Search results for: résistance
157 Current Applications of Artificial Intelligence (AI) in Chest Radiology
Authors: Angelis P. Barlampas
Abstract:
Learning Objectives: The purpose of this study is to inform briefly the reader about the applications of AI in chest radiology. Background: Currently, there are 190 FDA-approved radiology AI applications, with 42 (22%) pertaining specifically to thoracic radiology. Imaging findings OR Procedure details Aids of AI in chest radiology1: Detects and segments pulmonary nodules. Subtracts bone to provide an unobstructed view of the underlying lung parenchyma and provides further information on nodule characteristics, such as nodule location, nodule two-dimensional size or three dimensional (3D) volume, change in nodule size over time, attenuation data (i.e., mean, minimum, and/or maximum Hounsfield units [HU]), morphological assessments, or combinations of the above. Reclassifies indeterminate pulmonary nodules into low or high risk with higher accuracy than conventional risk models. Detects pleural effusion . Differentiates tension pneumothorax from nontension pneumothorax. Detects cardiomegaly, calcification, consolidation, mediastinal widening, atelectasis, fibrosis and pneumoperitoneum. Localises automatically vertebrae segments, labels ribs and detects rib fractures. Measures the distance from the tube tip to the carina and localizes both endotracheal tubes and central vascular lines. Detects consolidation and progression of parenchymal diseases such as pulmonary fibrosis or chronic obstructive pulmonary disease (COPD).Can evaluate lobar volumes. Identifies and labels pulmonary bronchi and vasculature and quantifies air-trapping. Offers emphysema evaluation. Provides functional respiratory imaging, whereby high-resolution CT images are post-processed to quantify airflow by lung region and may be used to quantify key biomarkers such as airway resistance, air-trapping, ventilation mapping, lung and lobar volume, and blood vessel and airway volume. Assesses the lung parenchyma by way of density evaluation. Provides percentages of tissues within defined attenuation (HU) ranges besides furnishing automated lung segmentation and lung volume information. Improves image quality for noisy images with built-in denoising function. Detects emphysema, a common condition seen in patients with history of smoking and hyperdense or opacified regions, thereby aiding in the diagnosis of certain pathologies, such as COVID-19 pneumonia. It aids in cardiac segmentation and calcium detection, aorta segmentation and diameter measurements, and vertebral body segmentation and density measurements. Conclusion: The future is yet to come, but AI already is a helpful tool for the daily practice in radiology. It is assumed, that the continuing progression of the computerized systems and the improvements in software algorithms , will redder AI into the second hand of the radiologist.Keywords: artificial intelligence, chest imaging, nodule detection, automated diagnoses
Procedia PDF Downloads 72156 Influence of Mandrel’s Surface on the Properties of Joints Produced by Magnetic Pulse Welding
Authors: Ines Oliveira, Ana Reis
Abstract:
Magnetic Pulse Welding (MPW) is a cold solid-state welding process, accomplished by the electromagnetically driven, high-speed and low-angle impact between two metallic surfaces. It has the same working principle of Explosive Welding (EXW), i.e. is based on the collision of two parts at high impact speed, in this case, propelled by electromagnetic force. Under proper conditions, i.e., flyer velocity and collision point angle, a permanent metallurgical bond can be achieved between widely dissimilar metals. MPW has been considered a promising alternative to the conventional welding processes and advantageous when compared to other impact processes. Nevertheless, MPW current applications are mostly academic. Despite the existing knowledge, the lack of consensus regarding several aspects of the process calls for further investigation. As a result, the mechanical resistance, morphology and structure of the weld interface in MPW of Al/Cu dissimilar pair were investigated. The effect of process parameters, namely gap, standoff distance and energy, were studied. It was shown that welding only takes place if the process parameters are within an optimal range. Additionally, the formation of intermetallic phases cannot be completely avoided in the weld of Al/Cu dissimilar pair by MPW. Depending on the process parameters, the intermetallic compounds can appear as continuous layer or small pockets. The thickness and the composition of the intermetallic layer depend on the processing parameters. Different intermetallic phases can be identified, meaning that different temperature-time regimes can occur during the process. It is also found that lower pulse energies are preferred. The relationship between energy increase and melting is possibly related to multiple sources of heating. Higher values of pulse energy are associated with higher induced currents in the part, meaning that more Joule heating will be generated. In addition, more energy means higher flyer velocity, the air existing in the gap between the parts to be welded is expelled, and this aerodynamic drag (fluid friction) is proportional to the square of the velocity, further contributing to the generation of heat. As the kinetic energy also increases with the square of velocity, the dissipation of this energy through plastic work and jet generation will also contribute to an increase in temperature. To reduce intermetallic phases, porosity, and melt pockets, pulse energy should be minimized. The bond formation is affected not only by the gap, standoff distance, and energy but also by the mandrel’s surface conditions. No correlation was clearly identified between surface roughness/scratch orientation and joint strength. Nevertheless, the aspect of the interface (thickness of the intermetallic layer, porosity, presence of macro/microcracks) is clearly affected by the surface topology. Welding was not established on oil contaminated surfaces, meaning that the jet action is not enough to completely clean the surface.Keywords: bonding mechanisms, impact welding, intermetallic compounds, magnetic pulse welding, wave formation
Procedia PDF Downloads 211155 Effect of Different Contaminants on Mineral Insulating Oil Characteristics
Authors: H. M. Wilhelm, P. O. Fernandes, L. P. Dill, C. Steffens, K. G. Moscon, S. M. Peres, V. Bender, T. Marchesan, J. B. Ferreira Neto
Abstract:
Deterioration of insulating oil is a natural process that occurs during transformers operation. However, this process can be accelerated by some factors, such as oxygen, high temperatures, metals and, moisture, which rapidly reduce oil insulating capacity and favor transformer faults. Parts of building materials of a transformer can be degraded and yield soluble compounds and insoluble particles that shorten the equipment life. Physicochemical tests, dissolved gas analysis (including propane, propylene and, butane), volatile and furanic compounds determination, besides quantitative and morphological analyses of particulate are proposed in this study in order to correlate transformers building materials degradation with insulating oil characteristics. The present investigation involves tests of medium temperature overheating simulation by means of an electric resistance wrapped with the following materials immersed in mineral insulating oil: test I) copper, tin, lead and, paper (heated at 350-400 °C for 8 h); test II) only copper (at 250 °C for 11 h); and test III) only paper (at 250 °C for 8 h and at 350 °C for 8 h). A different experiment is the simulation of electric arc involving copper, using an electric welding machine at two distinct energy sets (low and high). Analysis results showed that dielectric loss was higher in the sample of test I, higher neutralization index and higher values of hydrogen and hydrocarbons, including propane and butane, were also observed. Test III oil presented higher particle count, in addition, ferrographic analysis revealed contamination with fibers and carbonized paper. However, these particles had little influence on the oil physicochemical parameters (dielectric loss and neutralization index) and on the gas production, which was very low. Test II oil showed high levels of methane, ethane, and propylene, indicating the effect of metal on oil degradation. CO2 and CO gases were formed in the highest concentration in test III, as expected. Regarding volatile compounds, in test I acetone, benzene and toluene were detected, which are oil oxidation products. Regarding test III, methanol was identified due to cellulose degradation, as expected. Electric arc simulation test showed the highest oil oxidation in presence of copper and at high temperature, since these samples had huge concentration of hydrogen, ethylene, and acetylene. Particle count was also very high, showing the highest release of copper in such conditions. When comparing high and low energy, the first presented more hydrogen, ethylene, and acetylene. This sample had more similar results to test I, pointing out that the generation of different particles can be the cause for faults such as electric arc. Ferrography showed more evident copper and exfoliation particles than in other samples. Therefore, in this study, by using different combined analytical techniques, it was possible to correlate insulating oil characteristics with possible contaminants, which can lead to transformers failure.Keywords: Ferrography, gas analysis, insulating mineral oil, particle contamination, transformer failures
Procedia PDF Downloads 225154 Anti-Angiogenic and Anti-Metastatic Effect of Aqueous Fraction from Euchelus Asper Methanolic Extract
Authors: Sweta Agrawal, Sachin Chaugule, Gargi Rane, Shashank More, Madhavi Indap
Abstract:
Angiogenesis and metastasis are two of the most important hallmarks of cancer. Hence, most of the cancer therapies nowadays are multi-targeted so as to reduce resistance and have better efficacy. As synthetic molecules arise with a burden of their toxicities and side-effects, more and more research is being focussed on exploiting the vast natural resources of drugs, in the form of plants and animals. Although, the idea of using marine organisms as a source of pharmaceuticals is not new, the pace at which marine drugs are being discovered, has definitely up surged! In the present study, we have assessed the anti-angiogenic and in vitro anti-metastatic activity of aqueous fraction from the extract of marine gastropod Euchelus asper. The soft body of Euchelus Asper was extracted with methanol and named EAME. Partition chromatography of EAME gave three fractions EAME I, II and III. Biochemical analysis revealed the presence of proteins in EAME III. Preliminary analysis had revealed the anti-angiogenic activity was exhibited by EAME III out of the three fractions. Hereafter, EAME III (concentration 25µg/ml-400µg/ml) was tested on chick chorioallantoic membrane (CAM) model for the detailed analysis of its potential anti-angiogenic effect. In vitro testing of the fraction (concentration 0.25µg/ml - 1µg/ml), involved cytotoxicity by SRB assay, cell cycle analysis by flow cytometry and anti-proliferative effect by scratch wound healing assay on A549 lung carcinoma cells. Apart from this, a portion of treated CAM as well as conditioned medium from treated A549 were subjected to gelatin zymography for assessment of matrix metalloproteinases MMP-2 and MMP-9 levels. Our results revealed that EAME III exhibited significant anti-angiogenic activity on CAM which was also supported by histological observations. During histological studies of CAM, it was found that EAME III caused reduction in angiogenesis by altering the extracellular matrix of the CAM membrane. In vitro analysis disclosed that EAME III exhibited moderate cytotoxic effect on A549 cells and its effect was not dose-dependent. The results of flow cytometry confirmed that EAME III caused cell cycle arrest in A549 cell line as almost all of the treated cells were found in G1 phase. Further, the migration and proliferation of A549 was significantly reduced by EAME III as observed from the scratch wound assay. Moreover, Gelatin zymography analysis revealed that EAME III caused suppression of MMP-2 in CAM membrane and reduced MMP-9 and MMP-2 expression in A549 cells. This verified that the anti-angiogenic and anti-metastatic effects of EAME III were correlated with the suppression of MMP-2 and -9. To conclude, EAME III shows dual anti-tumour action by reducing angiogenesis and exerting anti-metastatic effect on lung cancer cells, thus it has the potential to be used as an anti-cancer agent against lung carcinoma.Keywords: angiogenesis, anti-cancer, marine drugs, matrix metalloproteinases
Procedia PDF Downloads 231153 Density and Relationships Between the Assassin Bugs Sycanus Falleni Stal and Sycanus Croceovittatus Dohrn (Hemiptera: Reduviidae) and Their Prey (Noctuidae: Lepidoptera) on Corn Biomass in the Hoa Binh Province in Northwest Vietnam
Authors: Truong Xuan Lam, Nguyen Thị Phuong Lien, Nguyen Quang Cuong, Tran Thị Ngat
Abstract:
Introduction: Corn biomass is a feed for livestock including dairy cows. The Spodoptera frugiperda, Agrotis ypsilon, Heliothis armigera, Mythimna loreyi (Lepidoptera: Noctuidae) are key pests and very dangerous to Corn biomass crops. These pest species are very difficult to control in the field because of genetic resistance to insecticides. Furthermore, corn biomass is feed for livestock so the use of pesticides is always limited to the lowest level. In Vietnam, the assassin bug species Sycanus falleni and Sycanus croceouittatus (Hemiptera: Reduviidae) are the common predators on trees agricultural ecosystems. The reduviid S. falleni and S. croceouittatus have the potential for biological control of pest insects in cotton, corn and vegetable plants as this species attacks many lepidopteran larvae. Moreover, the nymphal instars and adults of S. falleni and S. croceouittatus can be easily reared in the laboratory by the rice meal moth Corcyra cephalonica (Stainton). To conserve the species S. falleni and S. croceouittatus in Corn biomass field in Northwest Vietnam. The results of this study report on the roles and relationships between S. falleni Stal and S. croceovittatus and their prey (key pests and dangerous to Corn) on Corn biomass to provide the basis for using and conserving the species S. falleni and S. croceouittatus as biological control agents on Corn biomass growing areas in Vietnam. Methods: The survey site is at the field of Corn biomass growing in Hoa Binh Province, Northwest Vietnam. The survey of the density of the assassin bugs species and their prey were conducted in 4 Corn biomass fields (each field = 10,000 m2), each point has an area of 1 m2. The survey was conducted every 10 days (3 times/month). The unit of measurement is individual/m2. The relationship between the density of assassin bug species and their prey is expressed through the correlation coefficient R Results: On Corn biomass in Northwest Vietnam, the S. falleni and S. croceouittatus species are such potential candidates for biocontrol of the fall armyworm S. frugiperda, black cutworm A. ypsilon, cotton bollworm H. armigera Hübner, maize caterpillar M. loreyi. Six species of assassin bugs belonging to the family Reduviidae were recorded on Corn biomass, of which S. falleni and S. croceovittatus were common. The relationship between the density of the group of assassin bugs and species S. fallen and S. croceovittatus had a close relationship with each other. The relationship between the density of the group of assassin bugs and the density of their prey in the Winter crops and Summer-Fall crops was a close relationship with each other. The relationship between the density of the S. falleni and S. croceovittatus species and the density of their prey on the Corn biomass were a close relationship in the Summer-Fall crops and the Winter crops. The S. falleni and S. croceouittatus species are such potential biocontrol of the pests on Corn. Possible to conserve and use them for biological control of the dangerous pests S. frugiperda, A. ypsilon, H. armigera , M. loreyi on Corn in Vietnam.Keywords: corn biomass, prey, biocontrol, relationship
Procedia PDF Downloads 35152 Detection and Identification of Antibiotic Resistant UPEC Using FTIR-Microscopy and Advanced Multivariate Analysis
Authors: Uraib Sharaha, Ahmad Salman, Eladio Rodriguez-Diaz, Elad Shufan, Klaris Riesenberg, Irving J. Bigio, Mahmoud Huleihel
Abstract:
Antimicrobial drugs have played an indispensable role in controlling illness and death associated with infectious diseases in animals and humans. However, the increasing resistance of bacteria to a broad spectrum of commonly used antibiotics has become a global healthcare problem. Many antibiotics had lost their effectiveness since the beginning of the antibiotic era because many bacteria have adapted defenses against these antibiotics. Rapid determination of antimicrobial susceptibility of a clinical isolate is often crucial for the optimal antimicrobial therapy of infected patients and in many cases can save lives. The conventional methods for susceptibility testing require the isolation of the pathogen from a clinical specimen by culturing on the appropriate media (this culturing stage lasts 24 h-first culturing). Then, chosen colonies are grown on media containing antibiotic(s), using micro-diffusion discs (second culturing time is also 24 h) in order to determine its bacterial susceptibility. Other methods, genotyping methods, E-test and automated methods were also developed for testing antimicrobial susceptibility. Most of these methods are expensive and time-consuming. Fourier transform infrared (FTIR) microscopy is rapid, safe, effective and low cost method that was widely and successfully used in different studies for the identification of various biological samples including bacteria; nonetheless, its true potential in routine clinical diagnosis has not yet been established. The new modern infrared (IR) spectrometers with high spectral resolution enable measuring unprecedented biochemical information from cells at the molecular level. Moreover, the development of new bioinformatics analyses combined with IR spectroscopy becomes a powerful technique, which enables the detection of structural changes associated with resistivity. The main goal of this study is to evaluate the potential of the FTIR microscopy in tandem with machine learning algorithms for rapid and reliable identification of bacterial susceptibility to antibiotics in time span of few minutes. The UTI E.coli bacterial samples, which were identified at the species level by MALDI-TOF and examined for their susceptibility by the routine assay (micro-diffusion discs), are obtained from the bacteriology laboratories in Soroka University Medical Center (SUMC). These samples were examined by FTIR microscopy and analyzed by advanced statistical methods. Our results, based on 700 E.coli samples, were promising and showed that by using infrared spectroscopic technique together with multivariate analysis, it is possible to classify the tested bacteria into sensitive and resistant with success rate higher than 90% for eight different antibiotics. Based on these preliminary results, it is worthwhile to continue developing the FTIR microscopy technique as a rapid and reliable method for identification antibiotic susceptibility.Keywords: antibiotics, E.coli, FTIR, multivariate analysis, susceptibility, UTI
Procedia PDF Downloads 173151 Dietary Intake and Nutritional Inadequacy Leading to Malnutrition among Children Residing in Shelter Home, Rural Tamil Nadu, India
Authors: Niraimathi Kesavan, Sangeeta Sharma, Deepa Jagan, Sridhar Sukumar, Mohan Ramachandran, Vidhubala Elangovan
Abstract:
Background: Childhood is a dynamic period for growth and development. Optimum nutrition during this period forms a strong foundation for growth, development, resistance to infections, long-term good health, cognition, educational achievements, and work productivity in a later phase of life. Underprivileged children living in a resource constraint settings like shelter homes are at high risk of malnutrition due to poor quality diet and nutritional inadequacy. In low-income countries, underprivileged children are vulnerable to being deprived of nutritious food, which stands as a major challenge in the health sector. The present aims to assess the dietary intake, nutritional status, and nutritional inadequacy and their association with malnutrition among children residing in shelter homes in rural Tamil Nadu. Methods: The study was a descriptive survey conducted among all the children aged between 8-18 years residing in two selected shelter homes (Anbu illam, a home for female children, and Amaidhi illam, a home for male children), rural Tirunelveli, Tamil Nadu, India. A total of 57 children were recruited, including 18 boys and 39 girls, for the study. Dietary intake was measured using seven days 24 hours recall. The average nutrient intake was considered for further analysis. Results: Of the 57 children, about 60% (n=35) were undernutrition. The mean daily energy intake was 1298 (SD 180) kcal for boys and 952 (SD155) kcal for girls. The total calorie intake was 55-60% below the estimated average requirement (EAR) for adolescent boys and girls in the age group 13-15 years and 16-18 years. Carbohydrates were the major source of energy (boys 53% and girls 51%), followed by fat (boys 31.5% and girls 34.5%) and protein (boys 14% and girls 12.9%). Dairy intake (<200ml/day) was less than the recommendation (500ml/day). Micro-nutrient-rich foods such as fruits, vegetables, and green leafy vegetables in the diet were <200g/day, which was far less than the recommended dietary guidelines of 400g- 600g/day for the age group of 7-18 years. Nearly 26% of girls reported experiencing menstrual problems. The majority (76.9%) of the children exhibited nutrient deficiency-related signs and symptoms. Conclusion: The total energy, minerals, and micro-nutrient intake were inadequate and below the Recommended Dietary Allowance for children and adolescents. The diet predominantly consists of refined cereals, rice, semolina, and vermicelli. Consumption of whole grains, milk, fruits, vegetables, and leafy vegetables was far below the recommended dietary guidelines. Dietary inadequacies among these children pose a serious concern for their overall health status and its consequences in the later phase of life.Keywords: adolescents, children, dietary intake, malnutrition, nutritional inadequacy, shelter home
Procedia PDF Downloads 82150 Innovative Strategies for Chest Wall Reconstruction Following Resection of Recurrent Breast Carcinoma
Authors: Sean Yao Zu Kong, Khong Yik Chew
Abstract:
Introduction: We described a case report of the successful use of advanced surgical techniques in a patient with recurrent breast cancer who underwent a wide resection including the hemi-sternum, clavicle, multiple ribs, and a lobe of the lung due to tumor involvement. This extensive resection exposed critical structures, requiring a creative approach to reconstruction. To address this complex chest wall reconstruction, a free fibula flap and a 4-zone rectus abdominis musculocutaneous flap were successfully utilized. The use of a free vascularized bone flap allowed for rapid osteointegration and resistance against osteoradionecrosis after adjuvant radiation, while a four-zone tram flap allowed for reconstruction of both the chest wall and breast mound. Although limited recipient vessels made free flaps challenging, the free fibula flap served as both a bony reconstruction and vascular conduit, supercharged with the distal peroneal artery and veins of the peroneal artery from the fibula graft. Our approach highlights the potential of advanced surgical techniques to improve outcomes in complex cases of chest wall reconstruction in patients with recurrent breast cancer, which is becoming increasingly relevant as breast cancer incidence rates increases. Case presentation: This report describes a successful reconstruction of a patient with recurrent breast cancer who required extensive resection, including the anterior chest wall, clavicle, and sternoclavicular joint. Challenges arose due to the loss of accessory muscles and the non-rigid rib cage, which could lead to compromised ventilation and instability. A free fibula osteocutaneous flap and a four-zone TRAM flap with vascular supercharging were utilized to achieve long-term stability and function. The patient has since fully recovered, and during the review, both flaps remained viable, and chest mound reconstruction was satisfactory. A planned nipple/areolar reconstruction was offered pending the patient’s decision after adjuvant radiotherapy. Conclusion: In conclusion, this case report highlights the successful use of innovative surgical techniques in addressing a complex case of recurrent breast cancer requiring extensive resection and radical reconstruction. Our approach, utilized a combination of a free fibula flap and a 4-zone rectus abdominis musculocutaneous flap, demonstrates the potential for advanced techniques in chest wall reconstruction to minimize complications and ensure long-term stability and function. As the incidence of breast cancer continues to rise, it is crucial that healthcare professionals explore and utilize innovative techniques to improve patient outcomes and quality of life.Keywords: free fibula flap, rectus abdominis musculocutaneous flap, post-adjuvant radiotherapy, reconstructive surgery, malignancy
Procedia PDF Downloads 62149 Urban Stratification as a Basis for Analyzing Political Instability: Evidence from Syrian Cities
Authors: Munqeth Othman Agha
Abstract:
The historical formation of urban centres in the eastern Arab world was shaped by rapid urbanization and sudden transformation from the age of the pre-industrial to a post-industrial economy, coupled with uneven development, informal urban expansion, and constant surges in unemployment and poverty rates. The city was stratified accordingly as overlapping layers of division and inequality that have been built on top of each other, creating complex horizontal and vertical divisions based on economic, social, political, and ethno-sectarian basis. This has been further exacerbated during the neoliberal era, which transferred the city into a sort of dual city that is inhabited by heterogeneous and often antagonistic social groups. Economic deprivation combined with a growing sense of marginalization and inequality across the city planted the seeds of political instability, outbreaking in 2011. Unlike other popular uprisings that occupy central squares, as in Egypt and Tunisia, the Syrian uprising in 2011 took place mainly within inner streets and neighborhood squares, mobilizing primarily on more or less upon the lines of stratification. This has emphasized the role of micro-urban and social settings in shaping mobilization and resistance tactics, which necessitates us to understand the way the city was stratified and place it at the center of the city-conflict nexus analysis. This research aims to understand to what extent pre-conflict urban stratification lines played a role in determining the different trajectories of three cities’ neighborhoods (Homs, Dara’a and Deir-ez-Zor). The main argument of the paper is that the way the Syrian city has been stratified creates various social groups within the city who have enjoyed different levels of accessibility to life chances, material resources and social statuses. This determines their relationship with other social groups in the city and, more importantly, their relationship with the state. The advent of a political opportunity will be depicted differently across the city’s different social groups according to their perceived interests and threats, which consequently leads to either political mobilization or demobilization. Several factors, including the type of social structures, built environment, and state response, determine the ability of social actors to transfer the repertoire of contention to collective action or transfer from social actors to political actors. The research uses urban stratification lines as the basis for understanding the different patterns of political upheavals in urban areas while explaining why neighborhoods with different social and urban environment settings had different abilities and capacities to mobilize, resist state repression and then descend into a military conflict. It particularly traces the transformation from social groups to social actors and political actors by applying the Explaining-outcome Process-Tracing method to depict the causal mechanisms that led to including or excluding different neighborhoods from each stage of the uprising, namely mobilization (M1), response (M2), and control (M3).Keywords: urban stratification, syrian conflict, social movement, process tracing, divided city
Procedia PDF Downloads 73148 University Curriculum Policy Processes in Chile: A Case Study
Authors: Victoria C. Valdebenito
Abstract:
Located within the context of accelerating globalization in the 21st-century knowledge society, this paper focuses on one selected university in Chile at which radical curriculum policy changes have been taking place, diverging from the traditional curriculum in Chile at the undergraduate level as a section of a larger investigation. Using a ‘policy trajectory’ framework, and guided by the interpretivist approach to research, interview transcripts and institutional documents were analyzed in relation to the meso (university administration) and the micro (academics) level. Inside the case study, participants from the university administration and academic levels were selected both via snow-ball technique and purposive selection, thus they had different levels of seniority, with some participating actively in the curriculum reform processes. Guided by an interpretivist approach to research, documents and interview transcripts were analyzed to reveal major themes emerging from the data. A further ‘bigger picture’ analysis guided by critical theory was then undertaken, involving interrogation of underlying ideologies and how political and economic interests influence the cultural production of policy. The case-study university was selected because it represents a traditional and old case of university setting in the country, undergoing curriculum changes based on international trends such as the competency model and the liberal arts. Also, it is representative of a particular socioeconomic sector of the country. Access to the university was gained through email contact. Qualitative research methods were used, namely interviews and analysis of institutional documents. In all, 18 people were interviewed. The number was defined by when the saturation criterion was met. Semi-structured interview schedules were based on the four research questions about influences, policy texts, policy enactment and longer-term outcomes. Triangulation of information was used for the analysis. While there was no intention to generalize the specific findings of the case study, the results of the research were used as a focus for engagement with broader themes, often evident in global higher education policy developments. The research results were organized around major themes in three of the four contexts of the ‘policy trajectory’. Regarding the context of influences and the context of policy text production, themes relate to hegemony exercised by first world countries’ universities in the higher education field, its associated neoliberal ideology, with accountability and the discourse of continuous improvement, the local responses to those pressures, and the value of interdisciplinarity. Finally, regarding the context of policy practices and effects (enactment), themes emerged around the impacts of the curriculum changes on university staff, students, and resistance amongst academics. The research concluded with a few recommendations that potentially provide ‘food for thought’ beyond the localized settings of this study, as well as possibilities for further research.Keywords: curriculum, global-local dynamics, higher education, policy, sociology of education
Procedia PDF Downloads 78147 Stakeholder-Driven Development of a One Health Platform to Prevent Non-Alimentary Zoonoses
Authors: A. F. G. Van Woezik, L. M. A. Braakman-Jansen, O. A. Kulyk, J. E. W. C. Van Gemert-Pijnen
Abstract:
Background: Zoonoses pose a serious threat to public health and economies worldwide, especially as antimicrobial resistance grows and newly emerging zoonoses can cause unpredictable outbreaks. In order to prevent and control emerging and re-emerging zoonoses, collaboration between veterinary, human health and public health domains is essential. In reality however, there is a lack of cooperation between these three disciplines and uncertainties exist about their tasks and responsibilities. The objective of this ongoing research project (ZonMw funded, 2014-2018) is to develop an online education and communication One Health platform, “eZoon”, for the general public and professionals working in veterinary, human health and public health domains to support the risk communication of non-alimentary zoonoses in the Netherlands. The main focus is on education and communication in times of outbreak as well as in daily non-outbreak situations. Methods: A participatory development approach was used in which stakeholders from veterinary, human health and public health domains participated. Key stakeholders were identified using business modeling techniques previously used for the design and implementation of antibiotic stewardship interventions and consisted of a literature scan, expert recommendations, and snowball sampling. We used a stakeholder salience approach to rank stakeholders according to their power, legitimacy, and urgency. Semi-structured interviews were conducted with stakeholders (N=20) from all three disciplines to identify current problems in risk communication and stakeholder values for the One Health platform. Interviews were transcribed verbatim and coded inductively by two researchers. Results: The following key values were identified (but were not limited to): (a) need for improved awareness of veterinary and human health of each other’s fields, (b) information exchange between veterinary and human health, in particularly at a regional level; (c) legal regulations need to match with daily practice; (d) professionals and general public need to be addressed separately using tailored language and information; (e) information needs to be of value to professionals (relevant, important, accurate, and have financial or other important consequences if ignored) in order to be picked up; and (f) need for accurate information from trustworthy, centrally organised sources to inform the general public. Conclusion: By applying a participatory development approach, we gained insights from multiple perspectives into the main problems of current risk communication strategies in the Netherlands and stakeholder values. Next, we will continue the iterative development of the One Health platform by presenting key values to stakeholders for validation and ranking, which will guide further development. We will develop a communication platform with a serious game in which professionals at the regional level will be trained in shared decision making in time-critical outbreak situations, a smart Question & Answer (Q&A) system for the general public tailored towards different user profiles, and social media to inform the general public adequately during outbreaks.Keywords: ehealth, one health, risk communication, stakeholder, zoonosis
Procedia PDF Downloads 286146 High Prevalence of Asymptomatic Dengue among Healthy Adults in Southern Malaysia: A Longitudinal Prospective Study
Authors: Nowrozy Jahan, Sharifah Syed Hassan, Daniel Reidpath
Abstract:
In recent decades, Malaysia has become a dengue hyper-endemic country with the co-circulation of the four-dengue virus (DENV) serotypes. The number of symptomatic dengue cases is maintaining an increasing trend since 1995 and sharply increased in 2014. The four DENV serotypes have been co-circulating since 2000, and this pattern of cyclical dominance of sub-types contributed to the development of frequent major dengue epidemics in Malaysia. Since 2012, different Malaysian state was dominated by different serotypes. The study aims to estimate the burden of asymptomatic dengue in a healthy adult population which may act as a potential source of further symptomatic dengue infection. It also aims to identify the predominant DENV serotypes which are circulating at the community level. A longitudinal prospective community-based study was conducted in the Segamat district of Johor State, southern part of Malaysia where the number of reported dengue cases has steadily increased over the last three years (2013-2015). More specifically, the study was conducted in and around of Kampung Abdullah of Sungai Segamat sub-district which was identified as a hot spot area over the period of 2013-2015. This community-based study has been conducted by Southeast Asia Community Observatory (SEACO), an ISO-certified research platform in collaboration of the Ministry of Health Malaysia and Monash University Malaysia. It was conducted from May 2015 to May 2016. In this study, 277 apparently looking healthy respondents joined who were followed up as a cohort for four times during the one-year study period. Blood was collected to detect the serological marker of dengue at each round of follow-up. Among 277, 184 respondents (66%) joined all four rounds. Half of the study respondents were at the age-group of 45-64 years, slightly more than half of the respondents (59%) were female, and the most (69%) of them were Malay; only 35% lived in urban areas. During the baseline, the study found a very high prevalence of exposure to dengue virus; 89% of the study respondents had serological evidence of previous asymptomatic dengue infection; the majority of them did not know about it as they did not develop any symptom of dengue fever; only 13% knew as they developed symptoms. At the end of the one-year study period, 19% of respondents developed recent secondary dengue infection which was also identified by the serological marker as they did not develop any symptom (asymptomatic cases). The asymptomatic dengue incidence was higher during the rainy season compared to the dry season. All four dengue serotypes were identified in the serum of the infected respondents; among them, DENV-2 was the most prominent. Further genetic analysis is going on to identify the association of HLA-B*46 and HLA-DRB1*08 with dengue resistance. This study provides evidence for the policymakers to be aware of asymptomatic dengue infection, to develop a useful tool for raising awareness about asymptomatic dengue infection among the general population, to monitor the community participation to strengthen the individual and community level dengue prevention and control measures when neither there is vaccine nor particular treatment for dengue.Keywords: asymptomatic, dengue, health adults, prospective study
Procedia PDF Downloads 130145 The Challenges of Citizen Engagement in Urban Transformation: Key Learnings from Three European Cities
Authors: Idoia Landa Oregi, Itsaso Gonzalez Ochoantesana, Olatz Nicolas Buxens, Carlo Ferretti
Abstract:
The impact of citizens in urban transformations has become increasingly important in the pursuit of creating citizen-centered cities. Citizens at the forefront of the urban transformation process are key to establishing resilient, sustainable, and inclusive cities that cater to the needs of all residents. Therefore, collecting data and information directly from citizens is crucial for the sustainable development of cities. Within this context, public participation becomes a pillar for acquiring the necessary information from citizens. Public participation in urban transformation processes establishes a more responsive, equitable, and resilient urban environment. This approach cultivates a sense of shared responsibility and collective progress in building cities that truly serve the well-being of all residents. However, the implementation of public participation practices often overlooks strategies to effectively engage citizens in the processes, resulting in non-successful participatory outcomes. Therefore, this research focuses on identifying and analyzing the critical aspects of citizen engagement during the same participatory urban transformation process in different European contexts: Ermua (Spain), Elva (Estonia) and Matera (Italy). The participatory neighborhood regeneration process is divided into three main stages, to turn social districts into inclusive and smart neighborhoods: (i) the strategic level, (ii) the design level, and (iii) the implementation level. In the initial stage, the focus is on diagnosing the neighborhood and creating a shared vision with the community. The second stage centers around collaboratively designing various action plans to foster inclusivity and intelligence while pushing local economic development within the district. Finally, the third stage ensures the proper co-implementation of the designed actions in the neighborhood. To this date, the presented results critically analyze the key aspects of engagement in the first stage of the methodology, the strategic plan, in the three above-mentioned contexts. It is a multifaceted study that incorporates three case studies to shed light on the various perspectives and strategies adopted by each city. The results indicate that despite of the various cultural contexts, all cities face similar barriers when seeking to enhance engagement. Accordingly, the study identifies specific challenges within the participatory approach across the three cities such as the existence of discontented citizens, communication gaps, inconsistent participation, or administration resistance. Consequently, key learnings of the process indicate that a collaborative sphere needs to be cultivated, educating both citizens and administrations in the aspects of co-governance, giving these practices the appropriate space and their own communication channels. This study is part of the DROP project, funded by the European Union, which aims to develop a citizen-centered urban renewal methodology to transform the social districts into smart and inclusive neighborhoods.Keywords: citizen-centred cities, engagement, public participation, urban transformation
Procedia PDF Downloads 68144 Bioleaching of Precious Metals from an Oil-fired Ash Using Organic Acids Produced by Aspergillus niger in Shake Flasks and a Bioreactor
Authors: Payam Rasoulnia, Seyyed Mohammad Mousavi
Abstract:
Heavy fuel oil firing power plants produce huge amounts of ashes as solid wastes, which seriously need to be managed and processed. Recycling precious metals of V and Ni from these oil-fired ashes which are considered as secondary sources of metals recovery, not only has a great economic importance for use in industry, but also it is noteworthy from the environmental point of view. Vanadium is an important metal that is mainly used in the steel industry because of its physical properties of hardness, tensile strength, and fatigue resistance. It is also utilized in oxidation catalysts, titanium–aluminum alloys and vanadium redox batteries. In the present study bioleaching of vanadium and nickel from an oil-fired ash sample was conducted using Aspergillus niger fungus. The experiments were carried out using spent-medium bioleaching method in both Erlenmeyer flasks and also bubble column bioreactor, in order to compare them together. In spent-medium bioleaching the solid waste is not in direct contact with the fungus and consequently the fungal growth is not retarded and maximum organic acids are produced. In this method the metals are leached through biogenic produced organic acids present in the medium. In shake flask experiments the fungus was cultured for 15 days, where the maximum production of organic acids was observed, while in bubble column bioreactor experiments a 7 days fermentation period was applied. The amount of produced organic acids were measured using high performance liquid chromatography (HPLC) and the results showed that depending on the fermentation period and the scale of experiments, the fungus has different major lixiviants. In flask tests, citric acid was the main produced organic acid by the fungus and the other organic acids including gluconic, oxalic, and malic were excreted in much lower concentrations, while in the bioreactor oxalic acid was the main lixiviant and it was produced considerably. In Erlenmeyer flasks during 15 days fermentation of Aspergillus niger, 8080 ppm citric acid and 1170 ppm oxalic acid was produced, while in bubble column bioreactor over 7 days of fungal growth, 17185 ppm oxalic acid and 1040 ppm citric acid was secreted. The leaching tests using the spent-media obtained from both of fermentation experiments, were performed at the same conditions of leaching duration of 7 days, leaching temperature of 60 °C and pulp density up to 3% (w/v). The results revealed that in Erlenmeyer flask experiments 97% of V and 50% of Ni were extracted while using spent medium produced in bubble column bioreactor, V and Ni recoveries were achieved to 100% and 33%, respectively. These recovery yields indicate that in both scales almost total vanadium can be recovered, while nickel recovery was lower. With help of the bioreactor spent-medium nickel recovery yield was lower than that of obtained from the flask experiments, which it could be due to precipitation of some values of Ni in presence of high levels of oxalic acid existing in its spent medium.Keywords: Aspergillus niger, bubble column bioreactor, oil-fired ash, spent-medium bioleaching
Procedia PDF Downloads 229143 A Hybrid Film: NiFe₂O₄ Nanoparticles in Poly-3-Hydroxybutyrate as an Antibacterial Agent
Authors: Karen L. Rincon-Granados, América R. Vázquez-Olmos, Adriana-Patricia Rodríguez-Hernández, Gina Prado-Prone, Margarita Rivera, Roberto Y. Sato-Berrú
Abstract:
In this work, a hybrid film based on poly-3-hydroxybutyrate (P3HB) and nickel ferrite (NiFe₂O₄) nanoparticles (NPs) was obtained by a simple and reproducible methodology in order to study its antibacterial and cytotoxic properties. The motivation for this research is the current antimicrobial resistance (RAM). This is a threat to human health and development worldwide. RAM is caused by the emergence of bacterial strains resistant to traditional antibiotics that were used as treatment. Due to this, the need to investigate new alternatives for preventing and treating bacterial infections emerges. In this sense, metal oxide NPs have aroused great interest due to their unique physicochemical properties. However, their use is limited by the nanostructured nature, commonly obtained by chemical and physical synthesis methods, as powders or colloidal dispersions. Therefore, the incorporation of nanostructured materials in polymer matrices to obtain hybrid materials that allow disinfecting and preventing the spread of bacteria on various surfaces. Accordingly, this work presents the synthesis and study of the antibacterial properties of the P3HB@NiFe₂O₄ hybrid film as a potential material to inhibit bacterial growth. The NiFe₂O₄ NPs were previously synthesized by a mechanochemical method. The P3HB and P3HB@NiFe₂O₄ films were obtained by the solvent casting method. The films were characterized by X-ray diffraction (XRD), Raman scattering, and scanning electron microscopy (SEM). The XRD pattern showed that the NiFe₂O₄ NPs were incorporated into the P3HB polymer matrix and retained their nanometric sizes. By energy dispersive X-ray spectroscopy (EDS), it was observed that the NPs are homogeneously distributed in the film. The bactericidal effect of the films obtained was evaluated in vitro using the broth surface method against two opportunistic and nosocomial pathogens, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth results showed that the P3HB@NiFe₂O₄ hybrid film was inhibited by 97% and 96% for S. aureus and P. aeruginosa, respectively. Surprisingly, the P3HB film inhibited both bacterial strains by around 90%. The cytotoxicity of the NiFe₂O₄ NPs, P3HB@NiFe₂O₄ hybrid film, and the P3HB film was evaluated using human skin cells, keratinocytes, and fibroblasts, finding that the NPs are biocompatible. The P3HB film and hybrids are cytotoxic, which demonstrated that although P3HB is known and reported as a biocompatible polymer, under our work conditions, P3HB was cytotoxic. Its bactericidal effect could be related to this activity. Its films are bactericidal and cytotoxic to keratinocytes and fibroblasts, the first barrier of human skin. Despite this, the hybrid film of P3HB@NiFe₂O₄ presents synergy with the bactericidal effect between P3HB and NPs, increasing bacterial inhibition. In addition, NPs decrease the cytotoxicity of P3HB to keratinocytes. The methodology used in this work was successful in producing hybrid films with antibacterial activity. However, future challenges are generated to find relationships between NPs and P3HB that allow taking advantage of their bactericidal properties and do not compromise biocompatibility.Keywords: poly-3-hydroxybutyrate, nanoparticles, hybrid film, antibacterial
Procedia PDF Downloads 82142 Double Liposomes Based Dual Drug Delivery System for Effective Eradication of Helicobacter pylori
Authors: Yuvraj Singh Dangi, Brajesh Kumar Tiwari, Ashok Kumar Jain, Kamta Prasad Namdeo
Abstract:
The potential use of liposomes as drug carriers by i.v. injection is limited by their low stability in blood stream. Firstly, phospholipid exchange and transfer to lipoproteins, mainly HDL destabilizes and disintegrates liposomes with subsequent loss of content. To avoid the pain associated with injection and to obtain better patient compliance studies concerning various dosage forms, have been developed. Conventional liposomes (unilamellar and multilamellar) have certain drawbacks like low entrapment efficiency, stability and release of drug after single breach in external membrane, have led to the new type of liposomal systems. The challenge has been successfully met in the form of Double Liposomes (DL). DL is a recently developed type of liposome, consisting of smaller liposomes enveloped in lipid bilayers. The outer lipid layer of DL can protect inner liposomes against various enzymes, therefore DL was thought to be more effective than ordinary liposomes. This concept was also supported by in vitro release characteristics i.e. DL formation inhibited the release of drugs encapsulated in inner liposomes. DL consists of several small liposomes encapsulated in large liposomes, i.e., multivesicular vesicles (MVV), therefore, DL should be discriminated from ordinary classification of multilamellar vesicles (MLV), large unilamellar vesicles (LUV), small unilamellar vesicles (SUV). However, for these liposomes, the volume of inner phase is small and loading volume of water-soluble drugs is low. In the present study, the potential of phosphatidylethanolamine (PE) lipid anchored double liposomes (DL) to incorporate two drugs in a single system is exploited as a tool to augment the H. pylori eradication rate. Preparation of DL involves two steps, first formation of primary (inner) liposomes by thin film hydration method containing one drug, then addition of suspension of inner liposomes on thin film of lipid containing the other drug. The success of formation of DL was characterized by optical and transmission electron microscopy. Quantitation of DL-bacterial interaction was evaluated in terms of percent growth inhibition (%GI) on reference strain of H. pylori ATCC 26695. To confirm specific binding efficacy of DL to H. pylori PE surface receptor we performed an agglutination assay. Agglutination in DL treated H. pylori suspension suggested selectivity of DL towards the PE surface receptor of H. pylori. Monotherapy is generally not recommended for treatment of a H. pylori infection due to the danger of development of resistance and unacceptably low eradication rates. Therefore, combination therapy with amoxicillin trihydrate (AMOX) as anti-H. pylori agent and ranitidine bismuth citrate (RBC) as antisecretory agent were selected for the study with an expectation that this dual-drug delivery approach will exert acceptable anti-H. pylori activity.Keywords: Helicobacter pylorI, amoxicillin trihydrate, Ranitidine Bismuth citrate, phosphatidylethanolamine, multi vesicular systems
Procedia PDF Downloads 208141 One Pot Synthesis of Cu–Ni–S/Ni Foam for the Simultaneous Removal and Detection of Norfloxacin
Authors: Xincheng Jiang, Yanyan An, Yaoyao Huang, Wei Ding, Manli Sun, Hong Li, Huaili Zheng
Abstract:
The residual antibiotics in the environment will pose a threat to the environment and human health. Thus, efficient removal and rapid detection of norfloxacin (NOR) in wastewater is very important. The main sources of NOR pollution are the agricultural, pharmaceutical industry and hospital wastewater. The total consumption of NOR in China can reach 5440 tons per year. It is found that neither animals nor humans can totally absorb and metabolize NOR, resulting in the excretion of NOR into the environment. Therefore, residual NOR has been detected in water bodies. The hazards of NOR in wastewater lie in three aspects: (1) the removal capacity of the wastewater treatment plant for NOR is limited (it is reported that the average removal efficiency of NOR in the wastewater treatment plant is only 68%); (2) NOR entering the environment will lead to the emergence of drug-resistant strains; (3) NOR is toxic to many aquatic species. At present, the removal and detection technologies of NOR are applied separately, which leads to a cumbersome operation process. The development of simultaneous adsorption-flocculation removal and FTIR detection of pollutants has three advantages: (1) Adsorption-flocculation technology promotes the detection technology (the enrichment effect on the material surface improves the detection ability); (2) The integration of adsorption-flocculation technology and detection technology reduces the material cost and makes the operation easier; (3) FTIR detection technology endows the water treatment agent with the ability of molecular recognition and semi-quantitative detection for pollutants. Thus, it is of great significance to develop a smart water treatment material with high removal capacity and detection ability for pollutants. This study explored the feasibility of combining NOR removal method with the semi-quantitative detection method. A magnetic Cu-Ni-S/Ni foam was synthesized by in-situ loading Cu-Ni-S nanostructures on the surface of Ni foam. The novelty of this material is the combination of adsorption-flocculation technology and semi-quantitative detection technology. Batch experiments showed that Cu-Ni-S/Ni foam has a high removal rate of NOR (96.92%), wide pH adaptability (pH=4.0-10.0) and strong ion interference resistance (0.1-100 mmol/L). According to the Langmuir fitting model, the removal capacity can reach 417.4 mg/g at 25 °C, which is much higher than that of other water treatment agents reported in most studies. Characterization analysis indicated that the main removal mechanisms are surface complexation, cation bridging, electrostatic attraction, precipitation and flocculation. Transmission FTIR detection experiments showed that NOR on Cu-Ni-S/Ni foam has easily recognizable FTIR fingerprints; the intensity of characteristic peaks roughly reflects the concentration information to some extent. This semi-quantitative detection method has a wide linear range (5-100 mg/L) and a low limit of detection (4.6 mg/L). These results show that Cu-Ni-S/Ni foam has excellent removal performance and semi-quantitative detection ability of NOR molecules. This paper provides a new idea for designing and preparing multi-functional water treatment materials to achieve simultaneous removal and semi-quantitative detection of organic pollutants in water.Keywords: adsorption-flocculation, antibiotics detection, Cu-Ni-S/Ni foam, norfloxacin
Procedia PDF Downloads 76140 Eosinophils and Platelets: Players of the Game in Morbid Obese Boys with Metabolic Syndrome
Authors: Orkide Donma, Mustafa M. Donma
Abstract:
Childhood obesity, which may lead to increased risk for heart diseases in children as well as adults, is one of the most important health problems throughout the world. Prevalences of morbid obesity and metabolic syndrome (MetS) are being increased during childhood age group. MetS is a cluster of metabolic and vascular abnormalities including hypercoagulability and an increased risk of cardiovascular diseases (CVDs). There are also some relations between some components of MetS and leukocytes. The aim of this study is to investigate complete blood cell count parameters that differ between morbidly obese boys and girls with MetS diagnosis. A total of 117 morbid obese children with MetS consulted to Department of Pediatrics in Faculty of Medicine Hospital at Namik Kemal University were included into the scope of the study. The study population was classified based upon their genders (60 girls and 57 boys). Their heights and weights were measured and body mass index (BMI) values were calculated. WHO BMI-for age and sex percentiles were used. The values above 99 percentile were defined as morbid obesity. Anthropometric measurements were performed. Waist-to-hip and head-to-neck ratios as well as homeostatic model assessment of insulin resistance (HOMA-IR) were calculated. Components of MetS (central obesity, glucose intolerance, high blood pressure, high triacylglycerol levels, low levels of high density lipoprotein cholesterol) were determined. Hematological variables were measured. Statistical analyses were performed using SPSS. The degree for statistical significance was p ≤ 0.05. There was no statistically significant difference between the ages (11.2±2.6 years vs 11.2±3.0 years) and BMIs (28.6±5.2 kg/m2 vs 29.3±5.2 kg/m2) of boys and girls (p ≥ 0.05), respectively. Significantly increased waist-to-hip ratios were obtained for boys (0.94±0.08 vs 0.91±0.06; p=0.023). Significantly elevated values of hemoglobin (13.55±0.98 vs 13.06±0.82; p=0.004), mean corpuscular hemoglobin concentration (33.79±0.91 vs 33.21±1.14; p=0.003), eosinophils (0.300±0.253 vs 0.196±0.197; p=0.014), and platelet (347.1±81.7 vs 319.0±65.9; p=0.042) were detected for boys. There was no statistically significant difference between the groups in terms of neutrophil/lymphocyte ratios as well as HOMA-IR values (p ≥ 0.05). Statistically significant gender-based differences were found for hemoglobin as well as mean corpuscular hemoglobin concentration and hence, separate reference intervals for two genders should be considered for these parameters. Eosinophils may contribute to the development of thrombus in acute coronary syndrome. Eosinophils are also known to make an important contribution to mechanisms related to thrombosis pathogenesis in acute myocardial infarction. Increased platelet activity is observed in patients with MetS and these individuals are more susceptible to CVDs. In our study, elevated platelets described as dominant contributors to hypercoagulability and elevated eosinophil counts suggested to be related to the development of CVDs observed in boys may be the early indicators of the future cardiometabolic complications in this gender.Keywords: children, complete blood count, gender, metabolic syndrome
Procedia PDF Downloads 217139 Review of the Nutritional Value of Spirulina as a Potential Replacement of Fishmeal in Aquafeed
Authors: Onada Olawale Ahmed
Abstract:
As the intensification of aquaculture production increases on global scale, the growing concern of fish farmers around the world is related to cost of fish production, where cost of feeding takes substantial percentage. Fishmeal (FM) is one of the most expensive ingredients, and its high dependence in aqua-feed production translates to high cost of feeding of stocked fish. However, to reach a sustainable aquaculture, new alternative protein sources including cheaper plant or animal origin proteins are needed to be introduced for stable aqua-feed production. Spirulina is a cyanobacterium that has good nutrient profile that could be useful in aquaculture. This review therefore emphasizes on the nutritional value of Spirulina as a potential replacement of FM in aqua-feed. Spirulina is a planktonic photosynthetic filamentous cyanobacterium that forms massive populations in tropical and subtropical bodies of water with high levels of carbonate and bicarbonate. Spirulina grows naturally in nutrient rich alkaline lake with water salinity ( > 30 g/l) and high pH (8.5–11.0). Its artificial production requires luminosity (photo-period 12/12, 4 luxes), temperature (30 °C), inoculum, water stirring device, dissolved solids (10–60 g/litre), pH (8.5– 10.5), good water quality, and macro and micronutrient presence (C, N, P, K, S, Mg, Na, Cl, Ca and Fe, Zn, Cu, Ni, Co, Se). Spirulina has also been reported to grow on agro-industrial waste such as sugar mill waste effluent, poultry industry waste, fertilizer factory waste, and urban waste and organic matter. Chemical composition of Spirulina indicates that it has high nutritional value due to its content of 55-70% protein, 14-19% soluble carbohydrate, high amount of polyunsaturated fatty acids (PUFAs), 1.5–2.0 percent of 5–6 percent total lipid, all the essential minerals are available in spirulina which contributes about 7 percent (average range 2.76–3.00 percent of total weight) under laboratory conditions, β-carotene, B-group vitamin, vitamin E, iron, potassium and chlorophyll are also available in spirulina. Spirulina protein has a balanced composition of amino acids with concentration of methionine, tryptophan and other amino acids almost similar to those of casein, although, this depends upon the culture media used. Positive effects of spirulina on growth, feed utilization and stress and disease resistance of cultured fish have been reported in earlier studies. Spirulina was reported to replace up to 40% of fishmeal protein in tilapia (Oreochromis mossambicus) diet and even higher replacement of fishmeal was possible in common carp (Cyprinus carpio), partial replacement of fish meal with spirulina in diets for parrot fish (Oplegnathus fasciatus) and Tilapia (Orechromis niloticus) has also been conducted. Spirulina have considerable potential for development, especially as a small-scale crop for nutritional enhancement and health improvement of fish. It is important therefore that more research needs to be conducted on its production, inclusion level in aqua-feed and its possible potential use of aquaculture.Keywords: aquaculture, spirulina, fish nutrition, fish feed
Procedia PDF Downloads 521138 Cereal Bioproducts Conversion to Higher Value Feed by Using Pediococcus Strains Isolated from Spontaneous Fermented Cereal, and Its Influence on Milk Production of Dairy Cattle
Authors: Vita Krungleviciute, Rasa Zelvyte, Ingrida Monkeviciene, Jone Kantautaite, Rolandas Stankevicius, Modestas Ruzauskas, Elena Bartkiene
Abstract:
The environmental impact of agricultural bioproducts from the processing of food crops is an increasing concern worldwide. Currently, cereal bran has been used as a low-value ingredient for both human consumption and animal feed. The most popular bioprocessing technologies for cereal bran nutritional and technological functionality increasing are enzymatic processing and fermentation, and the most popular starters in fermented feed production are lactic acid bacteria (LAB) including pediococci. However, the ruminant digestive system is unique, there are billions of microorganisms which help the cow to digest and utilize nutrients in the feed. To achieve efficient feed utilization and high milk yield, the microorganisms must have optimal conditions, and the disbalance of this system is highly undesirable. Pediococcus strains Pediococcus acidilactici BaltBio01 and Pediococcus pentosaceus BaltBio02 from spontaneous fermented rye were isolated (by rep – PCR method), identified, and characterized by their growth (by Thermo Bioscreen C automatic turbidometer), acidification rate (2 hours in 2.5 pH), gas production (Durham method), and carbohydrate metabolism (by API 50 CH test ). Antimicrobial activities of isolated pediococcus against variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle, and their resistance to antibiotics were evaluated (EFSA-FEEDAP method). The isolated pediococcus strains were cultivated in barley/wheat bran (90 / 10, m / m) substrate, and developed supplements, with high content of valuable pediococcus, were used for Lithuanian black and white dairy cows feeding. In addition, the influence of supplements on milk production and composition was determined. Milk composition was evaluated by the LactoScope FTIR” FT1.0. 2001 (Delta Instruments, Holland). P. acidilactici BaltBio01 and P. pentosaceus BaltBio02 demonstrated versatile carbohydrate metabolism, grown at 30°C and 37°C temperatures, and acidic tolerance. Isolated pediococcus strains showed to be non resistant to antibiotics, and having antimicrobial activity against undesirable microorganisms. By barley/wheat bran utilisation using fermentation with selected pediococcus strains, it is possible to produce safer (reduced Enterobacteriaceae, total aerobic bacteria, yeast and mold count) feed stock with high content of pediococcus. Significantly higher milk yield (after 33 days) by using pediococcus supplements mix for dairy cows feeding could be obtained, while similar effect by using separate strains after 66 days of feeding could be achieved. It can be stated that barley/wheat bran could be used for higher value feed production in order to increase milk production. Therefore, further research is needed to identify what is the main mechanism of the positive action.Keywords: barley/wheat bran, dairy cattle, fermented feed, milk, pediococcus
Procedia PDF Downloads 307137 Protonic Conductivity Highlighted by Impedance Measurement of Y-Doped BaZrO3 Synthesized by Supercritical Hydrothermal Process
Authors: Melanie Francois, Gilles Caboche, Frederic Demoisson, Francois Maeght, Maria Paola Carpanese, Lionel Combemale, Pascal Briois
Abstract:
Finding new clean, and efficient way for energy production is one of the actual global challenges. Advances in fuel cell technology have shown that, for few years, Protonic Ceramic Fuel Cell (PCFC) has attracted much attention in the field of new hydrogen energy thanks to their lower working temperature, possible higher efficiency, and better durability than classical SOFC. On the contrary of SOFC, where O²⁻ oxygen ion is the charge carrier, PCFC works with H⁺ proton as a charge carrier. Consequently, the lower activation energy of proton diffusion compared to the one of oxygen ion explains those benefits and allows PCFC to work in the 400-600°C temperature range. Doped-BaCeO₃ is currently the most chosen material for this application because of its high protonic conductivity; for example, BaCe₀.₉Y₀.₁O₃ δ exhibits a total conductivity of 1.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, BaCeO₃ based perovskite has low stability in H₂O and/or CO₂ containing atmosphere, which limits their practical application. On the contrary, BaZrO₃ based perovskite exhibits good chemical stability but lower total conductivity than BaCeO₃ due to its larger grain boundary resistance. By substituting zirconium with 20% of yttrium, it is possible to achieve a total conductivity of 2.5×10⁻² S.cm⁻¹ at 600°C in wet H₂. However, the high refractory property of BaZr₀.₈Y₀.₂O₃-δ (noted BZY20) causes problems to obtain a dense membrane with large grains. Thereby, using a synthesis process that gives fine particles could allow better sinterability and thus decrease the number of grain boundaries leading to a higher total conductivity. In this work, BaZr₀.₈Y₀.₂O₃-δ have been synthesized by classical batch hydrothermal device and by a continuous hydrothermal device developed at ICB laboratory. The two variants of this process are able to work in supercritical conditions, leading to the formation of nanoparticles, which could be sintered at a lower temperature. The as-synthesized powder exhibits the right composition for the perovskite phase, impurities such as BaCO₃ and YO-OH were detected at very low concentration. Microstructural investigation and densification rate measurement showed that the addition of 1 wt% of ZnO as sintering aid and a sintering at 1550°C for 5 hours give high densified electrolyte material. Furthermore, it is necessary to heat the synthesized powder prior to the sintering to prevent the formation of secondary phases. It is assumed that this thermal treatment homogenizes the crystal structure of the powder and reduces the number of defects into the bulk grains. Electrochemical impedance spectroscopy investigations in various atmospheres and a large range of temperature (200-700°C) were then performed on sintered samples, and the protonic conductivity of BZY20 has been highlighted. Further experiments on half-cell, NiO-BZY20 as anode and BZY20 as electrolyte, are in progress.Keywords: hydrothermal synthesis, impedance measurement, Y-doped BaZrO₃, proton conductor
Procedia PDF Downloads 138136 Ammonia Cracking: Catalysts and Process Configurations for Enhanced Performance
Authors: Frea Van Steenweghen, Lander Hollevoet, Johan A. Martens
Abstract:
Compared to other hydrogen (H₂) carriers, ammonia (NH₃) is one of the most promising carriers as it contains 17.6 wt% hydrogen. It is easily liquefied at ≈ 9–10 bar pressure at ambient temperature. More importantly, NH₃ is a carbon-free hydrogen carrier with no CO₂ emission at final decomposition. Ammonia has a well-defined regulatory framework and a good track record regarding safety concerns. Furthermore, the industry already has an existing transport infrastructure consisting of pipelines, tank trucks and shipping technology, as ammonia has been manufactured and distributed around the world for over a century. While NH₃ synthesis and transportation technological solutions are at hand, a missing link in the hydrogen delivery scheme from ammonia is an energy-lean and efficient technology for cracking ammonia into H₂ and N₂. The most explored option for ammonia decomposition is thermo-catalytic cracking which is, by itself, the most energy-efficient approach compared to other technologies, such as plasma and electrolysis, as it is the most energy-lean and robust option. The decomposition reaction is favoured only at high temperatures (> 300°C) and low pressures (1 bar) as the thermocatalytic ammonia cracking process is faced with thermodynamic limitations. At 350°C, the thermodynamic equilibrium at 1 bar pressure limits the conversion to 99%. Gaining additional conversion up to e.g. 99.9% necessitates heating to ca. 530°C. However, reaching thermodynamic equilibrium is infeasible as a sufficient driving force is needed, requiring even higher temperatures. Limiting the conversion below the equilibrium composition is a more economical option. Thermocatalytic ammonia cracking is documented in scientific literature. Among the investigated metal catalysts (Ru, Co, Ni, Fe, …), ruthenium is known to be most active for ammonia decomposition with an onset of cracking activity around 350°C. For establishing > 99% conversion reaction, temperatures close to 600°C are required. Such high temperatures are likely to reduce the round-trip efficiency but also the catalyst lifetime because of the sintering of the supported metal phase. In this research, the first focus was on catalyst bed design, avoiding diffusion limitation. Experiments in our packed bed tubular reactor set-up showed that extragranular diffusion limitations occur at low concentrations of NH₃ when reaching high conversion, a phenomenon often overlooked in experimental work. A second focus was thermocatalyst development for ammonia cracking, avoiding the use of noble metals. To this aim, candidate metals and mixtures were deposited on a range of supports. Sintering resistance at high temperatures and the basicity of the support were found to be crucial catalyst properties. The catalytic activity was promoted by adding alkaline and alkaline earth metals. A third focus was studying the optimum process configuration by process simulations. A trade-off between conversion and favorable operational conditions (i.e. low pressure and high temperature) may lead to different process configurations, each with its own pros and cons. For example, high-pressure cracking would eliminate the need for post-compression but is detrimental for the thermodynamic equilibrium, leading to an optimum in cracking pressure in terms of energy cost.Keywords: ammonia cracking, catalyst research, kinetics, process simulation, thermodynamic equilibrium
Procedia PDF Downloads 66135 Mixing Students: an Educational Experience with Future Industrial Designers and Mechanical Engineers
Authors: J. Lino Alves, L. Lopes
Abstract:
It is not new that industrial design projects are a result of cooperative work from different areas of knowledge. However, in the academic teaching of Industrial Design and Mechanical Engineering courses, it is not recurrent that those competences are mixed before the professional life arrives. This abstract intends to describe two semester experiences carried out by two professors - a mechanical engineer and an industrial designer - in the last two academic years, for which they created mixed teams of Industrial Design and Mechanical Engineering (UPorto University). The two experiences differ in several factors; the main one is related to the challenges of online education, a constraint that affected the second experience. In the first year, even before foreseeing the effects that the pandemic would reconfigure the education system, a partnership with the Education Service of Águas do Porto was established. The purpose of the exercise was the project development of a game that could be an interaction element oriented to potentiate a positive experience and as an educational contribution to the children. In the second year, already foreseeing that the teaching experience would be carried out online, it was decided to design an open briefing, which allowed the groups to choose among three themes: a hand scale game using additive manufacturing; a modular system for ventilated facade using a parametric design basis; or, a modular system for vertical gardens. In methodological terms, besides the weekly follow-up, with the simultaneous support of the two professors, a group self-evaluation was requested; and a form to be filled individually to evaluate other groups. One of the first conclusions is related to the briefing format. Industrial Design students seem comfortable working on an open briefing that allows them to draw the project on a conceptual basis created for that purpose; on the other hand, Mechanical Engineering students were uncomfortable and insecure in the initial phase due to the absence of concrete, closed "order." In other words, it is not recurrent for Mechanical Engineering students that the creative component is stimulated, seemingly leaving them reserved to the technical solution and execution, depriving them of the co-creation phase during the conceptual construction of the project's own brief. Another fact that was registered is related to the leadership positions in the groups, which alternated according to the state of development of the project: design students took the lead during the ideation/concept phase, while mechanical engineering ones took a greater lead during the intermediate development process, namely in the definition of constructive solutions, mass/volume calculations, manufacturing, and material resistance. Designers' competences were again more evident and assumed in the final phase, especially in communication skills, as well as in simulations in the context of use. However, at some moments, it was visible the capacity for quite balanced leadership between engineering and design, in a constant debate centered on the human factor of the project - evidenced in the final solution, in the compromise and balance between technical constraints, functionality, usability, and aesthetics.Keywords: education, industrial design, mechanical engineering, teaching ethodologies
Procedia PDF Downloads 174134 Review of Carbon Materials: Application in Alternative Energy Sources and Catalysis
Authors: Marita Pigłowska, Beata Kurc, Maciej Galiński
Abstract:
The application of carbon materials in the branches of the electrochemical industry shows an increasing tendency each year due to the many interesting properties they possess. These are, among others, a well-developed specific surface, porosity, high sorption capacity, good adsorption properties, low bulk density, electrical conductivity and chemical resistance. All these properties allow for their effective use, among others in supercapacitors, which can store electric charges of the order of 100 F due to carbon electrodes constituting the capacitor plates. Coals (including expanded graphite, carbon black, graphite carbon fibers, activated carbon) are commonly used in electrochemical methods of removing oil derivatives from water after tanker disasters, e.g. phenols and their derivatives by their electrochemical anodic oxidation. Phenol can occupy practically the entire surface of carbon material and leave the water clean of hydrophobic impurities. Regeneration of such electrodes is also not complicated, it is carried out by electrochemical methods consisting in unblocking the pores and reducing resistances, and thus their reactivation for subsequent adsorption processes. Graphite is commonly used as an anode material in lithium-ion cells, while due to the limited capacity it offers (372 mAh g-1), new solutions are sought that meet both capacitive, efficiency and economic criteria. Increasingly, biodegradable materials, green materials, biomass, waste (including agricultural waste) are used in order to reuse them and reduce greenhouse effects and, above all, to meet the biodegradability criterion necessary for the production of lithium-ion cells as chemical power sources. The most common of these materials are cellulose, starch, wheat, rice, and corn waste, e.g. from agricultural, paper and pharmaceutical production. Such products are subjected to appropriate treatments depending on the desired application (including chemical, thermal, electrochemical). Starch is a biodegradable polysaccharide that consists of polymeric units such as amylose and amylopectin that build an ordered (linear) and amorphous (branched) structure of the polymer. Carbon is also used as a catalyst. Elemental carbon has become available in many nano-structured forms representing the hybridization combinations found in the primary carbon allotropes, and the materials can be enriched with a large number of surface functional groups. There are many examples of catalytic applications of coal in the literature, but the development of this field has been hampered by the lack of a conceptual approach combining structure and function and a lack of understanding of material synthesis. In the context of catalytic applications, the integrity of carbon environmental management properties and parameters such as metal conductivity range and bond sequence management should be characterized. Such data, along with surface and textured information, can form the basis for the provision of network support services.Keywords: carbon materials, catalysis, BET, capacitors, lithium ion cell
Procedia PDF Downloads 174133 The Environmental Conflict over the Trans Mountain Pipeline Expansion in Burnaby, British Columbia, Canada
Authors: Emiliano Castillo
Abstract:
The aim of this research is to analyze the origins, the development and possible outcomes of the environmental conflict between grassroots organizations, indigenous communities, Kinder Morgan Corporation, and the Canadian government over the Trans Mountain pipeline expansion in Burnaby, British Columbia, Canada. Building on the political ecology and the environmental justice theoretical framework, this research examines the impacts and risks of tar sands extraction, production, and transportation on climate change, public health, the environment, and indigenous people´s rights over their lands. This study is relevant to the environmental justice and political ecology literature because it discusses the unequal distribution of environmental costs and economic benefits of tar sands development; and focuses on the competing interests, needs, values, and claims of the actors involved in the conflict. Furthermore, it will shed light on the context, conditions, and processes that lead to the organization and mobilization of a grassroots movement- comprised of indigenous communities, citizens, scientists, and non-governmental organizations- that draw significant media attention by opposing the Trans Mountain pipeline expansion. Similarly, the research will explain the differences and dynamics within the grassroots movement. This research seeks to address the global context of the conflict by studying the links between the decline of conventional oil production, the rise of unconventional fossil fuels (e.g. tar sands), climate change, and the struggles of low-income, ethnic, and racial minorities over the territorial expansion of extractive industries. Data will be collected from legislative documents, policy and technical reports, scientific journals, newspapers articles, participant observation, and semi-structured interviews with representatives and members of the grassroots organizations, indigenous communities, and Burnaby citizens that oppose the Trans Mountain pipeline. These interviews will focus on their perceptions of the risks of the Trans Mountain pipeline expansion; the roots of the anti-tar sands movement; the differences and dynamics within the movement; and the strategies to defend the livelihoods of local communities and the environment against tar sands development. This research will contribute to the understanding of the underlying causes of the environmental conflict between the Canadian government, Kinder Morgan, and grassroots organizations over tar sands extraction, production, and transportation in Burnaby, British Columbia, Canada. Moreover, this work will elucidate the transformations of society-nature relationships brought by tar sands development. Research findings will provide scientific information about how the resistance movement in British Columbia can challenge the dominant narrative on tar sands, exert greater influence in environmental politics, and efficiently defend Indigenous people´s rights to lands. Furthermore, this research will shed light into how grassroots movements can contribute towards the building of more inclusive and sustainable societies.Keywords: environmental conflict, environmental justice, extractive industry, indigenous communities, political ecology, tar sands
Procedia PDF Downloads 278132 Alkaloid Levels in Experimental Lines of Ryegrass in Southtern Chile
Authors: Leonardo Parra, Manuel Chacón-Fuentes, Andrés Quiroz
Abstract:
One of the most important factors in beef and dairy production in the world as well as also in Chile, is related to the correct choice of cultivars or mixtures of forage grasses and legumes to ensure high yields and quality of grassland. However, a great problem is the persistence of the grasses as a result of the action of different hypogeous as epigean pests. The complex insect pests associated with grassland include white grubs (Hylamorpha elegans, Phytoloema herrmanni), blackworm (Dalaca pallens) and Argentine stem weevil (Listronotus bonariensis). In Chile, the principal strategy utilized for controlling this pest is chemical control, through the use of synthetic insecticides, however, underground feeding habits of larval and flight activity of adults makes this uneconomic method. Furthermore, due to problems including environmental degradation, development of resistance and chemical residues, there is a worldwide interest in the use of alternative environmentally friendly pest control methods. In this sense, in recent years there has been an increasing interest in determining the role of endophyte fungi in controlling epigean and hypogeous pest. Endophytes from ryegrass (Lolium perenne), establish a biotrophic relationship with the host, defined as mutualistic symbiosis. The plant-fungi association produces a “cocktail of alkaloids” where peramine is the main toxic substance present in endophyte of ryegrass and responsible for damage reduction of L. bonariensis. In the last decade, few studies have been developed on the effectiveness of new ryegrass cultivars carriers of endophyte in controlling insect pests. Therefore, the aim of this research is to provide knowledge concerning to evaluate the alkaloid content, such as peramine and Lolitrem B, present in new experimental lines of ryegrass and feasible to be used in grasslands of southern Chile. For this, during 2016, ryegrass plants of six experimental lines and two commercial cultivars sown at the Instituto de Investigaciones Agropecuarias Carrillanca (Vilcún, Chile) were collected and subjected to a process of chemical extraction to identify and quantify the presence of peramine and lolitrem B by the technique of liquid chromatography of high resolution (HPLC). The results indicated that the experimental lines EL-1 and EL-3 had high content of peramine (0.25 and 0.43 ppm, respectively) than with lolitrem B (0.061 and 0.19 ppm, respectively). Furthermore, the higher contents of lolitrem B were detected in the EL-4 and commercial cultivar Alto (positive control) with 0.08 and 0.17 ppm, respectively. Peramine and lolitrem B were not detected in the cultivar Jumbo (negative control). These results suggest that EL-3 would have potential as future cultivate because it has high content of peramine, alkaloid responsible for controlling insect pest. However, their current role on the complex insects attacking ryegrass grasslands should be evaluated. The information obtained in this research could be used to improve control strategies against hypogeous and epigean pests of grassland in southern Chile and also to reduce the use of synthetic pesticides.Keywords: HPLC, Lolitrem B, peramine, pest
Procedia PDF Downloads 242131 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200
Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira
Abstract:
Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback
Procedia PDF Downloads 227130 Comparison between Bernardi’s Equation and Heat Flux Sensor Measurement as Battery Heat Generation Estimation Method
Authors: Marlon Gallo, Eduardo Miguel, Laura Oca, Eneko Gonzalez, Unai Iraola
Abstract:
The heat generation of an energy storage system is an essential topic when designing a battery pack and its cooling system. Heat generation estimation is used together with thermal models to predict battery temperature in operation and adapt the design of the battery pack and the cooling system to these thermal needs guaranteeing its safety and correct operation. In the present work, a comparison between the use of a heat flux sensor (HFS) for indirect measurement of heat losses in a cell and the widely used and simplified version of Bernardi’s equation for estimation is presented. First, a Li-ion cell is thermally characterized with an HFS to measure the thermal parameters that are used in a first-order lumped thermal model. These parameters are the equivalent thermal capacity and the thermal equivalent resistance of a single Li-ion cell. Static (when no current is flowing through the cell) and dynamic (making current flow through the cell) tests are conducted in which HFS is used to measure heat between the cell and the ambient, so thermal capacity and resistances respectively can be calculated. An experimental platform records current, voltage, ambient temperature, surface temperature, and HFS output voltage. Second, an equivalent circuit model is built in a Matlab-Simulink environment. This allows the comparison between the generated heat predicted by Bernardi’s equation and the HFS measurements. Data post-processing is required to extrapolate the heat generation from the HFS measurements, as the sensor records the heat released to the ambient and not the one generated within the cell. Finally, the cell temperature evolution is estimated with the lumped thermal model (using both HFS and Bernardi’s equation total heat generation) and compared towards experimental temperature data (measured with a T-type thermocouple). At the end of this work, a critical review of the results obtained and the possible mismatch reasons are reported. The results show that indirectly measuring the heat generation with HFS gives a more precise estimation than Bernardi’s simplified equation. On the one hand, when using Bernardi’s simplified equation, estimated heat generation differs from cell temperature measurements during charges at high current rates. Additionally, for low capacity cells where a small change in capacity has a great influence on the terminal voltage, the estimated heat generation shows high dependency on the State of Charge (SoC) estimation, and therefore open circuit voltage calculation (as it is SoC dependent). On the other hand, with indirect measuring the heat generation with HFS, the resulting error is a maximum of 0.28ºC in the temperature prediction, in contrast with 1.38ºC with Bernardi’s simplified equation. This illustrates the limitations of Bernardi’s simplified equation for applications where precise heat monitoring is required. For higher current rates, Bernardi’s equation estimates more heat generation and consequently, a higher predicted temperature. Bernardi´s equation accounts for no losses after cutting the charging or discharging current. However, HFS measurement shows that after cutting the current the cell continues generating heat for some time, increasing the error of Bernardi´s equation.Keywords: lithium-ion battery, heat flux sensor, heat generation, thermal characterization
Procedia PDF Downloads 389129 Nanoporous Activated Carbons for Fuel Cells and Supercapacitors
Authors: A. Volperts, G. Dobele, A. Zhurinsh, I. Kruusenberg, A. Plavniece, J. Locs
Abstract:
Nowadays energy consumption constantly increases and development of effective and cheap electrochemical sources of power, such as fuel cells and electrochemical capacitors, is topical. Due to their high specific power, charge and discharge rates, working lifetime supercapacitor based energy accumulation systems are more and more extensively being used in mobile and stationary devices. Lignocellulosic materials are widely used as precursors and account for around 45% of the total raw materials used for the manufacture of activated carbon which is the most suitable material for supercapacitors. First part of our research is devoted to study of influence of main stages of wood thermochemical activation parameters on activated carbons porous structure formation. It was found that the main factors governing the properties of carbon materials are specific surface area, volume and pore size distribution, particles dispersity, ash content and oxygen containing groups content. Influence of activated carbons attributes on capacitance and working properties of supercapacitor are demonstrated. The correlation between activated carbons porous structure indices and electrochemical specifications of supercapacitors with electrodes made from these materials has been determined. It is shown that if synthesized activated carbons are used in supercapacitors then high specific capacitances can be reached – more than 380 F/g in 4.9M sulfuric acid based electrolytes and more than 170 F/g in 1 M tetraethylammonium tetrafluoroborate in acetonitrile electrolyte. Power specifications and minimal price of H₂-O₂ fuel cells are limited by the expensive platinum-based catalysts. The main direction in development of non-platinum catalysts for the oxygen reduction is the study of cheap porous carbonaceous materials which can be obtained by the pyrolysis of polymers including renewable biomass. It is known that nitrogen atoms in carbon materials to a high degree determine properties of the doped activated carbons, such as high electrochemical stability, hardness, electric resistance, etc. The lack of sufficient knowledge on the doping of the carbon materials calls for the ongoing researches of properties and structure of modified carbon matrix. In the second part of this study, highly porous activated carbons were synthesized using alkali thermochemical activation from wood, cellulose and cellulose production residues – craft lignin and sewage sludge. Activated carbon samples were doped with dicyandiamide and melamine for the application as fuel cell cathodes. Conditions of nitrogen introduction (solvent, treatment temperature) and its content in the carbonaceous material, as well as porous structure characteristics, such as specific surface and pore size distribution, were studied. It was found that efficiency of doping reaction depends on the elemental oxygen content in the activated carbon. Relationships between nitrogen content, porous structure characteristics and electrodes electrochemical properties are demonstrated.Keywords: activated carbons, low-temperature fuel cells, nitrogen doping, porous structure, supercapacitors
Procedia PDF Downloads 120128 Using Virtual Reality Exergaming to Improve Health of College Students
Authors: Juanita Wallace, Mark Jackson, Bethany Jurs
Abstract:
Introduction: Exergames, VR games used as a form of exercise, are being used to reduce sedentary lifestyles in a vast number of populations. However, there is a distinct lack of research comparing the physiological response during VR exergaming to that of traditional exercises. The purpose of this study was to create a foundationary investigation establishing changes in physiological responses resulting from VR exergaming in a college aged population. Methods: In this IRB approved study, college aged students were recruited to play a virtual reality exergame (Beat Saber) on the Oculus Quest 2 (Facebook, 2021) in either a control group (CG) or training group (TG). Both groups consisted of subjects who were not habitual users of virtual reality. The CG played VR one time per week for three weeks and the TG played 150 min/week three weeks. Each group played the same nine Beat Saber songs, in a randomized order, during 30 minute sessions. Song difficulty was increased during play based on song performance. Subjects completed a pre- and posttests at which the following was collected: • Beat Saber Game Metrics: song level played, song score, number of beats completed per song and accuracy (beats completed/total beats) • Physiological Data: heart rate (max and avg.), active calories • Demographics Results: A total of 20 subjects completed the study; nine in the CG (3 males, 6 females) and 11 (5 males, 6 females) in the TG. • Beat Saber Song Metrics: The TG improved performance from a normal/hard difficulty to hard/expert. The CG stayed at the normal/hard difficulty. At the pretest there was no difference in game accuracy between groups. However, at the posttest the CG had a higher accuracy. • Physiological Data (Table 1): Average heart rates were similar between the TG and CG at both the pre- and posttest. However, the TG expended more total calories. Discussion: Due to the lack of peer reviewed literature on c exergaming using Beat Saber, the results of this study cannot be directly compared. However, the results of this study can be compared with the previously established trends for traditional exercise. In traditional exercise, an increase in training volume equates to increased efficiency at the activity. The TG should naturally increase in difficulty at a faster rate than the CG because they played 150 hours per week. Heart rate and caloric responses also increase during traditional exercise as load increases (i.e. speed or resistance). The TG reported an increase in total calories due to a higher difficulty of play. The song accuracy decreases in the TG can be explained by the increased difficulty of play. Conclusion: VR exergaming is comparable to traditional exercise for loads within the 50-70% of maximum heart rate. The ability to use VR for health could motivate individuals who do not engage in traditional exercise. In addition, individuals in health professions can and should promote VR exergaming as a viable way to increase physical activity and improve health in their clients/patients.Keywords: virtual reality, exergaming, health, heart rate, wellness
Procedia PDF Downloads 188