initial structure and 1.72 for the Superframe structure. This indicates that the Superframe structure can enhance the strength of the main structural members by approximately 10% through the utilization of super beams. Furthermore, based on the comparative analysis between the two structures conducted in this study, we have successfully designed a stronger structure with minimal changes in the coefficient of behavior. Additionally, this design has allowed for greater energy dissipation during seismic events, further enhancing the structure's resilience to earthquakes. By comprehensively examining and reinforcing the vulnerability of buildings and infrastructure, along with implementing advanced risk assessment techniques, we can significantly reduce casualties and damages caused by earthquakes in Iran. The findings of this study offer valuable insights for civil engineering professionals in the field of structural engineering, aiding them in designing safer and more resilient structures.

Keywords: modal pushover analysis, response modification factor, high-strength concrete, concrete shear walls, high-rise building

Procedia PDF Downloads 128
1191 Amine Hardeners with Carbon Nanotubes Dispersing Ability for Epoxy Coating Systems

Authors: Szymon Kugler, Krzysztof Kowalczyk, Tadeusz Spychaj

Abstract:

An addition of carbon nanotubes (CNT) can simultaneously improve many features of epoxy coatings, i.e. electrical, mechanical, functional and thermal. Unfortunately, this nanofiller negatively affects visual properties of the coatings, such as transparency and gloss. The main reason for the low visual performance of CNT-modified epoxy coatings is the lack of compatibility between CNT and popular amine curing agents, although epoxy resins based on bisphenol A are indisputable good CNT dispersants. This is a serious obstacle in utilization of the coatings in advanced applications, demanding both high transparency and electrical conductivity. The aim of performed investigations was to find amine curing agents exhibiting affinity for CNT, and ensuring good performance of epoxy coatings with them. Commercially available CNT was dispersed in epoxy resin, as well as in different aliphatic, cycloaliphatic and aromatic amines, using one of two dispergation methods: ultrasonic or mechanical. The CNT dispersions were subsequently used in the preparation of epoxy coating compositions and coatings on a transparent substrate. It was found that amine derivative of bio-based cardanol, as well as modified o-tolylbiguanide exhibit significant CNT, dispersing properties, resulting in improved transparent/electroconductive performance of epoxy coatings. In one of prepared coating systems just 0.025 wt.% (250 ppm) of CNT was enough to obtain coatings with semi conductive properties, 83% of transparency as well as perfect chemical resistance to methyl-ethyl ketone and improved thermal stability. Additionally, a theory of the influence of amine chemical structure on CNT dispersing properties was proposed.

Keywords: bio-based cardanol, carbon nanotubes, epoxy coatings, tolylbiguanide

Procedia PDF Downloads 195
1190 Students' Perception of Virtual Learning Environment (VLE) Skills in Setting up the Simulator Welding Technology

Authors: Mohd Afif Md Nasir, Faizal Amin Nur Yunus, Jamaluddin Hashim, Abd Samad Hassan Basari, A. Halim Sahelan

Abstract:

The aim of this study is to identify the suitability of Virtual Learning Environment (VLE) in welding simulator application towards Computer-Based Training (CBT) in developing skills upon new students at the Advanced Technology Training Center (ADTEC), Batu Pahat, Johor, Malaysia and GIATMARA, Batu Pahat, Johor, Malaysia. The purpose of the study is to create a computer-based skills development approach in welding technology among new students in ADTEC and GIATMARA, as well as cultivating the elements of general skills among them. This study is also important in elevating the number of individual knowledge workers (K-workers) working in manufacturing industry in order to achieve a national vision which is to be an industrial nation in the year of 2020. The design of the study is a survey type of research which uses questionnaires as the instruments and 136 students from ADTEC and GIATMARA were interviewed. Descriptive analysis is used to identify the frequency and mean values. The findings of the study shows that the welding technology skills have developed in the students as a result of the application of VLE simulator at a high level and the respondents agreed that the skills could be embedded through the application of the VLE simulator. In summary, the VLE simulator is suitable in welding skills development training in terms of exposing new students with the relevant characteristics of welding skills and at the same time spurring the students’ interest towards learning more about the skills.

Keywords: computer-based training (CBT), knowledge workers (K-workers), virtual learning environment, welding simulator, welding technology

Procedia PDF Downloads 338
1189 MXene-Based Self-Sensing of Damage in Fiber Composites

Authors: Latha Nataraj, Todd Henry, Micheal Wallock, Asha Hall, Christine Hatter, Babak Anasori, Yury Gogotsi

Abstract:

Multifunctional composites with enhanced strength and toughness for superior damage tolerance are essential for advanced aerospace and military applications. Detection of structural changes prior to visible damage may be achieved by incorporating fillers with tunable properties such as two-dimensional (2D) nanomaterials with high aspect ratios and more surface-active sites. While 2D graphene with large surface areas, good mechanical properties, and high electrical conductivity seems ideal as a filler, the single-atomic thickness can lead to bending and rolling during processing, requiring post-processing to bond to polymer matrices. Lately, an emerging family of 2D transition metal carbides and nitrides, MXenes, has attracted much attention since their discovery in 2011. Metallic electronic conductivity and good mechanical properties, even with increased polymer content, coupled with hydrophilicity make MXenes a good candidate as a filler material in polymer composites and exceptional as multifunctional damage indicators in composites. Here, we systematically study MXene-based (Ti₃C₂) coated on glass fibers for fiber reinforced polymer composite for self-sensing using microscopy and micromechanical testing. Further testing is in progress through the investigation of local variations in optical, acoustic, and thermal properties within the damage sites in response to strain caused by mechanical loading.

Keywords: damage sensing, fiber composites, MXene, self-sensing

Procedia PDF Downloads 111
1188 Correlates of Income Generation of Small-Scale Fish Processors in Abeokuta Metropolis, Ogun State, Nigeria

Authors: Ayodeji Motunrayo Omoare

Abstract:

Economically fish provides an important source of food and income for both men and women especially many households in the developing world and fishing has an important social and cultural position in river-rine communities. However, fish is highly susceptible to deterioration. Consequently, this study was carried out to correlate income generation of small-scale women fish processors in Abeokuta metropolis, Ogun State, Nigeria. Eighty small-scale women fish processors were randomly selected from five communities as the sample size for this study. Collected data were analyzed using both descriptive and inferential statistics. The results showed that the mean age of the respondents was 31.75 years with average household size of 4 people while 47.5% of the respondents had primary education. Most (86.3%) of the respondents were married and had spent more than 11 years in fish processing. The respondents were predominantly Yoruba tribe (91.2%). Majority (71.3%) of the respondents used traditional kiln for processing their fish while 23.7% of the respondents used hot vegetable oil to fry their fish. Also, the result revealed that respondents sourced capital from Personal Savings (48.8%), Cooperatives (27.5%), Friends and Family (17.5%) and Microfinance Banks (6.2%) for fish processing activities. The respondents generated an average income of ₦7,000.00 from roasted fish, ₦3,500.00 from dried fish, and ₦5,200.00 from fried fish daily. However, inadequate processing equipment (95.0%), non-availability of credit facility from microfinance banks (85.0%), poor electricity supply (77.5%), inadequate extension service support (70.0%), and fuel scarcity (68.7%) were major constraints to fish processing in the study area. Results of chi-square analysis showed that there was a significant relationship between personal characteristics (χ2 = 36.83, df = 9), processing methods (χ2 = 15.88, df = 3) and income generated at p < 0.05 level of significance. It can be concluded that significant relationship existed between processing methods and income generated. The study, therefore, recommends that modern processing equipment should be made available to the respondents at a subsidized price by the agro-allied companies.

Keywords: correlates, income, fish processors, women, small-scale

Procedia PDF Downloads 231
1187 Enhancing Email Security: A Multi-Layered Defense Strategy Approach and an AI-Powered Model for Identifying and Mitigating Phishing Attacks

Authors: Anastasios Papathanasiou, George Liontos, Athanasios Katsouras, Vasiliki Liagkou, Euripides Glavas

Abstract:

Email remains a crucial communication tool due to its efficiency, accessibility and cost-effectiveness, enabling rapid information exchange across global networks. However, the global adoption of email has also made it a prime target for cyber threats, including phishing, malware and Business Email Compromise (BEC) attacks, which exploit its integral role in personal and professional realms in order to perform fraud and data breaches. To combat these threats, this research advocates for a multi-layered defense strategy incorporating advanced technological tools such as anti-spam and anti-malware software, machine learning algorithms and authentication protocols. Moreover, we developed an artificial intelligence model specifically designed to analyze email headers and assess their security status. This AI-driven model examines various components of email headers, such as "From" addresses, ‘Received’ paths and the integrity of SPF, DKIM and DMARC records. Upon analysis, it generates comprehensive reports that indicate whether an email is likely to be malicious or benign. This capability empowers users to identify potentially dangerous emails promptly, enhancing their ability to avoid phishing attacks, malware infections and other cyber threats.

Keywords: email security, artificial intelligence, header analysis, threat detection, phishing, DMARC, DKIM, SPF, ai model

Procedia PDF Downloads 34
1186 Genetic Trait Analysis of RIL Barley Genotypes to Sort-out the Top Ranked Elites for Advanced Yield Breeding Across Multi Environments of Tigray, Ethiopia

Authors: Hailekiros Tadesse Tekle, Yemane Tsehaye, Fetien Abay

Abstract:

Barley (Hordeum vulgare L.) is one of the most important cereal crops in the world, grown for the poor farmers in Tigray with low yield production. The purpose of this research was to estimate the performance of 166 barley genotypes against the quantitative traits with detailed analysis of the variance component, heritability, genetic advance, and genetic usefulness parameters. The finding of ANOVA was highly significant variation (p ≤ 0:01) for all the genotypes. We found significant differences in coefficient of variance (CV of 15%) for 5 traits out of the 12 quantitative traits. The topmost broad sense heritability (H2) was recorded for seeds per spike (98.8%), followed by thousand seed weight (96.5%) with 79.16% and 56.25%, respectively, of GAM. The traits with H2 ≥ 60% and GA/GAM ≥ 20% suggested the least influenced by the environment, governed by the additive genes and direct selection for improvement of such beneficial traits for the studied genotypes. Hence, the 20 outstanding recombinant inbred lines (RIL) barley genotypes performing early maturity, high yield, and 1000 seed weight traits simultaneously were the top ranked group barley genotypes out of the 166 genotypes. These are; G5, G25, G33, G118, G36, G123, G28, G34, G14, G10, G3, G13, G11, G32, G8, G39, G23, G30, G37, and G26. They were early in maturity, high TSW and GYP (TSW ≥ 55 g, GYP ≥ 15.22 g/plant, and DTM below 106 days). In general, the 166 genotypes were classified as high (group 1), medium (group 2), and low yield production (group 3) genotypes in terms of yield and yield component trait analysis by clustering; and genotype parameter analysis such as the heritability, genetic advance, and genetic usefulness traits in this investigation.

Keywords: barley, clustering, genetic advance, heritability, usefulness, variability, yield

Procedia PDF Downloads 72
1185 EECS: Reimagining the Future of Technology Education through Electrical Engineering and Computer Science Integration

Authors: Yousef Sharrab, Dimah Al-Fraihat, Monther Tarawneh, Aysh Alhroob, Ala’ Khalifeh, Nabil Sarhan

Abstract:

This paper explores the evolution of Electrical Engineering (EE) and Computer Science (CS) education in higher learning, examining the feasibility of unifying them into Electrical Engineering and Computer Science (EECS) for the technology industry. It delves into the historical reasons for their separation and underscores the need for integration. Emerging technologies such as AI, Virtual Reality, IoT, Cloud Computing, and Cybersecurity demand an integrated EE and CS program to enhance students' understanding. The study evaluates curriculum integration models, drawing from prior research and case studies, demonstrating how integration can provide students with a comprehensive knowledge base for industry demands. Successful integration necessitates addressing administrative and pedagogical challenges. For academic institutions considering merging EE and CS programs, the paper offers guidance, advocating for a flexible curriculum encompassing foundational courses and specialized tracks in computer engineering, software engineering, bioinformatics, information systems, data science, AI, robotics, IoT, virtual reality, cybersecurity, and cloud computing. Elective courses are emphasized to keep pace with technological advancements. Implementing this integrated approach can prepare students for success in the technology industry, addressing the challenges of a technologically advanced society reliant on both EE and CS principles. Integrating EE and CS curricula is crucial for preparing students for the future.

Keywords: electrical engineering, computer science, EECS, curriculum integration of EE and CS

Procedia PDF Downloads 47
1184 Effect of Pre Harvest Application of Amino Acids on Fruit Development of Sub-Tropical Peach

Authors: Manjot Kaur, Harminder Singh, S. K. Jawandha

Abstract:

The present investigations were carried out at Fruit Research Farm, Department of Fruit Science, Punjab Agricultural University, Ludhiana during the years 2016 and 2017, with the aim of assessing the effect of amino acids on fruit development, shoot growth and yield of peach. The six-year-old peach trees of cv. Florida Prince were sprayed with 0.25 % and 0.50 % concentrations of amino acids (Peptone P1 023), 7 and 14 days after full bloom and the sprays were repeated after 15 and 30 days. Experimental findings showed that all the amino acid treatments increased fruit growth, shoot growth, fruit retention and yield and decreased fruit drop as compared to control during both the years. Maximum fruit retention (89.29 %) and minimum fruit drop (10.71 %) was observed in T8 (2 sprays @ 0.50%). Highest mean shoot growth (113.89 cm) was recorded in T12 (3 sprays @ 0.50%) while the minimum was in control plants (88.23 cm). Fruit yield was also found to be maximum (53.92 kg/tree) under double spray treatment T8 (2 sprays @ 0.50%) of amino acids and minimum in plants sprayed with triple spray of amino acids. Fruit maturity was advanced by 3-4 days by double spray treatments of amino acids as compared to control. In brief, the application of double spray of amino acids @ 0.50% (applied 14 days after full bloom and 15 days later), was found to be best to improve the fruit growth, fruit retention and yield of Florida Prince peach under Punjab conditions.

Keywords: amino acids, fruit growth, maturity, peach, shoot growth

Procedia PDF Downloads 171
1183 Renoprotective Effect of Alcoholic Extract of Bacopa monnieri via Inhibition of Advanced Glycation End Products and Oxidative Stress in Stz-Nicotinamide Induced Diabetic Nephropathy

Authors: Lalit Kishore, Randhir Singh

Abstract:

Diabetic nephropathy (DN) is the major cause of morbidity among diabetic patients. In this study, the effect of Bacopa monnieri Linn. (Brahmi, BM), was studied in a Streptozotocin (STZ)-induced experimental rat model of DN. Diabetic nephropathy was induced in Male Wistar rats (body weight- 300± 10 gms) by single intra-peritoneal injection of STZ (45mg/kg, i.p.) after 15 min of Nicotinamide (230 mg/kg) administration. Different doses of alcoholic extract i.e. 100, 200 and 400 mg/kg was given for 45 days by oral gavage after induction of DN. Blood glucose level, serum insulin, glycosylated haemoglobin, renal parameters (serum urea, uric acid, creatinine and BUN) and lipid profile (total cholesterol, triglycerides, HDL, LDL and VLDL levels) were measured. Concentration of thiobarbituric acid reactive species (TBARS) and levels of antioxidant enzymes of reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) were evaluated in the kidney, liver and pancreas. At the end of treatment period the alcoholic extract of BM reduced the elevated level of blood glucose, serum insulin, renal parameters, lipid levels, TBARS, AGE’s in kidney and significantly increased body weight, HDL and antioxidant enzymes in dose dependent manner as compared to diabetic control animals. These results suggested the BM possesses significant renoprotective activity.

Keywords: AGE's, lipid profile, oxidative stress, renal parameters

Procedia PDF Downloads 305
1182 Sustainable Zero Carbon Communities: The Role of Community-Based Interventions in Reducing Carbon Footprint

Authors: Damilola Mofikoya

Abstract:

Developed countries account for a large proportion of greenhouse gas emissions. In the last decade, countries including the United States and China have made a commitment to cut down carbon emissions by signing the Paris Climate Agreement. However, carbon neutrality is a challenging issue to tackle at the country level because of the scale of the problem. To overcome this challenge, cities are at the forefront of these efforts. Many cities in the United States are taking strategic actions and proposing programs and initiatives focused on renewable energy, green transportation, less use of fossil fuel vehicles, etc. There have been concerns about the implications of those strategies and a lack of community engagement. This paper is focused on community-based efforts that help actualize the reduction of carbon footprint through sustained and inclusive action. Existing zero-carbon assessment tools are examined to understand variables and indicators associated with the zero-carbon goals. Based on a broad, systematic review of literature on community strategies, and existing zero-carbon assessment tools, a dashboard was developed to help simplify and demystify carbon neutrality goals at a community level. The literature was able to shed light on the key contributing factors responsible for the success of community efforts in carbon neutrality. Stakeholder education is discussed as one of the strategies to help communities take action and generate momentum. The community-based efforts involving individuals and residents, such as reduction of food wastages, shopping preferences, transit mode choices, and healthy diets, play an important role in the context of zero-carbon initiatives. The proposed community-based dashboard will emphasize the importance of sustained, structured, and collective efforts at a communal scale. Finally, the present study discusses the relationship between life expectancy and quality of life and how it affects carbon neutrality in communities.

Keywords: carbon footprint, communities, life expectancy, quality of life

Procedia PDF Downloads 76
1181 Highly Active, Non-Platinum Metal Catalyst Material as Bi-Functional Air Cathode in Zinc Air Battery

Authors: Thirupathi Thippani, Kothandaraman Ramanujam

Abstract:

Current research on energy storage has been paid to metal-air batteries, because of attractive alternate energy source for the future. Metal – air batteries have the probability to significantly increase the power density, decrease the cost of energy storage and also used for a long time due to its high energy density, low-level pollution, light weight. The performance of these batteries mostly restricted by the slow kinetics of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) on cathode during battery discharge and charge. The ORR and OER are conventionally carried out with precious metals (such as Pt) and metal oxides (such as RuO₂ and IrO₂) as catalysts separately. However, these metal-based catalysts are regularly undergoing some difficulties, including high cost, low selectivity, poor stability and unfavorable to environmental effects. So, in order to develop the active, stable, corrosion resistance and inexpensive bi-functional catalyst material is mandatory for the commercialization of zinc-air rechargeable battery technology. We have attempted and synthesized non-precious metal (NPM) catalysts comprising cobalt and N-doped multiwalled carbon nanotubes (N-MWCNTs-Co) were synthesized by the solid-state pyrolysis (SSP) of melamine with Co₃O₄. N-MWCNTs-Co acts as an excellent electrocatalyst for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), and hence can be used in secondary metal-air batteries and in unitized regenerative fuel cells. It is important to study the OER and ORR at high concentrations of KOH as most of the metal-air batteries employ KOH concentrations > 4M. In the first 16 cycles of the zinc-air battery while using N-MWCNTs-Co, 20 wt.% Pt/C or 20 wt.% IrO₂/C as air electrodes. In the ORR regime (the discharge profile of the zinc-air battery), the cell voltage exhibited by N-MWCNTs-Co was 44 and 83 mV higher (based on 5th cycle) in comparison to of 20 wt.% Pt/C and 20 wt.% IrO₂/C respectively. To demonstrate this promise, a zinc-air battery was assembled and tested at a current density of 0.5 Ag⁻¹ for charge-discharge 100 cycles.

Keywords: oxygen reduction reaction (ORR), oxygen evolution reaction(OER), non-platinum, zinc air battery

Procedia PDF Downloads 222
1180 Preparation and Removal Properties of Hollow Fiber Membranes for Drinking Water

Authors: Seung Moon Woo, Youn Suk Chung, Sang Yong Nam

Abstract:

In the present time, we need advanced water treatment technology for separation of virus and bacteria in effluent which occur epidemic and waterborne diseases. Water purification system is mainly divided into two categorizations like reverse osmosis (RO) and ultrafiltration (UF). Membrane used in these systems requires higher durability because of operating in harsh condition. Of these, the membrane using in UF system has many advantages like higher efficiency and lower energy consume for water treatment compared with RO system. In many kinds of membrane, hollow fiber type membrane is possible to make easily and to get optimized property by control of various spinning conditions such as temperature of coagulation bath, concentration of polymer, addition of additive, air gap and internal coagulation. In this study, polysulfone hollow fiber membrane was successfully prepared by phase inversion method for separation of virus and bacteria. When we prepare the hollow fiber membrane, we controlled various factors such as the polymer concentration, air gap and internal coagulation to investigate effect to membrane property. Morphology of surface and cross section of membrane were measured by field emission scanning electron microscope (FE-SEM). Water flux of membrane was measured using test modules. Mean pore diameter of membrane was calculated using rejection of polystyrene (PS) latex beads for separation of virus and bacteria. Flux and mean flow pore diameter of prepared membrane show 1.5 LPM, 0.03 μm at 1.0 kgf/cm2. The bacteria and virus removal performance of prepared UF membranes were over 6 logs.

Keywords: hollow fiber membrane, drinking water, ultrafiltration, bacteria

Procedia PDF Downloads 236
1179 Time Temperature Dependence of Long Fiber Reinforced Polypropylene Manufactured by Direct Long Fiber Thermoplastic Process

Authors: K. A. Weidenmann, M. Grigo, B. Brylka, P. Elsner, T. Böhlke

Abstract:

In order to reduce fuel consumption, the weight of automobiles has to be reduced. Fiber reinforced polymers offer the potential to reach this aim because of their high stiffness to weight ratio. Additionally, the use of fiber reinforced polymers in automotive applications has to allow for an economic large-scale production. In this regard, long fiber reinforced thermoplastics made by direct processing offer both mechanical performance and processability in injection moulding and compression moulding. The work presented in this contribution deals with long glass fiber reinforced polypropylene directly processed in compression moulding (D-LFT). For the use in automotive applications both the temperature and the time dependency of the materials properties have to be investigated to fulfill performance requirements during crash or the demands of service temperatures ranging from -40 °C to 80 °C. To consider both the influence of temperature and time, quasistatic tensile tests have been carried out at different temperatures. These tests have been complemented by high speed tensile tests at different strain rates. As expected, the increase in strain rate results in an increase of the elastic modulus which correlates to an increase of the stiffness with decreasing service temperature. The results are in good accordance with results determined by dynamic mechanical analysis within the range of 0.1 to 100 Hz. The experimental results from different testing methods were grouped and interpreted by using different time temperature shift approaches. In this regard, Williams-Landel-Ferry and Arrhenius approach based on kinetics have been used. As the theoretical shift factor follows an arctan function, an empirical approach was also taken into consideration. It could be shown that this approach describes best the time and temperature superposition for glass fiber reinforced polypropylene manufactured by D-LFT processing.

Keywords: composite, dynamic mechanical analysis, long fibre reinforced thermoplastics, mechanical properties, time temperature superposition

Procedia PDF Downloads 186