Search results for: online learning management system
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30931

Search results for: online learning management system

27841 Integration of Agile Philosophy and Scrum Framework to Missile System Design Processes

Authors: Misra Ayse Adsiz, Selim Selvi

Abstract:

In today's world, technology is competing with time. In order to catch up with the world's companies and adapt quickly to the changes, it is necessary to speed up the processes and keep pace with the rate of change of the technology. The missile system design processes, which are handled with classical methods, keep behind in this race. Because customer requirements are not clear, and demands are changing again and again in the design process. Therefore, in the system design process, a methodology suitable for the missile system design dynamics has been investigated and the processes used for catching up the era are examined. When commonly used design processes are analyzed, it is seen that any one of them is dynamic enough for today’s conditions. So a hybrid design process is established. After a detailed review of the existing processes, it is decided to focus on the Scrum Framework and Agile Philosophy. Scrum is a process framework. It is focused on to develop software and handling change management with rapid methods. In addition, agile philosophy is intended to respond quickly to changes. In this study, it is aimed to integrate Scrum framework and agile philosophy, which are the most appropriate ways for rapid production and change adaptation, into the missile system design process. With this approach, it is aimed that the design team, involved in the system design processes, is in communication with the customer and provide an iterative approach in change management. These methods, which are currently being used in the software industry, have been integrated with the product design process. A team is created for system design process. The roles of Scrum Team are realized with including the customer. A scrum team consists of the product owner, development team and scrum master. Scrum events, which are short, purposeful and time-limited, are organized to serve for coordination rather than long meetings. Instead of the classic system design methods used in product development studies, a missile design is made with this blended method. With the help of this design approach, it is become easier to anticipate changing customer demands, produce quick solutions to demands and combat uncertainties in the product development process. With the feedback of the customer who included in the process, it is worked towards marketing optimization, design and financial optimization.

Keywords: agile, design, missile, scrum

Procedia PDF Downloads 168
27840 The Development of a Digitally Connected Factory Architecture to Enable Product Lifecycle Management for the Assembly of Aerostructures

Authors: Nicky Wilson, Graeme Ralph

Abstract:

Legacy aerostructure assembly is defined by large components, low build rates, and manual assembly methods. With an increasing demand for commercial aircraft and emerging markets such as the eVTOL (electric vertical take-off and landing) market, current methods of manufacturing are not capable of efficiently hitting these higher-rate demands. This project will look at how legacy manufacturing processes can be rate enabled by taking a holistic view of data usage, focusing on how data can be collected to enable fully integrated digital factories and supply chains. The study will focus on how data is flowed both up and down the supply chain to create a digital thread specific to each part and assembly while enabling machine learning through real-time, closed-loop feedback systems. The study will also develop a bespoke architecture to enable connectivity both within the factory and the wider PLM (product lifecycle management) system, moving away from traditional point-to-point systems used to connect IO devices to a hub and spoke architecture that will exploit report-by-exception principles. This paper outlines the key issues facing legacy aircraft manufacturers, focusing on what future manufacturing will look like from adopting Industry 4 principles. The research also defines the data architecture of a PLM system to enable the transfer and control of a digital thread within the supply chain and proposes a standardised communications protocol to enable a scalable solution to connect IO devices within a production environment. This research comes at a critical time for aerospace manufacturers, who are seeing a shift towards the integration of digital technologies within legacy production environments, while also seeing build rates continue to grow. It is vital that manufacturing processes become more efficient in order to meet these demands while also securing future work for many manufacturers.

Keywords: Industry 4, digital transformation, IoT, PLM, automated assembly, connected factories

Procedia PDF Downloads 79
27839 Importance of Collegiality to Improve the Effectiveness of a Poorly Resourced School

Authors: Prakash Singh

Abstract:

This study focused on the importance of collegiality to improve the effectiveness of a poorly resourced school (PRS). In an effective school that embraces collegiality as its culture, one can expect to find a teaching staff and a management team that shares responsibilities and accountabilities through the development of a common purpose and vision, regardless of whether the school is considered to be poorly resourced or not. Working together in collegial teams is a more effective way to accomplish tasks and to create a climate for effective learning, even for learners in PRSs from poor communities. The main aim of this study was therefore to determine whether collegiality as a leadership strategy could extract the best from people in a PRS, and consequently create the most effective and efficient educational climate possible. The responses received from the teachers and the principal at the PRS supports the notion that collegiality does have a positive influence on learning, as demonstrated by the improved academic achievement of the learners. The teachers were now more involved in the school. They agreed that this was a positive development. Their descriptions of increased involvement, shared accountability and shared decision-making identified important aspects of collegiality that transformed the school from being dysfunctional. Hence, it is abundantly clear that a collegial leadership style can help extract the best from people because the most effective and efficient educational climate can be created at a school when collegiality is employed. Collegial leadership demonstrates that even in PRSs, there are boundless opportunities to improve teaching and learning.

Keywords: collegiality, collegial leadership, effective educational climate, poorly resourced school

Procedia PDF Downloads 403
27838 An Intelligent Search and Retrieval System for Mining Clinical Data Repositories Based on Computational Imaging Markers and Genomic Expression Signatures for Investigative Research and Decision Support

Authors: David J. Foran, Nhan Do, Samuel Ajjarapu, Wenjin Chen, Tahsin Kurc, Joel H. Saltz

Abstract:

The large-scale data and computational requirements of investigators throughout the clinical and research communities demand an informatics infrastructure that supports both existing and new investigative and translational projects in a robust, secure environment. In some subspecialties of medicine and research, the capacity to generate data has outpaced the methods and technology used to aggregate, organize, access, and reliably retrieve this information. Leading health care centers now recognize the utility of establishing an enterprise-wide, clinical data warehouse. The primary benefits that can be realized through such efforts include cost savings, efficient tracking of outcomes, advanced clinical decision support, improved prognostic accuracy, and more reliable clinical trials matching. The overarching objective of the work presented here is the development and implementation of a flexible Intelligent Retrieval and Interrogation System (IRIS) that exploits the combined use of computational imaging, genomics, and data-mining capabilities to facilitate clinical assessments and translational research in oncology. The proposed System includes a multi-modal, Clinical & Research Data Warehouse (CRDW) that is tightly integrated with a suite of computational and machine-learning tools to provide insight into the underlying tumor characteristics that are not be apparent by human inspection alone. A key distinguishing feature of the System is a configurable Extract, Transform and Load (ETL) interface that enables it to adapt to different clinical and research data environments. This project is motivated by the growing emphasis on establishing Learning Health Systems in which cyclical hypothesis generation and evidence evaluation become integral to improving the quality of patient care. To facilitate iterative prototyping and optimization of the algorithms and workflows for the System, the team has already implemented a fully functional Warehouse that can reliably aggregate information originating from multiple data sources including EHR’s, Clinical Trial Management Systems, Tumor Registries, Biospecimen Repositories, Radiology PAC systems, Digital Pathology archives, Unstructured Clinical Documents, and Next Generation Sequencing services. The System enables physicians to systematically mine and review the molecular, genomic, image-based, and correlated clinical information about patient tumors individually or as part of large cohorts to identify patterns that may influence treatment decisions and outcomes. The CRDW core system has facilitated peer-reviewed publications and funded projects, including an NIH-sponsored collaboration to enhance the cancer registries in Georgia, Kentucky, New Jersey, and New York, with machine-learning based classifications and quantitative pathomics, feature sets. The CRDW has also resulted in a collaboration with the Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC) at the U.S. Department of Veterans Affairs to develop algorithms and workflows to automate the analysis of lung adenocarcinoma. Those studies showed that combining computational nuclear signatures with traditional WHO criteria through the use of deep convolutional neural networks (CNNs) led to improved discrimination among tumor growth patterns. The team has also leveraged the Warehouse to support studies to investigate the potential of utilizing a combination of genomic and computational imaging signatures to characterize prostate cancer. The results of those studies show that integrating image biomarkers with genomic pathway scores is more strongly correlated with disease recurrence than using standard clinical markers.

Keywords: clinical data warehouse, decision support, data-mining, intelligent databases, machine-learning.

Procedia PDF Downloads 127
27837 The Condition Testing of Damaged Plates Using Acoustic Features and Machine Learning

Authors: Kyle Saltmarsh

Abstract:

Acoustic testing possesses many benefits due to its non-destructive nature and practicality. There hence exists many scenarios in which using acoustic testing for condition testing shows powerful feasibility. A wealth of information is contained within the acoustic and vibration characteristics of structures, allowing the development meaningful features for the classification of their respective condition. In this paper, methods, results, and discussions are presented on the use of non-destructive acoustic testing coupled with acoustic feature extraction and machine learning techniques for the condition testing of manufactured circular steel plates subjected to varied levels of damage.

Keywords: plates, deformation, acoustic features, machine learning

Procedia PDF Downloads 337
27836 Socio-Cultural Adaptation Approach to Enhance Intercultural Collaboration and Learning

Authors: Fadoua Ouamani, Narjès Bellamine Ben Saoud, Henda Hajjami Ben Ghézala

Abstract:

In the last few years and over the last decades, there was a growing interest in the development of Computer Supported Collaborative Learning (CSCL) environments. However, the existing systems ignore the variety of learners and their socio-cultural differences, especially in the case of distant and networked learning. In fact, within such collaborative learning environments, learners from different socio-cultural backgrounds may interact together. These learners evolve within various cultures and social contexts and acquire different socio-cultural values and behaviors. Thus, they should be assisted while communicating and collaborating especially in an intercultural group. Besides, the communication and collaboration tools provided to each learner must depend on and be adapted to her/his socio-cultural profile. The main goal of this paper is to present the proposed socio-cultural adaptation approach based on and guided by ontologies to adapt CSCL environments to the socio-cultural profiles of its users (learners or others).

Keywords: CSCL, socio-cultural profile, adaptation, ontology

Procedia PDF Downloads 360
27835 Heat Setting of Polyester: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Heat setting is a commonly used technique in textile industry for treating synthetic fibers. In this study, we examined the effect of heat-setting process on the dyeing properties of polyester fabric. The heat setting conditions were varied, and these conditions would affect the dyeing results. The aim of this study is to illustrate the proper application method of heat setting process to polyester fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, heat setting, polyester, dyeing

Procedia PDF Downloads 247
27834 Development of a Smart System for Measuring Strain Levels of Natural Gas and Petroleum Pipelines on Earthquake Fault Lines in Turkiye

Authors: Ahmet Yetik, Seyit Ali Kara, Cevat Özarpa

Abstract:

Load changes occur on natural gas and oil pipelines due to natural disasters. The displacement of the soil around the natural gas and oil pipes due to situations that may cause erosion, such as earthquakes, landslides, and floods, is the source of this load change. The exposure of natural gas and oil pipes to variable loads causes deformation, cracks, and breaks in these pipes. Cracks and breaks on the pipes cause damage to people and the environment due to reasons such as explosions. Especially with the examinations made after natural disasters, it can be easily understood which of the pipes has more damage in the regions followed. It has been determined that the earthquakes in Turkey caused permanent damage to the pipelines. This project was designed and realized because it was determined that there were cracks and gas leaks in the insulation gaskets placed in the pipelines, especially at the junction points. In this study, A new SCADA (Supervisory Control and Data Acquisition) application has been developed to monitor load changes caused by natural disasters. The newly developed SCADA application monitors the changes in the x, y, and z axes of the stresses occurring in the pipes with the help of strain gauge sensors placed on the pipes. For the developed SCADA system, test setups in accordance with the standards were created during the fieldwork. The test setups created were integrated into the SCADA system, and the system was followed up. Thanks to the SCADA system developed with the field application, the load changes that will occur on the natural gas and oil pipes are instantly monitored, and the accumulations that may create a load on the pipes and their surroundings are immediately intervened, and new risks that may arise are prevented. It has contributed to energy supply security, asset management, pipeline holistic management, and sustainability.

Keywords: earthquake, natural gas pipes, oil pipes, strain measurement, stress measurement, landslide

Procedia PDF Downloads 70
27833 Optimizing Groundwater Pumping for a Complex Groundwater/Surface Water System

Authors: Emery A. Coppola Jr., Suna Cinar, Ferenc Szidarovszky

Abstract:

Over-pumping of groundwater resources is a serious problem world-wide. In addition to depleting this valuable resource, hydraulically connected sensitive ecological resources like wetlands and surface water bodies are often impacted and even destroyed by over-pumping. Effectively managing groundwater in a way that satisfy human demand while preserving natural resources is a daunting challenge that will only worsen with growing human populations and climate change. As presented in this paper, a numerical flow model developed for a hypothetical but realistic groundwater/surface water system was combined with formal optimization. Response coefficients were used in an optimization management model to maximize groundwater pumping in a complex, multi-layered aquifer system while protecting against groundwater over-draft, streamflow depletion, and wetland impacts. Pumping optimization was performed for different constraint sets that reflect different resource protection preferences, yielding significantly different optimal pumping solutions. A sensitivity analysis on the optimal solutions was performed on select response coefficients to identify differences between wet and dry periods. Stochastic optimization was also performed, where uncertainty associated with changing irrigation demand due to changing weather conditions are accounted for. One of the strengths of this optimization approach is that it can efficiently and accurately identify superior management strategies that minimize risk and adverse environmental impacts associated with groundwater pumping under different hydrologic conditions.

Keywords: numerical groundwater flow modeling, water management optimization, groundwater overdraft, streamflow depletion

Procedia PDF Downloads 233
27832 Preliminary Investigation of Hospital Buildings Maintenance Management in Malaysia

Authors: Christtestimony Oluwafemi Jesumoroti, AbdulLateef Ashola Olanrewaju, Khor Soo Cheen

Abstract:

The worth of buildings is known by the quality of the maintenance imbibe in them. Maintenance management being carried out in the hospitals has a direct impact on the performance of the hospital buildings, environment, and sustainable infrastructure, and as such, there is a need to give it adequate attention. The media and reports on hospital buildings maintenance management in Malaysia were not favorable. Hospital buildings in Malaysia need to have proper structure for maintenance management and sustainability as this will enhance the good infrastructure for users and the entire nation. The paper reports the preliminary results of the determinants of maintenance in hospital buildings. To achieve the aim of this research, a survey questionnaire was administered to the users of the hospital buildings. The findings of the study revealed that there are lack of maintenance standard, use of poor quality components and materials, Improper response time, Poor complaint reporting system. Hence, the influent of rework, thorough responsibilities of quality performance of hospital buildings, and others are the results of the investigations.

Keywords: sustainable infrastructure, optimum performance, implementation, key performance indicators, maintenance policies

Procedia PDF Downloads 155
27831 Theoretical and ML-Driven Identification of a Mispriced Credit Risk

Authors: Yuri Katz, Kun Liu, Arunram Atmacharan

Abstract:

Due to illiquidity, mispricing on Credit Markets is inevitable. This creates huge challenges to banks and investors as they seek to find new ways of risk valuation and portfolio management in a post-credit crisis world. Here, we analyze the difference in behavior of the spread-to-maturity in investment and high-yield categories of US corporate bonds between 2014 and 2023. Deviation from the theoretical dependency of this measure in the universe under study allows to identify multiple cases of mispriced credit risk. Remarkably, we observe mispriced bonds in both categories of credit ratings. This identification is supported by the application of the state-of-the-art machine learning model in more than 90% of cases. Noticeably, the ML-driven model-based forecasting of a category of bond’s credit ratings demonstrate an excellent out-of-sample accuracy (AUC = 98%). We believe that these results can augment conventional valuations of credit portfolios.

Keywords: credit risk, credit ratings, bond pricing, spread-to-maturity, machine learning

Procedia PDF Downloads 80
27830 Knowledge and Ontology Engineering in Continuous Monitoring of Production Systems

Authors: Maciej Zaręba, Sławomir Lasota

Abstract:

The monitoring of manufacturing processes is an important issue in nowadays ERP systems. The identification and analysis of appropriate data for the units that take part in the production process are ones of the most crucial problems. In this paper, the authors introduce a new approach towards modelling the relation between production units, signals, and factors possible to obtain from the production system. The main idea for the system is based on the ontology of production units.

Keywords: manufacturing operation management, OWL, ontology implementation, ontology modeling

Procedia PDF Downloads 120
27829 Learners’ Reactions to Writing Activities in an Elementary Algebra Classroom

Authors: Early Sol A. Gadong, Lourdes C. Zamora, Jonny B. Pornel, Aurora Fe C. Bautista

Abstract:

Various research has shown that writing allows students to engage in metacognition and provides them with a venue to communicate their disposition towards what they are learning. However, few studies have explored students’ feelings about the incorporation of such writing activities in their mathematics classes. Through reflection sheets, group discussions, and interviews, this mixed-methods study explored students’ perceptions and insights on supplementary writing activities in their Elementary Algebra class. Findings revealed that while students generally have a positive regard for writing activities, they have conflicting views about how writing activities can help them in their learning. A big majority contend that writing activities can enhance the learning of mathematical content and attitudes towards mathematics if they allow students to explore and synthesize what they have learned and reflected on their emotional disposition towards mathematics. Also, gender does not appear to play a significant role in students’ reactions to writing activities.

Keywords: writing in math, metacognition, affective factors in learning, elementary algebra classroom

Procedia PDF Downloads 443
27828 Tackling the Digital Divide: Enhancing Video Consultation Access for Digital Illiterate Patients in the Hospital

Authors: Wieke Ellen Bouwes

Abstract:

This study aims to unravel which factors enhance accessibility of video consultations (VCs) for patients with low digital literacy. Thirteen in-depth interviews with patients, hospital employees, eHealth experts, and digital support organizations were held. Patients with low digital literacy received in-home support during real-time video consultations and are observed during the set-up of these consultations. Key findings highlight the importance of patient acceptance, emphasizing video consultations benefits and avoiding standardized courses. The lack of a uniform video consultation system across healthcare providers poses a barrier. Familiarity with support organizations – to support patients in usage of digital tools - among healthcare practitioners enhances accessibility. Moreover, considerations regarding the Dutch General Data Protection Regulation (GDPR) law influence support patients receive. Also, provider readiness to use video consultations influences patient access. Further, alignment between learning styles and support methods seems to determine abilities to learn how to use video consultations. Future research could delve into tailored learning styles and technological solutions for remote access to further explore effectiveness of learning methods.

Keywords: video consultations, digital literacy skills, effectiveness of support, intra- and inter-organizational relationships, patient acceptance of video consultations

Procedia PDF Downloads 74
27827 Artificial Intelligence in Patient Involvement: A Comprehensive Review

Authors: Igor A. Bessmertny, Bidru C. Enkomaryam

Abstract:

Active involving patients and communities in health decisions can improve both people’s health and the healthcare system. Adopting artificial intelligence can lead to more accurate and complete patient record management. This review aims to identify the current state of researches conducted using artificial intelligence techniques to improve patient engagement and wellbeing, medical domains used in patient engagement context, and lastly, to assess opportunities and challenges for patient engagement in the wellness process. A search of peer-reviewed publications, reviews, conceptual analyses, white papers, author’s manuscripts and theses was undertaken. English language literature published in 2013– 2022 period and publications, report and guidelines of World Health Organization (WHO) were also assessed. About 281 papers were retrieved. Duplicate papers in the databases were removed. After application of the inclusion and exclusion criteria, 41 papers were included to the analysis. Patient counseling in preventing adverse drug events, in doctor-patient risk communication, surgical, drug development, mental healthcare, hypertension & diabetes, metabolic syndrome and non-communicable chronic diseases are implementation areas in healthcare where patient engagement can be implemented using artificial intelligence, particularly machine learning and deep learning techniques and tools. The five groups of factors that potentially affecting patient engagement in safety are related to: patient, health conditions, health care professionals, tasks and health care setting. Active involvement of patients and families can help accelerate the implementation of healthcare safety initiatives. In sub-Saharan Africa, using digital technologies like artificial intelligence in patient engagement context is low due to poor level of technological development and deployment. The opportunities and challenges available to implement patient engagement strategies vary greatly from country to country and from region to region. Thus, further investigation will be focused on methods and tools using the potential of artificial intelligence to support more simplified care that might be improve communication with patients and train health care professionals.

Keywords: artificial intelligence, patient engagement, machine learning, patient involvement

Procedia PDF Downloads 76
27826 Managing Student Internationalization during the COVID-19 Pandemic: Three Approaches That Should Endure beyond the Present

Authors: David Cobham

Abstract:

In higher education, a great degree of importance is placed on the internationalization of the student experience. This is seen as a valuable contributor to elements such as building confidence, broadening knowledge, creating networks and connections, and enhancing employability for current students who will become the next generation of managers in technology and business. The COVID-19 pandemic has affected all areas of people’s lives. The limitations of travel coupled with the fears and concerns generated by the health risks have dramatically reduced the opportunity for students to engage with this agenda. Institutions of higher education have been required to rethink fundamental aspects of their business model from recruitment and enrolment through learning approaches, assessment methods, and the pathway to employment. This paper presents a case study which focuses on student mobility and how the physical experience of being in another country, either to study, to work, to volunteer or to gain cultural and social enhancement, has of necessity been replaced by alternative approaches. It considers trans-national education as an alternative to physical study overseas, virtual mobility and internships as an alternative to international work experience, and adopting collaborative online projects as an alternative to in-person encounters. The paper concludes that although these elements have been adopted to address the current situation, the lessons learned and the feedback gained suggests that they have contributed successfully in new and sometimes unexpected ways and that they will persist beyond the present to become part of the 'new normal' for the future. That being the case, senior leaders of institutions of higher education will be required to revisit their international plans and to rewrite their international strategies to take account of and build upon these changes.

Keywords: higher education management, internationalization, transnational education, virtual mobility

Procedia PDF Downloads 104
27825 Social Collaborative Learning Model Based on Proactive Involvement to Promote the Global Merit Principle in Cultivating Youths' Morality

Authors: Wera Supa, Panita Wannapiroon

Abstract:

This paper is a report on the designing of the social collaborative learning model based on proactive involvement to Promote the global merit principle in cultivating youths’ morality. The research procedures into two phases, the first phase is to design the social collaborative learning model based on proactive involvement to promote the global merit principle in cultivating youths’ morality, and the second is to evaluate the social collaborative learning model based on proactive involvement. The sample group in this study consists of 15 experts who are dominant in proactive participation, moral merit principle and youths’ morality cultivation from executive level, lecturers and the professionals in information and communication technology expertise selected using the purposive sampling method. Data analyzed by arithmetic mean and standard deviation. This study has explored that there are four significant factors in promoting the hands-on collaboration of global merit scheme in order to implant virtues to adolescences which are: 1) information and communication Technology Usage; 2) proactive involvement; 3) morality cultivation policy, and 4) global merit principle. The experts agree that the social collaborative learning model based on proactive involvement is highly appropriate.

Keywords: social collaborative learning, proactive involvement, global merit principle, morality

Procedia PDF Downloads 388
27824 Content and Langauge Integrated Learning: English and Art History

Authors: Craig Mertens

Abstract:

Teaching art history or any other academic subject to EFL students can be done successfully. A course called Western Images was created to teach Japanese students art history while only using English in the classroom. An approach known as Content and Language Integrated Learning (CLIL) was used as a basis for this course. This paper’s purpose is to state the reasons why learning about art history is important, go through the process of creating content for the course, and suggest multiple tasks to help students practice the critical thinking skills used in analyzing and drawing conclusions of works of art from western culture. As a guide for this paper, Brown’s (1995) six elements of a language curriculum will be used. These stages include needs analysis, goals and objectives, assessment, materials, teaching method and tasks, and evaluation of the course. The goal here is to inspire debate and discussion regarding CLIL and its pros and cons, and to question current curriculum in university language courses.

Keywords: art history, EFL, content and language integration learning, critical thinking

Procedia PDF Downloads 597
27823 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants

Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann

Abstract:

Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.

Keywords: automation, data collection, performance monitoring, recycling, refrigerators

Procedia PDF Downloads 164
27822 A Machine Learning Approach to Detecting Evasive PDF Malware

Authors: Vareesha Masood, Ammara Gul, Nabeeha Areej, Muhammad Asif Masood, Hamna Imran

Abstract:

The universal use of PDF files has prompted hackers to use them for malicious intent by hiding malicious codes in their victim’s PDF machines. Machine learning has proven to be the most efficient in identifying benign files and detecting files with PDF malware. This paper has proposed an approach using a decision tree classifier with parameters. A modern, inclusive dataset CIC-Evasive-PDFMal2022, produced by Lockheed Martin’s Cyber Security wing is used. It is one of the most reliable datasets to use in this field. We designed a PDF malware detection system that achieved 99.2%. Comparing the suggested model to other cutting-edge models in the same study field, it has a great performance in detecting PDF malware. Accordingly, we provide the fastest, most reliable, and most efficient PDF Malware detection approach in this paper.

Keywords: PDF, PDF malware, decision tree classifier, random forest classifier

Procedia PDF Downloads 91
27821 Selection Criteria in the Spanish Secondary Education Content and Language Integrated Learning (CLIL) Programmes and Their Effect on Code-Switching in CLIL Methodology

Authors: Dembele Dembele, Philippe

Abstract:

Several Second Language Acquisition (SLA) studies have stressed the benefits of Content and Language Integrated Learning (CLIL) and shown how CLIL students outperformed their non-CLIL counterparts in many L2 skills. However, numerous experimental CLIL programs seem to have mainly targeted above-average and rather highly motivated language learners. The need to understand the impact of the student’s language proficiency on code-switching in CLIL instruction motivated this study. Therefore, determining the implications of the students’ low-language proficiency for CLIL methodology, as well as the frequency with which CLIL teachers use the main pedagogical functions of code-switching, seemed crucial for a Spanish CLIL instruction on a large scale. In the mixed-method approach adopted, ten face-to-face interviews were conducted in nine Valencian public secondary education schools, while over 30 CLIL teachers also contributed with their experience in two online survey questionnaires. The results showed the crucial role language proficiency plays in the Valencian CLIL/Plurilingual selection criteria. The presence of a substantial number of low-language proficient students in CLIL groups, which in turn implied important methodological consequences, was another finding of the study. Indeed, though the pedagogical use of L1 was confirmed as an extended practice among CLIL teachers, more than half of the participants perceived that code-switching impaired attaining their CLIL lesson objectives. Therein, the dissertation highlights the need for more extensive empirical research on how code-switching could prove beneficial in CLIL instruction involving low-language proficient students while maintaining the maximum possible exposure to the target language.

Keywords: CLIL methodology, low language proficiency, code switching, selection criteria, code-switching functions

Procedia PDF Downloads 81
27820 Competency-Based Social Work Practice and Challenges in Child Case Management: Studies in the Districts Social Welfare Services, Malaysia

Authors: Sopian Brahim, Mohd Suhaimi Mohamad, Ezarina Zakaria, Norulhuda Sarnon

Abstract:

This study aims to explore the practical experience of child welfare case workers and professionalism in the child case management in Malaysia. This paper discusses the specific social work practice competency and challenges faced by child caseworkers in the fieldwork. This research is qualitative with Grounded Theory approach. Four sessions of Focused Group Discussion (FGD) have been conducted involving a total of 27 caseworkers (child protector and probation officers) in the Klang Valley. The study found that the four basic principles of knowledge in child case management namely: 1. Knowledge in child case management, 2. Professional values of caseworkers towards children, 3. skills in managing cases, and 4. Culturally competence practice in child case managemenr. In addition, major challenges faced in the child case management are the capacity and commitment of the family in children's rehabilitation program, the credibility of the case worker are being challenge and challenges in support system from intra and inter-agency. This study is important for policy makers to take into account the capacity and needs of the child's case worker in accordance with national social work competency framework thereby improving case management services for children more systematically in line with national standards.

Keywords: social work practice, child case management, competency-based knowledge, professionalism

Procedia PDF Downloads 335
27819 Student Researchers and Industry Partnerships Improve Health Management with Data Driven Decisions

Authors: Carole A. South-Winter

Abstract:

Research-based learning gives students the opportunity to experience problems that require critical thinking and idea development. The skills they gain in working through these problems 'hands-on,' develop into attributes that benefit their careers in the professional field. The partnerships developed between students and industries give advantages to both sides. The students gain knowledge and skills that will increase their likelihood of success in the future and the industries are given research on new advancements that will give them a competitive advantage in their given field of work. The future of these partnerships is dependent on the success of current programs, enabling the enhancement and improvement of the research efforts. Once more students can complete research, there will be an increase in reliability of the results for each industry. The overall goal is to continue the support for research-based learning and the partnerships formed between students and industries.

Keywords: global healthcare, industry partnerships, research-driven decisions, short-term study abroad

Procedia PDF Downloads 126
27818 Earnings Management and Firm’s Creditworthiness

Authors: Maria A. Murtiati, Ancella A. Hermawan

Abstract:

The objective of this study is to examine whether the firm’s eligibility to get a bank loan is influenced by earnings management. The earnings management is distinguished between accruals and real earnings management. Hypothesis testing is carried out with logistic regression model using sample of 285 companies listed at Indonesian Stock Exchange in 2010. The result provides evidence that a greater magnitude in accruals earnings management increases the firm’s probability to be eligible to get bank loan. In contrast, real earnings management through abnormal cash flow and abnormal discretionary expenses decrease firm’s probability to be eligible to get bank loan, while real management through abnormal production cost increases such probability. The result of this study suggests that if the earnings management is assumed to be opportunistic purpose, the accruals based earnings management can distort the banks credit analysis using financial statements. Real earnings management has more impact on the cash flows, and banks are very concerned on the firm’s cash flow ability. Therefore, this study indicates that banks are more able to detect real earnings management, except abnormal production cost in real earning management.

Keywords: discretionary accruals, real earning management, bank loan, credit worthiness

Procedia PDF Downloads 346
27817 The Impact of Demographic Profile on Strategic HRM Practices and its Challenges Faced by HR Managers in IT Firm, India: An Empirical Study

Authors: P. Saravanan, A. Vasumathi

Abstract:

Strategic Human Resource Management (SHRM) plays a vital role in formulating the policies and strategies for the company, in order to fulfill the employee’s requirement and to perform the job efficiently within the organisation. Human Resource Management (HRM) functions helps in attracting and motivating the talented workforce for the organisation and by increasing the performance of an individual, will result in achieving the defined goals and objectives for the company. HRM function plays an important role in managing the workers within organisation through a formal communication channel. Since HR functions acts as a mediatory role in between the employee as well as the employers within the organisation that helps in improving the efficacy and skills of the individuals employed within the company. HR manager acts as a change agent, enabling and driving the change management program with respect to business HR functions and its future requirements of the company. Due to change in the business environment, the focus of HR manager is shifting from administrative/personal functions in to a strategic business HR function. HR managers plays a strategic role in managing various HR functions such as recruitment and selection, human resource information system, manpower planning, performance management, conflict management, employee engagement, compensation management, policy formation and retention strategies followed within the industry. Major challenges faced by HR managers at work place are managing the level of engagement for the talented resources within the organisation, reducing the conflicts at workplace, mapping the talented resources through succession planning process, building the effective appraisal process and performance management system and mapping the compensation based on the skills and experience possed by the employee within the company. The authors conducted a study for the sample size of 75 HR managers from an Indian IT company through systematic sampling method. This study identifies that the female employees are facing lesser conflict than the male employees against their managers within the organisation and also the study determines the impact of demographic profile on strategic HRM practices and its challenges faced by HR managers in IT firm, India.

Keywords: strategic human resource management, change agent, employee engagement, performance management, succession planning and conflict management

Procedia PDF Downloads 298
27816 The Effect of Excel on Undergraduate Students’ Understanding of Statistics and the Normal Distribution

Authors: Masomeh Jamshid Nejad

Abstract:

Nowadays, statistical literacy is no longer a necessary skill but an essential skill with broad applications across diverse fields, especially in operational decision areas such as business management, finance, and economics. As such, learning and deep understanding of statistical concepts are essential in the context of business studies. One of the crucial topics in statistical theory and its application is the normal distribution, often called a bell-shaped curve. To interpret data and conduct hypothesis tests, comprehending the properties of normal distribution (the mean and standard deviation) is essential for business students. This requires undergraduate students in the field of economics and business management to visualize and work with data following a normal distribution. Since technology is interconnected with education these days, it is important to teach statistics topics in the context of Python, R-studio, and Microsoft Excel to undergraduate students. This research endeavours to shed light on the effect of Excel-based instruction on learners’ knowledge of statistics, specifically the central concept of normal distribution. As such, two groups of undergraduate students (from the Business Management program) were compared in this research study. One group underwent Excel-based instruction and another group relied only on traditional teaching methods. We analyzed experiential data and BBA participants’ responses to statistic-related questions focusing on the normal distribution, including its key attributes, such as the mean and standard deviation. The results of our study indicate that exposing students to Excel-based learning supports learners in comprehending statistical concepts more effectively compared with the other group of learners (teaching with the traditional method). In addition, students in the context of Excel-based instruction showed ability in picturing and interpreting data concentrated on normal distribution.

Keywords: statistics, excel-based instruction, data visualization, pedagogy

Procedia PDF Downloads 53
27815 Effect of Management Compensation and Auditor Reputation on Tax Management in the Listed Banking Companies in Indonesia

Authors: Fahreza, Yudhi Herliansyah, Harnovinsah

Abstract:

This study aims to examine how management compensation and auditor reputation effect on corporate tax management in banking using a sample banking companies listed in Indonesia Stock Exchange. At first, this study examines how the influence of management compensation on the implementation of tax management that may be made by management in order to improve the performance of the company. Second, this study also examines the effect of auditor reputation conducting audit on the implementation of the tax management. The population used in this study is the banking companies listed in Indonesia Stock Exchange. The method used was purposive sampling because the samples of this study have certain criteria that are tailored to the purpose of the study. Based on purposive sampling method, the number of samples in this study is 28 samples. Hypothesis tested using multiple regression analysis. The results of this study indicate that on the 5 % significance level, management compensation significantly influenced tax management as measured using the proxy book tax gap. Other result is management compensation does not significantly affect the tax management that measured using a proxy GAAP effective tax rate. In addition the auditor's reputation does significantly influence tax management as measured using the proxy book tax gap and GAAP effective tax rate.

Keywords: tax management, management compensation, auditor reputation, corporate characteristic

Procedia PDF Downloads 300
27814 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 133
27813 The Use of Technology in Mathematics Learning (1995-2024): A Bibliometric Analysis

Authors: Rahma Adinda Sartika

Abstract:

The use of technology in learning mathematics has received a positive response from both students and teachers, so many researchers have conducted research on this theme. Based on the findings carried out in this study, 807 documents relevant to this theme have been published in Scopus from 1995-2024. After going through the stages of identification, screening, eligibility, and including, the documents that meet the criteria are 227 documents. These documents are then analyzed using the bibliometric method so that it can be seen that the most published documents in the Scopus database occurred in 2020, with 38 documents, and the lowest was from 1996 to 2000 and 2004 to 2007, namely, no documents published. The highest number of citations is in documents published in 2018, with a total of 349 citations, so the h-index is higher than the others. The country that published the most documents relevant to this theme is Indonesia with a total of 91 documents. The second largest is the United States, with a total of 28 published documents, and the third largest is China, with a total of 15 documents. Indonesia and the United States have the most working relationships between countries compared to other countries. The focus of research related to this theme is 1) mathematics learning, 2) learning systems, 3) engineering education, 4) technology and 5) mathematical concepts.

Keywords: technology, bibliometric, mathematics learning, mathematical concepts

Procedia PDF Downloads 56
27812 Social Networking Application: What Is Their Quality and How Can They Be Adopted in Open Distance Learning Environments?

Authors: Asteria Nsamba

Abstract:

Social networking applications and tools have become compelling platforms for generating and sharing knowledge across the world. Social networking applications and tools refer to a variety of social media platforms which include Facebook, Twitter WhatsApp, blogs and Wikis. The most popular of these platforms are Facebook, with 2.41 billion active users on a monthly basis, followed by WhatsApp with 1.6 billion users and Twitter with 330 million users. These communication platforms have not only impacted social lives but have also impacted students’ learning, across different delivery modes in higher education: distance, conventional and blended learning modes. With this amount of interest in these platforms, knowledge sharing has gained importance within the context in which it is required. In open distance learning (ODL) contexts, social networking platforms can offer students and teachers the platform on which to create and share knowledge, and form learning collaborations. Thus, they can serve as support mechanisms to increase interactions and reduce isolation and loneliness inherent in ODL. Despite this potential and opportunity, research indicates that many ODL teachers are not inclined to using social media tools in learning. Although it is unclear why these tools are uncommon in these environments, concerns raised in the literature have indicated that many teachers have not mastered the art of teaching with technology. Using technological, pedagogical content knowledge (TPCK) and product quality theory, and Bloom’s Taxonomy as lenses, this paper is aimed at; firstly, assessing the quality of three social media applications: Facebook, Twitter and WhatsApp, in order to determine the extent to which they are suitable platforms for teaching and learning, in terms of content generation, information sharing and learning collaborations. Secondly, the paper demonstrates the application of teaching, learning and assessment using Bloom’s Taxonomy.

Keywords: distance education, quality, social networking tools, TPACK

Procedia PDF Downloads 124