Search results for: water surface profile
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 14935

Search results for: water surface profile

11845 Hydro-Geochemistry of Qare-Sou Catchment and Gorgan Gulf, Iran: Examining Spatial and Temporal Distribution of Major Ions and Determining the River’s Hydro-Chemical Type

Authors: Milad Kurdi, Hadi Farhadian, Teymour Eslamkish

Abstract:

This study examined the hydro-geochemistry of Qare-Sou catchment and Gorgan Gulf in order to determine the spatial distribution of major ions. In this regard, six hydrometer stations in the catchment and four stations in Gorgan Gulf were chosen and the samples were collected. Results of spatial and temporal distribution of major ions have shown similar variation trends for calcium, magnesium, and bicarbonate ions. Also, the spatial trend of chloride, sulfate, sodium and potassium ions were same as Electrical Conductivity (EC) and Total Dissolved Solid (TDS). In Nahar Khoran station, the concentrations of ions were more than other stations which may be related to human activities and the role of geology. The Siah Ab station’s ions showed high concentration which is may be related to the station’s close proximity to Gorgan Gulf and the return of water to Qare-Sou River. In order to determine the interaction of water and rock, the Gibbs diagram was used and the results showed that water of the river falls in the rock range and it is affected more by weathering and reaction between water and stone and less by evaporation and crystallization. Assessment of the quality of river water by using graphic methods indicated that the type of water in this area is Ca-HCO3-Mg. Major ions concentration in Qare-Sou in the universal average was more than but not more than the allowed limit by the World Health Organization and China Standard Organization. A comparison of ions concentration in Gorgan Gulf, seas and oceans showed that the pH in Gorgan Gulf was more than the other seas but in Gorgan Gulf the concentration of anion and cation was less than other seas.

Keywords: hydro-geochemistry, Qare-Sou river, Gorgan gulf, major ions, Gibbs diagram, water quality, graphical methods

Procedia PDF Downloads 303
11844 Adaptive Strategies of European Sea Bass (Dicentrarchus labrax) to Ocean Acidification and Salinity Stress

Authors: Nitin Pipralia, Amit Kmar Sinha, Gudrun de Boeck

Abstract:

Atmospheric carbon dioxide (CO2) concentrations have been increasing since the beginning of the industrial revolution due to combustion of fossils fuel and many anthropogenic means. As the number of scenarios assembled by the International Panel on Climate Change (IPCC) predict a rise of pCO2 from today’s 380 μatm to approximately 900 μatm until the year 2100 and a further rise of up to 1900 μatm by the year 2300. A rise in pCO2 results in more dissolution in ocean surface water which lead to cange in water pH, This phenomena of decrease in ocean pH due to increase on pCO2 is ocean acidification is considered a potential threat to the marine ecosystems and expected to affect fish as well as calcerious organisms. The situation may get worste when the stress of salinity adds on, due to migratory movement of fishes, where fish moves to different salinity region for various specific activities likes spawning and other. Therefore, to understand the interactive impact of these whole range of two important environmental abiotic stresses (viz. pCO2 ranging from 380 μatm, 900 μatm and 1900 μatm, along with salinity gradients of 32ppt, 10 ppt and 2.5ppt) on the ecophysiologal performance of fish, we investigated various biological adaptive response in European sea bass (Dicentrarchus labrax), a model estuarine teleost. Overall, we hypothesize that effect of ocean acidification would be exacerbate with shift in ambient salinity. Oxygen consumption, ammonia metabolism, iono-osmoregulation, energy budget, ion-regulatory enzymes, hormones and pH amendments in plasma were assayed as the potential indices of compensatory responses.

Keywords: ocean acidification, sea bass, pH climate change, salinity

Procedia PDF Downloads 214
11843 Physicochemical and Sensory Properties of Gluten-Free Semolina Produced from Blends of Cassava, Maize and Rice

Authors: Babatunde Stephen Oladeji, Gloria Asuquo Edet

Abstract:

The proximate, functional, pasting, and sensory properties of semolina from blends of cassava, maize, and rice were investigated. Cassava, maize, and rice were milled and sieved to pass through a 1000 µm sieve, then blended in the following ratios to produce five samples; FS₁ (40:30:30), FS₂ (20:50:30), FS₃ (25:25:50), FS₄ (34:33:33) and FS₅ (60:20:20) for cassava, maize, and rice, respectively. A market sample of wheat semolina labeled as FSc served as the control. The proximate composition, functional properties, pasting profile, and sensory characteristics of the blends were determined using standard analytical methods. The protein content of the samples ranged from 5.66% to 6.15%, with sample FS₂ having the highest value and being significantly different (p ≤ 0.05). The bulk density of the formulated samples ranged from 0.60 and 0.62 g/ml. The control (FSc) had a higher bulk density of 0.71 g/ml. The water absorption capacity of both the formulated and control samples ranged from 0.67% to 2.02%, with FS₃ having the highest value and FSc having the lowest value (0.67%). The peak viscosity of the samples ranged from 60.83-169.42 RVU, and the final viscosity of semolina samples ranged from 131.17 to 235.42 RVU. FS₅ had the highest overall acceptability score (7.46), but there was no significant difference (p ≤ 0.05) from other samples except for FS₂ (6.54) and FS₃ (6.29). This study establishes that high-quality and consumer-acceptable semolina that is comparable to the market sample could be produced from blends of cassava, maize, and rice.

Keywords: semolina, gluten, celiac disease, wheat allergies

Procedia PDF Downloads 86
11842 Study of Some Factors Effecting on Productivity of Solar Distillers

Authors: Keshek M.H, Mohamed M.A, El-Shafey M.A

Abstract:

The aim of this research was increasing the productivity of solar distillation. In order to reach this aim, a solar distiller was created with three glass sides sloping 30o at the horizontal level, and the experiments were carried out on the solar distillation unit during the period from 24th August, 2016 till 24th May, 2017 at the Agricultural Engineering and Bio Systems Department, Faculty of Agriculture, Menoufia University. Three gap lengths were used between the water level and the inner glass cover, those were 3, 6, and 9 cm. As the result of change the gap length between the water level and the inner glass cover the total volume of basins were changed from 15.5, 13, and 11 L, respectively. The total basin volume was divided to three sections, to investigate the effect of water volume. The three water volumes were 100%, 75%, and 50%. Every section was supplied with one, two, or three heaters. The one heater power was 15 W. The results showed that, by increasing the distance between the basins edge and the inner edge of the glass cover, an increase occurs in the percentage of temperature difference with maximum value was 52% at distance 9 cm from each edge, an increase occurs in the productivity with maximum productivity was 3.3 L/m2 at distance 9 cm from each edge and an increase occurs in the efficiency with maximum efficiency was 70% at distance 9 cm from each edge.

Keywords: distillation, solar energy, still productivity, efficiency

Procedia PDF Downloads 93
11841 Determining Design Parameters for Sizing of Hydronic Heating Systems in Concrete Thermally Activated Building Systems

Authors: Rahmat Ali, Inamullah Khan, Amjad Naseer, Abid A. Shah

Abstract:

Hydronic Heating and Cooling systems in concrete slab based buildings are increasingly becoming a popular substitute to conventional heating and cooling systems. In exploring the materials, techniques employed, and their relative performance measures, a fair bit of uncertainty exists. This research has identified the simplest method of determining the thermal field of a single hydronic pipe when acting as a part of a concrete slab, based on which the spacing and positioning of pipes for a best thermal performance and surface temperature control are determined. The pipe material chosen is the commonly used PEX pipe, which has an all-around performance and thermal characteristics with a thermal conductivity of 0.5W/mK. Concrete Test samples were constructed and their thermal fields tested under varying input conditions. Temperature sensing devices were embedded into the wet concrete at fixed distances from the pipe and other touch sensing temperature devices were employed for determining the extent of the thermal field and validation studies. In the first stage, it was found that the temperature along a specific distance was the same and that heat dissipation occurred in well-defined layers. The temperature obtained in concrete was then related to the different control parameters including water supply temperature. From the results, the temperature of water required for a specific temperature rise in concrete is determined. The thermally effective area is also determined which is then used to calculate the pipe spacing and positioning for the desired level of thermal comfort.

Keywords: thermally activated building systems, concrete slab temperature, thermal field, energy efficiency, thermal comfort, pipe spacing

Procedia PDF Downloads 322
11840 Experimental Study of Water Injection into Manifold on Engine Performance and Emissions in Compression Ignition Engine

Authors: N. Rajmohan, M. R. Swaminathan

Abstract:

The performance of a diesel engine depends mainly on mixing of the fuel and air in the combustion chamber. The diesel engine suffers from significant generation of nitric oxide and particulate matter emission due to incomplete combustion. As the fuel is injected directly into the combustion chamber in conventional diesel engines, spatial distributions of air-fuel ratio vary widely from rich to lean in combustion chamber. The NOx is formed in stoichiometric zone and smoke is generated during diffusion combustion period where the combustion rate becomes slower. One of the effective methods to reduce oxides of nitrogen and particulate matter emissions simultaneously is to reduce the intake charge temperature in diesel engines. Therefore, in the present study, the effect of water injection into intake air on performance and emission characteristic of single cylinder CI engine are carried out at different load and constant speed, with variable water to diesel ratio by mass. The water is injected into intake air by an elementary carburetor.

Keywords: engine emission control, oxides of nitrogen, diesel engine, ignition engine

Procedia PDF Downloads 351
11839 Study of Fly Ash Geopolymer Based Composites with Polyester Waste Addition

Authors: Konstantinos Sotiriadis, Olesia Mikhailova

Abstract:

In the present work, fly ash geopolymer based composites including polyester (PES) waste were studied. Specimens of three compositions were prepared: (a) fly ash geopolymer with 5% PES waste, (b) fly ash geopolymer mortar with 5% PES waste, (c) fly ash geopolymer mortar with 6.25% PES waste. Compressive and bending strength measurements, water absorption test and determination of thermal conductivity coefficient were performed. The results showed that the addition of sand in a mixture of geopolymer with 5% PES content led to higher compressive strength, while it increased water absorption and reduced thermal conductivity coefficient. The increase of PES addition in geopolymer mortars resulted in a more dense structure, indicated by the increase of strength and thermal conductivity and the decrease of water absorption.

Keywords: fly ash, geopolymers, polyester waste, composites

Procedia PDF Downloads 409
11838 Application of GPR for Prospection in Two Archaeological Sites at Aswan Area, Egypt

Authors: Abbas Mohamed Abbas, Raafat El-Shafie Fat-Helbary, Karrar Omar El Fergawy, Ahmed Hamed Sayed

Abstract:

The exploration in archaeological area requires non-invasive methods, and hence the Ground Penetrating Radar (GPR) technique is a proper candidate for this task. GPR investigation is widely applied for searching for hidden ancient targets. So, in this paper GPR technique has been used in archaeological investigation. The aim of this study was to obtain information about the subsurface and associated structures beneath two selected sites at the western bank of the River Nile at Aswan city. These sites have archaeological structures of different ages starting from 6thand 12th Dynasties to the Greco-Roman period. The first site is called Nag’ El Gulab, the study area was 30 x 16 m with separating distance 2m between each profile, while the second site is Nag’ El Qoba, the survey method was not in grid but in lines pattern with different lengths. All of these sites were surveyed by GPR model SIR-3000 with antenna 200 MHz. Beside the processing of each profile individually, the time-slice maps have been conducted Nag’ El Gulab site, to view the amplitude changes in a series of horizontal time slices within the ground. The obtained results show anomalies may interpret as presence of associated tombs structures. The probable tombs structures similar in their depth level to the opened tombs in the studied areas.

Keywords: ground penetrating radar, archeology, Nag’ El Gulab, Nag’ El Qoba

Procedia PDF Downloads 379
11837 Factors Affecting Special Core Analysis Resistivity Parameters

Authors: Hassan Sbiga

Abstract:

Laboratory measurements methods were undertaken on core samples selected from three different fields (A, B, and C) from the Nubian Sandstone Formation of the central graben reservoirs in Libya. These measurements were conducted in order to determine the factors which affect resistivity parameters, and to investigate the effect of rock heterogeneity and wettability on these parameters. This included determining the saturation exponent (n) in the laboratory at two stages. The first stage was before wettability measurements were conducted on the samples, and the second stage was after the wettability measurements in order to find any effect on the saturation exponent. Another objective of this work was to quantify experimentally pores and porosity types (macro- and micro-porosity), which have an affect on the electrical properties, by integrating capillary pressure curves with other routine and special core analysis. These experiments were made for the first time to obtain a relation between pore size distribution and saturation exponent n. Changes were observed in the formation resistivity factor and cementation exponent due to ambient conditions and changes of overburden pressure. The cementation exponent also decreased from GHE-5 to GHE-8. Changes were also observed in the saturation exponent (n) and water saturation (Sw) before and after wettability measurement. Samples with an oil-wet tendency have higher irreducible brine saturation and higher Archie saturation exponent values than samples with an uniform water-wet surface. The experimental results indicate that there is a good relation between resistivity and pore type depending on the pore size. When oil begins to penetrate micro-pore systems in measurements of resistivity index versus brine saturation (after wettability measurement), a significant change in slope of the resistivity index relationship occurs.

Keywords: part of thesis, cementation, wettability, resistivity

Procedia PDF Downloads 232
11836 Effect of Irrigation and Hydrogel on the Water Use Efficiency of Zeto-Tiled Green-Gram Relay System in the Eastern Indo Gangetic-Plain

Authors: Benukar Biswas, S. Banerjee, P. K. Bandhyopadhyaya, S. K. Patra, S. Sarkar

Abstract:

Jute can be sown as relay crop in between the lines of 15-20 days old green gram for additional pulse yield without reducing the yield of jute. The main problem of this system is water use efficiency (WUE). The increase in water productivity and reduction in production cost were reported in the zero-tilled crop. The hydrogel can hold water up to 400 times of its weight and can release 95 % of the retained water. The present field study was carried out during 2015-16 at BCKV (tropical sub-humid, 1560 mm annual rainfall, 22058/ N, 88051/ E, 9.75 m AMSL, sandy loam soil, aeric Haplaquept, pH 6.75, organic carbon 5.4 g kg-1, available N 85 kg ha-1, P2O5 15.3 kg ha-1 and K2O 40 kg ha-1) with four levels of irrigation regimes: no irrigation - RF, cumulative pan evaporation 250mm (CPE250), CPE125 and CPE83 and three levels of hydrogel: no hydrogel (H0), 2.5 kg ha-1 (H2.5) and 5 kg ha-1 (H5). Throughout the crop growing period a linear positive relationship remained between Leaf Area Index (LAI) and evapotranspiration rate. The strength of the relationship between ETa and LAI started increasing and reached its peak at 7 WAS (R2=0.78) when green gram was at its maturity, and both the crops covered the nearly entire base area. This relation starts weakening from 13 WAS due to jute leaf shading. A linear relationship between system yield and ET was also obtained in the present study. The variation in system yield might be predicted 75% with ET alone. Effective rainfall was reduced with increasing irrigation frequency due to enhanced water supply in contrast to hydrogel application due to the difference in water storage capacity. Irrigation contributed a major source of variability of ET. Higher irrigation frequency resulted in higher ET loss ranging from 574 mm in RF to 764 mm in CPE83. Hydrogel application also increased water storage on a sustained basis and supplied to crops resulting higher ET from 639 mm in H0 to 671mm in H5. WUE ranged between 0.4 kg m-3 (RF) to 0.63 kg m-3 (CPE83 H5). WUE increased with increased application of irrigation water from 0.42 kg m-3 in RF to 0.57 kg m-3 in CPE 83. Hydrogel application significantly improves the WUE from 0.45 kg m-3 in H0 to 0.50 in H2.5 and 0.54 in H5. Under relatively dry root zone (RF), both evaporation and transpiration remain at suboptimal level resulting in lower ET as well as lower system yield. Green gram – jute relay system can be water use efficient with 38% higher yield with application of hydrogel @ 2.5 kg ha-1 under deficit irrigation regime of CPE 125 over rainfed system without application of the gel. Application of gel conditioner improved water storage, checked excess water loss from the system, and mitigated ET demand of the relay system for a longer time. Hence, irrigation frequency was reduced from five times at CPE 83 to only three times in CPE 125.

Keywords: zero tillage, deficit irrigation, hydrogel, relay system

Procedia PDF Downloads 226
11835 Optimization of Fenton Process for the Treatment of Young Municipal Leachate

Authors: Bouchra Wassate, Younes Karhat, Khadija El Falaki

Abstract:

Leachate is a source of surface water and groundwater contamination if it has not been pretreated. Indeed, due to its complex structure and its pollution load make its treatment extremely difficult to achieve the standard limits required. The objective of this work is to show the interest of advanced oxidation processes on leachate treatment of urban waste containing high concentrations of organic pollutants. The efficiency of Fenton (Fe2+ +H2O2 + H+) reagent for young leachate recovered from collection trucks household waste in the city of Casablanca, Morocco, was evaluated with the objectives of chemical oxygen demand (COD) and discoloration reductions. The optimization of certain physicochemical parameters (initial pH value, reaction time, and [Fe2+], [H2O2]/ [Fe2+] ratio) has yielded good results in terms of reduction of COD and discoloration of the leachate.

Keywords: COD removal, color removal, Fenton process, oxidation process, leachate

Procedia PDF Downloads 276
11834 Optimization of Effecting Parameters for the Removal of H₂S Gas in Self Priming Venturi Scrubber Using Response Surface Methodology

Authors: Manisha Bal, B. C. Meikap

Abstract:

Highly toxic and corrosive gas H₂S is recognized as one of the hazardous air pollutants which has significant effect on the human health. Abatement of H₂S gas from the air is very necessary. H₂S gas is mainly released from the industries like paper and leather industry as well as during the production of crude oil, during wastewater treatment, etc. But the emission of H₂S gas in high concentration may cause immediate death while at lower concentrations can cause various respiratory problems. In the present study, self priming venturi scrubber is used to remove the H₂S gas from the air. Response surface methodology with central composite design has been chosen to observe the effect of process parameters on the removal efficiency of H₂S. Experiments were conducted by varying the throat gas velocity, liquid level in outer cylinder, and inlet H₂S concentration. ANOVA test confirmed the significant effect of parameters on the removal efficiency. A quadratic equation has been obtained which predicts the removal efficiency very well. The suitability of the developed model has been judged by the higher R² square value which obtained from the regression analysis. From the investigation, it was found that the throat gas velocity has most significant effect and inlet concentration of H₂S has less effect on H₂S removal efficiency.

Keywords: desulfurization, pollution control, response surface methodology, venturi scrubber

Procedia PDF Downloads 119
11833 Performance Analysis of Absorption Power Cycle under Different Source Temperatures

Authors: Kyoung Hoon Kim

Abstract:

The absorption power generation cycle based on the ammonia-water mixture has attracted much attention for efficient recovery of low-grade energy sources. In this paper, a thermodynamic performance analysis is carried out for a Kalina cycle using ammonia-water mixture as a working fluid for efficient conversion of low-temperature heat source in the form of sensible energy. The effects of the source temperature on the system performance are extensively investigated by using the thermodynamic models. The results show that the source temperature as well as the ammonia mass fraction affects greatly on the thermodynamic performance of the cycle.

Keywords: ammonia-water mixture, Kalina cycle, low-grade heat source, source temperature

Procedia PDF Downloads 445
11832 Effect of Vegetable Oil Based Nanofluids on Machining Performance: An Experimental Investigation

Authors: Krishna Mohana Rao Gurram, R. Padmini, P. Vamsi Krishna

Abstract:

As a part of extensive research for ecologically safe and operator friendly cutting fluids, this paper presents the experimental investigations on the performance of eco-friendly vegetable oil based nanofluids in turning operation. In order to assess the quality of nano cutting fluids used during machining, cutting temperatures, cutting forces and surface roughness under constant cutting conditions are measured. The influence of two types of nanofluids prepared from nano boric acid and CNT particles mixed separately with coconut oil, on machining performance during turning operation is examined. Comparative analysis of the results obtained is done under dry and lubricant environments. Results obtained using cutting fluids prepared from vegetable oil based nanofluids are encouraging and more pronouncing by the application of CCCNT at machining zone. The extent of improvement in reduction of cutting temperatures, main cutting force, tool wear and surface roughness is tracked to be 13%, 37.5%, 44% and 40% respectively by the application of CCCNT compared to dry machining.

Keywords: nanoparticles, vegetable oil, machining, MQL, surface roughness

Procedia PDF Downloads 344
11831 Micro-Milling Process Development of Advanced Materials

Authors: M. A. Hafiz, P. T. Matevenga

Abstract:

Micro-level machining of metals is a developing field which has shown to be a prospective approach to produce features on the parts in the range of a few to a few hundred microns with acceptable machining quality. It is known that the mechanics (i.e. the material removal mechanism) of micro-machining and conventional machining have significant differences due to the scaling effects associated with tool-geometry, tool material and work piece material characteristics. Shape memory alloys (SMAs) are those metal alloys which display two exceptional properties, pseudoelasticity and the shape memory effect (SME). Nickel-titanium (NiTi) alloys are one of those unique metal alloys. NiTi alloys are known to be difficult-to-cut materials specifically by using conventional machining techniques due to their explicit properties. Their high ductility, high amount of strain hardening, and unusual stress–strain behaviour are the main properties accountable for their poor machinability in terms of tool wear and work piece quality. The motivation of this research work was to address the challenges and issues of micro-machining combining with those of machining of NiTi alloy which can affect the desired performance level of machining outputs. To explore the significance of range of cutting conditions on surface roughness and tool wear, machining tests were conducted on NiTi. Influence of different cutting conditions and cutting tools on surface and sub-surface deformation in work piece was investigated. Design of experiments strategy (L9 Array) was applied to determine the key process variables. The dominant cutting parameters were determined by analysis of variance. These findings showed that feed rate was the dominant factor on surface roughness whereas depth of cut found to be dominant factor as far as tool wear was concerned. The lowest surface roughness was achieved at the feed rate of equal to the cutting edge radius where as the lowest flank wear was observed at lowest depth of cut. Repeated machining trials have yet to be carried out in order to observe the tool life, sub-surface deformation and strain induced hardening which are also expecting to be amongst the critical issues in micro machining of NiTi. The machining performance using different cutting fluids and strategies have yet to be studied.

Keywords: nickel titanium, micro-machining, surface roughness, machinability

Procedia PDF Downloads 331
11830 Geochemical Study of Claystone from Nunukan Island, North Kalimantan of Indonesia

Authors: Mutiara Effendi

Abstract:

Nunukan Island is located on North Kalimantan of Indonesia. The region is one of Indonesia’s cross-border with Malaysia. In conjunction with its strategic geographic location, its potential as the new oil and gas resources has brought many researchers to do their studies here. The research area consists of claystone which criss-crossed with quarts sandstone. There are also rocks claystone-grained which are the weathering product of basaltic volcanic rocks. In some places, there are argillic clays which are the hydrothermal-altered product of Sei Apok ancient volcano. Geochemical study was established to learn the origin of the claystones, whether it came from weathering, hydrothermal alteration, or both. The samples used in this research are fresh rock, weathering rocks, hydrothermally-altered rock, and claystones. Chemical compositions of each sample were determined and their relations was studied. The studies encompass major and minor elements analysis using X-Ray Fluoresence (XRF) method and trace elements analysis, specifically rare earth elements, using Inductively Coupled Plasma-Mass Spectrometry (ICP-MS) method. The results were plotted on certain graphics to learn about the trend and the relations of each sample and element. Any changes in chemical compositions, like increase and decrease of elements or species, was analysed to learn about geological phenomenon that happens during the formation of claystones. The result of this study shows that claystones of Nunukan Island have relation with volcanic rocks of its surrounding area. Its chemical composition profile corresponds to weathering product of volcanic rocks rather than hydrothermally-altered product. The general profile also resembles claystone minerals of illite or montmorillonite, especially in the existence of aluminum, iron, potassium, and magnesium. Both minerals are formed in basic condition and commonly happen to shales. It is consistent with the fact that claystone was found mixing with shales and silt to clay grained mudstones in field exploration. Even though the general profile is much alike, the amount of each elements is not precisely the same as theoretically claystone mineral compositions because the mineral have not formed completely yet.

Keywords: claystone, geochemistry, ICP-MS, XRF

Procedia PDF Downloads 227
11829 An Improved Atmospheric Correction Method with Diurnal Temperature Cycle Model for MSG-SEVIRI TIR Data under Clear Sky Condition

Authors: Caixia Gao, Chuanrong Li, Lingli Tang, Lingling Ma, Yonggang Qian, Ning Wang

Abstract:

Knowledge of land surface temperature (LST) is of crucial important in energy balance studies and environment modeling. Satellite thermal infrared (TIR) imagery is the primary source for retrieving LST at the regional and global scales. Due to the combination of atmosphere and land surface of received radiance by TIR sensors, atmospheric effect correction has to be performed to remove the atmospheric transmittance and upwelling radiance. Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG) provides measurements every 15 minutes in 12 spectral channels covering from visible to infrared spectrum at fixed view angles with 3km pixel size at nadir, offering new and unique capabilities for LST, LSE measurements. However, due to its high temporal resolution, the atmosphere correction could not be performed with radiosonde profiles or reanalysis data since these profiles are not available at all SEVIRI TIR image acquisition times. To solve this problem, a two-part six-parameter semi-empirical diurnal temperature cycle (DTC) model has been applied to the temporal interpolation of ECMWF reanalysis data. Due to the fact that the DTC model is underdetermined with ECMWF data at four synoptic times (UTC times: 00:00, 06:00, 12:00, 18:00) in one day for each location, some approaches are adopted in this study. It is well known that the atmospheric transmittance and upwelling radiance has a relationship with water vapour content (WVC). With the aid of simulated data, the relationship could be determined under each viewing zenith angle for each SEVIRI TIR channel. Thus, the atmospheric transmittance and upwelling radiance are preliminary removed with the aid of instantaneous WVC, which is retrieved from the brightness temperature in the SEVIRI channels 5, 9 and 10, and a group of the brightness temperatures for surface leaving radiance (Tg) are acquired. Subsequently, a group of the six parameters of the DTC model is fitted with these Tg by a Levenberg-Marquardt least squares algorithm (denoted as DTC model 1). Although the retrieval error of WVC and the approximate relationships between WVC and atmospheric parameters would induce some uncertainties, this would not significantly affect the determination of the three parameters, td, ts and β (β is the angular frequency, td is the time where the Tg reaches its maximum, ts is the starting time of attenuation) in DTC model. Furthermore, due to the large fluctuation in temperature and the inaccuracy of the DTC model around sunrise, SEVIRI measurements from two hours before sunrise to two hours after sunrise are excluded. With the knowledge of td , ts, and β, a new DTC model (denoted as DTC model 2) is accurately fitted again with these Tg at UTC times: 05:57, 11:57, 17:57 and 23:57, which is atmospherically corrected with ECMWF data. And then a new group of the six parameters of the DTC model is generated and subsequently, the Tg at any given times are acquired. Finally, this method is applied to SEVIRI data in channel 9 successfully. The result shows that the proposed method could be performed reasonably without assumption and the Tg derived with the improved method is much more consistent with that from radiosonde measurements.

Keywords: atmosphere correction, diurnal temperature cycle model, land surface temperature, SEVIRI

Procedia PDF Downloads 261
11828 Numerical Study on Enhancement of Heat Transfer by Turbulence

Authors: Muhammad Azmain Abdullah, Ar Rashedul, Mohammad Ali

Abstract:

This paper scrutinizes the influences of turbulence on heat transport rate, Nusselt number. The subject matter of this investigation also deals with the improvement of heat transfer efficiency of the swirl flow obtained by rotating a twisted tape in a circular pipe. The conditions to be fulfilled to observe the impact of Reynolds number and rotational speed of twisted tape are: a uniform temperature on the outer surface of the pipe, the magnitude of velocity of water varying from 0.1 m/s to 0.7 m/s in order to alter Reynolds number and a rotational speed of 200 rpm to 600 rpm. The gyration of twisted tape increase by 17%. It is also observed that heat transfer is exactly proportional to inlet gauge pressure and reciprocally proportional to increase of twist ratio.

Keywords: swirl flow, twisted tape, twist ratio, heat transfer

Procedia PDF Downloads 255
11827 Impact of Environmental Changes on Blood Parameters in the Pelophylax ridibundus

Authors: Murat Tosunoglu, Cigdem Gul, Nurcihan Hacioglu, Nurdan Tepeova

Abstract:

Amphibian and Reptilian species are influenced by pollution and habitat destruction. Blood parameters of Amphibia species were particularly affected by the negative environmental conditions. Studied frog samples 36 clinically normal Pelophylax ridibundus individuals were captured along the Biga Stream between April–June 2014. When comparing our findings with the Turkish legislation (Water pollution control regulation), the 1. Locality of the Biga stream in terms of total coliform classified as "high quality water" (Coliform: 866.66 MPN/100 mL), while the 2. locality was a "contaminated water" (Coliform: 53266.66 MPN/100 mL). Blood samples of the live specimens were obtained in the laboratory within one day of their capture. The blood samples were taken from the etherized frogs by means of ventriculus punctures, via heparinized hematocrit capillaries. Hematological and biochemical analyses based on high quality water and contaminated water, respectively, are as follows: Red blood cell count (444210.52-426846.15 per cubic millimeter of blood), white blood cell count (4215.78-4684.61 per cubic millimeter of blood), hematocrit value (29.25-29.43 %), hemoglobin concentration (7.76-7.22 g/dl), mean corpuscular volume (637.64-719.99 fl), mean corpuscular hemoglobin (184.78-174.75 pg), mean corpuscular hemoglobin concentration (29.44-24.82 %), glucose (103.74-124.13 mg/dl), urea (87.68-81.72 mg/L), cholesterol (148.20-197.39 mg/dl), creatinine (0.29-0.28 mg/dl), uric acid (10.26-7.55 mg/L), albumin (1.13-1.39 g/dl), calcium (11.45-9.70 mg/dl), triglyceride (135.23-155.85 mg/dl), total protein (4.26-3.73 g/dl), phosphorus (6.83-17.86 mg/dl), and magnesium (0.95-1.06 mg/dl). The some hematological parameters in P. ridibundus specimens are given for the first time in this study. No water quality dependent variation was observed in clinic hematology parameters measured.

Keywords: Pelophylax ridibundus, hematological parameters, biochemistry, freshwater quality

Procedia PDF Downloads 358
11826 Optimization of Friction Stir Welding Parameters for Joining Aluminium Alloys using Response Surface Methodology and Artificial Neural Network

Authors: A. M. Khourshid, A. M. El-Kassas, I. Sabry

Abstract:

The objective of this work was to investigate the mechanical properties in order to demonstrate the feasibility of friction stir welding for joining Al 6061 aluminium alloys. Welding was performed on pipe with different thickness (2, 3 and 4 mm), five rotational speeds (485, 710, 910, 1120 and 1400 rpm) and a traverse speed of 4mm/min. This work focuses on two methods which are artificial neural networks using software and Response Surface Methodology (RSM) to predict the tensile strength, the percentage of elongation and hardness of friction stir welded 6061 aluminium alloy. An Artificial Neural Network (ANN) model was developed for the analysis of the friction stir welding parameters of 6061 pipe. Tensile strength, the percentage of elongation and hardness of weld joints were predicted by taking the parameters tool rotation speed, material thickness and axial force as a function. A comparison was made between measured and predicted data. Response Surface Methodology (RSM) was also developed and the values obtained for the response tensile strength, the percentage of elongation and hardness are compared with measured values. The effect of FSW process parameters on mechanical properties of 6061 aluminium alloy has been analysed in detail.

Keywords: friction stir welding, aluminium alloy, response surface methodology, artificial neural network

Procedia PDF Downloads 279
11825 Monitoring Surface Modification of Polylactide Nonwoven Fabric with Weak Polyelectrolytes

Authors: Sima Shakoorjavan, Dawid Stawski, Somaye Akbari

Abstract:

In this study, great attempts have been made to initially modify polylactide (PLA) nonwoven surface with poly(amidoamine) (PAMMA) dendritic polymer to create amine active sites on PLA surface through aminolysis reaction. Further, layer-by-layer deposition of four layers of two weak polyelectrolytes, including PAMAM as polycation and polyacrylic acid (PAA) as polyanion on activated PLA, was monitored with turbidity analysis of waste-polyelectrolytes after each deposition step. The FTIR-ATR analysis confirmed the successful introduction of amine groups into PLA polymeric chains through the emerging peak around 1650 cm⁻¹ corresponding to N-H bending vibration and a double wide peak at around 3670-3170 cm⁻¹ corresponding to N-H stretching vibration. The adsorption-desorption behavior of (PAMAM) and poly (PAA) deposition was monitored by turbidity test. Turbidity results showed the desorption and removal of the previously deposited layer (second and third layers) upon the desorption of the next layers (third and fourth layers). Also, the importance of proper rinsing after aminolysis of PLA nonwoven fabric was revealed by turbidity test. Regarding the sample with insufficient rinsing process, higher desorption and removal of ungrafted PAMAM from aminolyzed-PLA surface into PAA solution was detected upon the deposition of the first PAA layer. This phenomenon can be due to electrostatic attraction between polycation (PAMAM) and polyanion (PAA). Moreover, the successful layer deposition through LBL was confirmed by the staining test of acid red 1 through spectrophotometry analysis. According to the results, layered PLA with four layers with PAMAM as the top layer showed higher dye absorption (46.7%) than neat (1.2%) and aminolyzed PLA (21.7%). In conclusion, the complicated adsorption-desorption behavior of dendritic polycation and linear polyanion systems was observed. Although desorption and removal of previously adsorbed layers occurred upon the deposition of the next layer, the remaining polyelectrolyte on the substrate is sufficient for the adsorption of the next polyelectrolyte through electrostatic attraction between oppositely charged polyelectrolytes. Also, an increase in dye adsorption confirmed more introduction of PAMAM onto PLA surface through LBL.

Keywords: surface modification, layer-by-layer technique, weak polyelectrolytes, adsorption-desorption behavior

Procedia PDF Downloads 50
11824 Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties

Authors: Andile Mkhohlakali, Tien-Chien Jen, James Tshilongo, Happy Mabowa

Abstract:

Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensing

Keywords: sol-gel, ORMOSILs, luminophores quenching, O₂-sensing

Procedia PDF Downloads 114
11823 Comparison of Cardiovascular and Metabolic Responses Following In-Water and On-Land Jump in Postmenopausal Women

Authors: Kuei-Yu Chien, Nai-Wen Kan, Wan-Chun Wu, Guo-Dong Ma, Shu-Chen Chen

Abstract:

Purpose: The purpose of this study was to investigate the responses of systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), rating of perceived exertion (RPE) and lactate following continued high-intensity interval exercise in water and on land. The results of studies can be an exercise program design reference for health care and fitness professionals. Method: A total of 20 volunteer postmenopausal women was included in this study. The inclusion criteria were: duration of menopause > 1 year; and sedentary lifestyle, defined as engaging in moderate-intensity exercise less than three times per week, or less than 20 minutes per day. Participants need to visit experimental place three times. The first time visiting, body composition was performed and participant filled out the questionnaire. Participants were assigned randomly to the exercise environment (water or land) in second and third time visiting. Water exercise testing was under water of trochanter level. In continuing jump testing, each movement consisted 10-second maximum volunteer jump for two sets. 50% heart rate reserve dynamic resting (walking or running) for one minute was within each set. SBP, DBP, HR, RPE of whole body/thigh (RPEW/RPET) and lactate were performed at pre and post testing. HR, RPEW, and RPET were monitored after 1, 2, and 10 min of exercise testing. SBP and DBP were performed after 10 and 30 min of exercise testing. Results: The responses of SBP and DBP after exercise testing in water were higher than those on land. Lactate levels after exercise testing in water were lower than those on land. The responses of RPET were lower than those on land post exercise 1 and 2 minutes. The heart rate recovery in water was faster than those on land at post exercise 5 minutes. Conclusion: This study showed water interval jump exercise induces higher cardiovascular responses with lower RPE responses and lactate levels than on-land jumps exercise in postmenopausal women. Fatigue is one of the major reasons to obstruct exercise behavior. Jump exercise could enhance cardiorespiratory fitness, the lower-extremity power, strength, and bone mass. There are several health benefits to the middle to older adults. This study showed that water interval jumping could be more relaxed and not tried to reach the same land-based cardiorespiratory exercise intensity.

Keywords: interval exercise, power, recovery, fatigue

Procedia PDF Downloads 401
11822 Thermodynamic Analysis of Ammonia-Water Based Regenerative Rankine Cycle with Partial Evaporation

Authors: Kyoung Hoon Kim

Abstract:

A thermodynamic analysis of a partial evaporating Rankine cycle with regeneration using zeotropic ammonia-water mixture as a working fluid is presented in this paper. The thermodynamic laws were applied to evaluate the system performance. Based on the thermodynamic model, the effects of the vapor quality and the ammonia mass fraction on the system performance were extensively investigated. The results showed that thermal efficiency has a peak value with respect to the vapor quality as well as the ammonia mass fraction. The partial evaporating ammonia based Rankine cycle has a potential to improve recovery of low-grade finite heat source.

Keywords: ammonia-water, Rankine cycle, partial evaporating, thermodynamic performance

Procedia PDF Downloads 290
11821 Corrosion Analysis of Brazed Copper-Based Conducts in Particle Accelerator Water Cooling Circuits

Authors: A. T. Perez Fontenla, S. Sgobba, A. Bartkowska, Y. Askar, M. Dalemir Celuch, A. Newborough, M. Karppinen, H. Haalien, S. Deleval, S. Larcher, C. Charvet, L. Bruno, R. Trant

Abstract:

The present study investigates the corrosion behavior of copper (Cu) based conducts predominantly brazed with Sil-Fos (self-fluxing copper-based filler with silver and phosphorus) within various cooling circuits of demineralized water across different particle accelerator components at CERN. The study covers a range of sample service time, from a few months to fifty years, and includes various accelerator components such as quadrupoles, dipoles, and bending magnets. The investigation comprises the established sample extraction procedure, examination methodology including non-destructive testing, evaluation of the corrosion phenomena, and identification of commonalities across the studied components as well as analysis of the environmental influence. The systematic analysis included computed microtomography (CT) of the joints that revealed distributed defects across all brazing interfaces. Some defects appeared to result from areas not wetted by the filler during the brazing operation, displaying round shapes, while others exhibited irregular contours and radial alignment, indicative of a network or interconnection. The subsequent dry cutting performed facilitated access to the conduct's inner surface and the brazed joints for further inspection through light and electron microscopy (SEM) and chemical analysis via Energy Dispersive X-ray spectroscopy (EDS). Brazing analysis away from affected areas identified the expected phases for a Sil-Fos alloy. In contrast, the affected locations displayed micrometric cavities propagating into the material, along with selective corrosion of the bulk Cu initiated at the conductor-braze interface. Corrosion product analysis highlighted the consistent presence of sulfur (up to 6 % in weight), whose origin and role in the corrosion initiation and extension is being further investigated. The importance of this study is paramount as it plays a crucial role in comprehending the underlying factors contributing to recently identified water leaks and evaluating the extent of the issue. Its primary objective is to provide essential insights for the repair of impacted brazed joints when accessibility permits. Moreover, the study seeks to contribute to the improvement of design and manufacturing practices for future components, ultimately enhancing the overall reliability and performance of magnet systems within CERN accelerator facilities.

Keywords: accelerator facilities, brazed copper conducts, demineralized water, magnets

Procedia PDF Downloads 41
11820 Investigation of Flow Behavior inside the Single Channel Catalytic Combustor for Lean Mixture

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustor substantially reduces emission entailing fuel-air premixing at very low equivalence ratios. The catalytic combustion of natural gas has the potential to become sufficiently active at light off temperature by the convection of heat from the catalyst surface. Only one channel is selected to investigate both the gas and surface reactions in the catalyst bed because of the honeycomb structure of the catalytic combustor. The objective of the present study is to find the methane catalytic combustion behavior inside the catalytic combustor, where the gas phase kinetics is employed by homogeneous methane combustion and surface chemistry is described with the heterogeneous catalysis of the oxidation of methane on a platinum catalyst. The reaction of the premixed mixture in the catalytic regime improves flame stability with complete combustion for lower operating flame temperature. An overview of the flow behavior is presented inside the single channel catalytic combustor including the operation of catalytic combustion with various F/A ratios and premixed inlet temperature.

Keywords: catalytic combustor, equivalence ratios, flame temperature, heterogeneous catalysis, homogeneous combustion

Procedia PDF Downloads 254
11819 Seismic Microzoning and Resonant Map for Urban Planning

Authors: F. Tahiri, F. Grajçevci

Abstract:

The cities are coping with permanent demands to extend their residential and economical capacity. The new urban zones are sometimes induced to be developed in more vulnerable environments. This study is aimed to identify and mitigate the seismic hazards in the stage of urban planning for new settlements, including the existing urban environments which initially have not considered the seismic hazard. Seismic microzoning shall study the amplification/attenuation of seismic excitations from the bedrock to the ground surface. Modification of the seismic excitation is governed from the site specific ground conditions, presented on ground surface as mean values of the ratio of maximum accelerations at the surface versus acceleration of subsoil media – presented with dynamic amplification factors (DAF). The values shall be used to create the maps with isolines of DAF and then seismic microzoning with expected maximum mean surface acceleration as a product of DAF with maximum accelerations at bedrock. Development of resonant map shall conglomerate the information’s obtained from seismic microzoning in regard to expected predominant ground periods of seismic excitation and periods of vibrations of designed/built structures. These information’s shall be used as indispensible tool in early stages of urban planning to determine the most optimal zones for construction, the constructive materials, structural systems, range of buildings height, etc. so the resonance of soil media with built structures is avoided. The information’s could be used also for assessment of seismic risk and vulnerability-damageability of existing urban environments.

Keywords: vulnerable environment, mitigation, seismic microzoning, resonant map, urban planning

Procedia PDF Downloads 505
11818 Effect of Drying Condition on the Wheat Germ Stability Using Fluidized-Bed Dryer

Authors: J. M. Hung, J. S. Chan, M. I. Kuo, D. S. Chan, C. P. Lu

Abstract:

Wheat germ is a by-product obtained from wheat milling and it contains highly concentrated nutrients. Due to highly lipase and lipoxygenase activities, wheat germ products can easily turn into rancid flavor and cause a short life. The objective of this study is to control moisture content and retard lipid hydrolysis by fluidized-bed drying. The raw wheat germ of 2 kg was dried with a vertical batch fluidized bed with the following varying conditions, inlet air temperature of 50, 80 and 120°C, inlet air velocity of 3.62 m/s. The experiment was designed to obtain a final product at around 40°C with water activity of 0.3 ± 0.1. Changes in the moisture content, water activity, enzyme activity of dried wheat germ during storage were measured. Results showed the fluidized-bed drying was found to reduce moisture content, water activity and lipase activity of raw wheat germ. After drying wheat germ, moisture content and water activity were between 5.8% to 7.2% and 0.28 to 0.40 respectively during 12 weeks of storage. The variation range of water activity indicated to retard lipid oxidation. All drying treatments displayed inactivation of lipase, except for drying condition of 50°C which showed relative high enzyme activity. During storage, lipase activity increased slowly during the first 6 weeks of storage and reached a plateau for another 6 weeks. As a result, using a fluidized-bed dryer was found to be effective drying technique in improving storage stability of wheat germ.

Keywords: wheat germ, fluidized-bed dryer, storage, lipase, stability

Procedia PDF Downloads 261
11817 Microfluidic Fluid Shear Mechanotransduction Device Using Linear Optimization of Hydraulic Channels

Authors: Sanat K. Dash, Rama S. Verma, Sarit K. Das

Abstract:

A logarithmic microfluidic shear device was designed and fabricated for cellular mechanotransduction studies. The device contains four cell culture chambers in which flow was modulated to achieve a logarithmic increment. Resistance values were optimized to make the device compact. The network of resistances was developed according to a unique combination of series and parallel resistances as found via optimization. Simulation results done in Ansys 16.1 matched the analytical calculations and showed the shear stress distribution at different inlet flow rates. Fabrication of the device was carried out using conventional photolithography and PDMS soft lithography. Flow profile was validated taking DI water as working fluid and measuring the volume collected at all four outlets. Volumes collected at the outlets were in accordance with the simulation results at inlet flow rates ranging from 1 ml/min to 0.1 ml/min. The device can exert fluid shear stresses ranging four orders of magnitude on the culture chamber walls which will cover shear stress values from interstitial flow to blood flow. This will allow studying cell behavior in the long physiological range of shear stress in a single run reducing number of experiments.

Keywords: microfluidics, mechanotransduction, fluid shear stress, physiological shear

Procedia PDF Downloads 121
11816 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification

Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan

Abstract:

The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.

Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification

Procedia PDF Downloads 60