Search results for: geospatial techniques
3813 Indexing and Incremental Approach Using Map Reduce Bipartite Graph (MRBG) for Mining Evolving Big Data
Authors: Adarsh Shroff
Abstract:
Big data is a collection of dataset so large and complex that it becomes difficult to process using data base management tools. To perform operations like search, analysis, visualization on big data by using data mining; which is the process of extraction of patterns or knowledge from large data set. In recent years, the data mining applications become stale and obsolete over time. Incremental processing is a promising approach to refreshing mining results. It utilizes previously saved states to avoid the expense of re-computation from scratch. This project uses i2MapReduce, an incremental processing extension to Map Reduce, the most widely used framework for mining big data. I2MapReduce performs key-value pair level incremental processing rather than task level re-computation, supports not only one-step computation but also more sophisticated iterative computation, which is widely used in data mining applications, and incorporates a set of novel techniques to reduce I/O overhead for accessing preserved fine-grain computation states. To optimize the mining results, evaluate i2MapReduce using a one-step algorithm and three iterative algorithms with diverse computation characteristics for efficient mining.Keywords: big data, map reduce, incremental processing, iterative computation
Procedia PDF Downloads 3553812 Socio-Economic Inequality in Breastfeeding Patterns in India
Authors: Ankita Shukla
Abstract:
The promotion and support of breastfeeding is a global priority with benefits for maternal and infant health, especially in low income and middle-income countries where the probability of child survival is still very low. In India too it has been well established that breastfeeding increases the survival of the child. However, the breastfeeding levels are quite low in the country. Examining the socio-economic inequality in breastfeeding pattern can help to the causal pathways responsible for early breastfeeding termination. This paper tries to understand the socio-economic differential in breastfeeding patterns among Indian women. Data is used from nationally representative National Family Health Survey-3. Using Cox regression modelling techniques, the analysis found that the likelihood of having small breastfeeding duration increased with increasing household wealth status similarly education also has negative effect on breastfeeding duration. The considerable gender difference is also visible in India, likelihood of stopping breastfeeding was significantly higher among female children compared with male children. To understand the cultural factors or norms responsible for the early termination of breastfeeding more in depth/qualitative studies are needed.Keywords: breastfeeding, India, socio-economic inequality, women education
Procedia PDF Downloads 2373811 Nexus of Socio-Demographic Factors and Water Fetching Practices: A Study in South-Western Bangladesh
Authors: Mufti Nadimul Quamar Ahmed
Abstract:
Universal and equitable access to safe and inexpensive water is one of the core goals of UN Sustainable Development (Goal-6). Rainwater harvesting and drinkable water scarcity are also prominent themes in the current literature. However, the lack of readily available drinking water sources is a serious roadblock in achieving this major goal in developing countries, especially in Bangladesh. In this study, we aimed to explore how water collecting activities in Bangladesh's coastal region are influenced by participants’ selected socio-demographic characteristics. We gathered information using a structured questionnaire from 154 people who were chosen at random from two of Bangladesh's most susceptible subdistricts situated in the country's southwest coast. Our results show that majority of the respondents think water fetching is a job for the woman as like their other day-day to household works and it’s not a man's duty. Interestingly, we found that person's age, family structure, monthly income and religion all play important roles in how they see and behave water-gathering techniques. Moreover, the local taboo on women and men's roles in water-gathering is also evident in the studied areas.Keywords: water fetching, socio-demographic characteristic, coastal region, Bangladesh, SDG
Procedia PDF Downloads 1263810 Comparative Analysis of Integrated and Non-Integrated Fish Farming in Ogun State, Nigeria
Authors: B. G. Abiona
Abstract:
This study compared profitability analysis of integrated and non-integrated fish farming in Ogun State, Nigeria. Primary data were collected using interview guide. Random sampling techniques was used to select 133 non-integrated fish farmers (NIFF) and 216 integrated fish farmers (IFF) (n = 349) from the study area. Data were analyzed using Chi-square, T-test and Pearson Product moment correlation. Results showed that 92.5% of NIFF was male compared to IFF (90.7%). Also, 96.8% of IFF and 79.7% of NIFF were married. The mean ages of sampled farmers were 44 years (NIFF) and 46 years (IFF) while the mean fish farming experiences were 4 years (NIFF) and 5 years (IFF). Also, the average net profit per year of integrated fish farmers was ₦162,550 compared to NIFF (₦61,638). The chi-square analyses showed that knowledge of fish farming had significant relationship with respondents sex (χ2 = 9.44, df = 2, p < 0.05), age (r = 0.20, p< 0.05) and farming experience (r = p = 0.05). Significant differences exist between integrated and non-integrated fish farming, considering their knowledge of fish farming (t = 21.5, χ = 43.01, p < 0.05). The study concluded that IFF are more profitable compared to NIFF. It was recommended that private investors and NGOs should sponsor short training and courses which will enhance efficiency of fish farming to boost productivity among fish farmers.Keywords: profitability analysis, farms, integration
Procedia PDF Downloads 3413809 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field
Authors: Yana Snegireva
Abstract:
Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model
Procedia PDF Downloads 773808 Physical Interaction Mappings: Utilizing Cognitive Load Theory in Order to Enhance Physical Product Interaction
Authors: Bryan Young, Andrew Wodehouse, Marion Sheridan
Abstract:
The availability of working memory has long been identified as a critical aspect of an instructional design. Many conventional instructional procedures impose irrelevant or unrelated cognitive loads on the learner due to the fact that they were created without contemplation, or understanding, of cognitive work load. Learning to physically operate traditional products can be viewed as a learning process akin to any other. As such, many of today's products, such as cars, boats, and planes, which have traditional controls that predate modern user-centered design techniques may be imposing irrelevant or unrelated cognitive loads on their operators. The goal of the research was to investigate the fundamental relationships between physical inputs, resulting actions, and learnability. The results showed that individuals can quickly adapt to input/output reversals across dimensions, however, individuals struggle to cope with the input/output when the dimensions are rotated due to the resulting increase in cognitive load.Keywords: cognitive load theory, instructional design, physical product interactions, usability design
Procedia PDF Downloads 5393807 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates
Authors: Jennifer Buz, Alvin Spivey
Abstract:
The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation
Procedia PDF Downloads 1333806 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data
Authors: Murat Yazici
Abstract:
Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data
Procedia PDF Downloads 583805 Land Use Changes and Impact around Maladumba Lake and Forest Reserve, Nigeria
Authors: M. B. Abdullahi, S. M. Gumel
Abstract:
This study was carried out to analyze and describe biodiversity changes in representative communities around Maladumba Lake and Forest Reserve (MLFR), Bauchi, Nigeria. Primary and secondary data were collected through formal and informal interviews of key informants and survey of local communities and government records. There has been a change in biodiversity; some of the cropping systems have become nonexistent whereas others have developed. The main aspect of the changes has been the decline of species diversity due to degradation and over utilization. The changes have also been positive through the introduction and intensification of cropping system. Options have been open for people to manipulate the cropping systems in order to efficiently use the limited resources. Farmers have opted not only to intensify agricultural practices but also to deliberately restore some of the lost species. Reduction in the number of animals per household, adoption of new techniques of land management, changes in the type of crops cultivated and intensive use of the available resources are some of the indicators describing farmers’ efforts to cope with the changes. Sustainability of the farming system and biodiversity has been enhanced through peoples’ efforts that include planting trees and use of fertilizers.Keywords: cropping systems, historical trends, household, land management, sustainability
Procedia PDF Downloads 3963804 The Effects of Displacer-Cylinder-Wall Conditions on the Performance of a Medium-Temperature-Differential γ-Type Stirling Engine
Authors: Wen-Lih Chen, Chao-Kuang Chen, Mao-Ju Fang, Hsiang-Cheng Hsu
Abstract:
In this study, we conducted CFD simulation to study the gas cycle of a medium-temperature-differential (MTD) γ-type Stirling engine. Mesh compression and expansion as well as overset mesh techniques are employed to simulate the moving parts of the engine. Shear-Stress Transport (SST) k-ω turbulence model has been adopted because the model is not prone to generate excessive turbulence upon impingement regions. Hence, wall heat transfer rates at the hot and cold ends will not be overestimated. The effects of several different displacer-cylinder-wall temperature setups, including smooth and finned walls, on engine performance are investigated. The results include temperature contours, pressure versus volume diagrams, and variations of heat transfer rates, indicated power, and efficiency. It is found that displacer-wall heat transfer is one of the most important factors on engine performance, and some wall-temperature setups produce better results than others.Keywords: CFD, finned wall, MTD Stirling engine, heat transfer
Procedia PDF Downloads 3803803 Robust Numerical Scheme for Pricing American Options under Jump Diffusion Models
Authors: Salah Alrabeei, Mohammad Yousuf
Abstract:
The goal of option pricing theory is to help the investors to manage their money, enhance returns and control their financial future by theoretically valuing their options. However, most of the option pricing models have no analytical solution. Furthermore, not all the numerical methods are efficient to solve these models because they have nonsmoothing payoffs or discontinuous derivatives at the exercise price. In this paper, we solve the American option under jump diffusion models by using efficient time-dependent numerical methods. several techniques are integrated to reduced the overcome the computational complexity. Fast Fourier Transform (FFT) algorithm is used as a matrix-vector multiplication solver, which reduces the complexity from O(M2) into O(M logM). Partial fraction decomposition technique is applied to rational approximation schemes to overcome the complexity of inverting polynomial of matrices. The proposed method is easy to implement on serial or parallel versions. Numerical results are presented to prove the accuracy and efficiency of the proposed method.Keywords: integral differential equations, jump–diffusion model, American options, rational approximation
Procedia PDF Downloads 1243802 Fluorescence Spectroscopy of Lysozyme-Silver Nanoparticles Complex
Authors: Shahnaz Ashrafpour, Tahereh Tohidi Moghadam, Bijan Ranjbar
Abstract:
Identifying the nature of protein-nanoparticle interactions and favored binding sites is an important issue in functional characterization of biomolecules and their physiological responses. Herein, interaction of silver nanoparticles with lysozyme as a model protein has been monitored via fluorescence spectroscopy. Formation of complex between the biomolecule and silver nanoparticles (AgNPs) induced a steady state reduction in the fluorescence intensity of protein at different concentrations of nanoparticles. Tryptophan fluorescence quenching spectra suggested that silver nanoparticles act as a foreign quencher, approaching the protein via this residue. Analysis of the Stern-Volmer plot showed quenching constant of 3.73 µM−1. Moreover, a single binding site in lysozyme is suggested to play role during interaction with AgNPs, having low affinity of binding compared to gold nanoparticles. Unfolding studies of lysozyme showed that complex of lysozyme-AgNPs has not undergone structural perturbations compared to the bare protein. Results of this effort will pave the way for utilization of sensitive spectroscopic techniques for rational design of nanobiomaterials in biomedical applications.Keywords: nanocarrier, nanoparticles, surface plasmon resonance, quenching fluorescence
Procedia PDF Downloads 3323801 Applying Massively Parallel Sequencing to Forensic Soil Bacterial Profiling
Authors: Hui Li, Xueying Zhao, Ke Ma, Yu Cao, Fan Yang, Qingwen Xu, Wenbin Liu
Abstract:
Soil can often link a person or item to a crime scene, which makes it a valuable evidence in forensic casework. Several techniques have been utilized in forensic soil discrimination in previous studies. Because soil contains a vast number of microbiomes, the analyse of soil microbiomes is expected to be a potential way to characterise soil evidence. In this study, we applied massively parallel sequencing (MPS) to soil bacterial profiling on the Ion Torrent Personal Genome Machine (PGM). Soils from different regions were collected repeatedly. V-region 3 and 4 of Bacterial 16S rRNA gene were detected by MPS. Operational taxonomic units (OTU, 97%) were used to analyse soil bacteria. Several bioinformatics methods (PCoA, NMDS, Metastats, LEfse, and Heatmap) were applied in bacterial profiles. Our results demonstrate that MPS can provide a more detailed picture of the soil microbiomes and the composition of soil bacterial components from different region was individualistic. In conclusion, the utility of soil bacterial profiling via MPS of the 16S rRNA gene has potential value in characterising soil evidences and associating them with their place of origin, which can play an important role in forensic science in the future.Keywords: bacterial profiling, forensic, massively parallel sequencing, soil evidence
Procedia PDF Downloads 5673800 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province
Authors: Kourosh Nazarian
Abstract:
Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.Keywords: Stress, creep, faryab, surface runoff
Procedia PDF Downloads 1813799 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 773798 Design Study for the Rehabilitation of a Retaining Structure and Water Intake on Site
Authors: Yu-Lin Shen, Ming-Kuen Chang
Abstract:
In addition to a considerable amount of machinery and equipment, intricacies of the transmission pipeline exist in Petrochemical plants. Long term corrosion may lead to pipeline thinning and rupture, causing serious safety concerns. With the advances in non-destructive testing technology, more rapid and long-range ultrasonic detection techniques are often used for pipeline inspection, EMAT without coupling to detect, it is a non-contact ultrasonic, suitable for detecting elevated temperature or roughened e surface of line. In this study, we prepared artificial defects in pipeline for Electromagnetic Acoustic Transducer testing (EMAT) to survey the relationship between the defect location, sizing and the EMAT signal. It was found that the signal amplitude of EMAT exhibited greater signal attenuation with larger defect depth and length. In addition, with bigger flat hole diameter, greater amplitude attenuation was obtained. In summary, signal amplitude attenuation of EMAT was affected by the defect depth, defect length and the hole diameter and size.Keywords: EMAT, artificial defect, NDT, ultrasonic testing
Procedia PDF Downloads 3523797 The Use of Performance Indicators for Evaluating Models of Drying Jackfruit (Artocarpus heterophyllus L.): Page, Midilli, and Lewis
Authors: D. S. C. Soares, D. G. Costa, J. T. S., A. K. S. Abud, T. P. Nunes, A. M. Oliveira Júnior
Abstract:
Mathematical models of drying are used for the purpose of understanding the drying process in order to determine important parameters for design and operation of the dryer. The jackfruit is a fruit with high consumption in the Northeast and perishability. It is necessary to apply techniques to improve their conservation for longer in order to diffuse it by regions with low consumption. This study aimed to analyse several mathematical models (Page, Lewis, and Midilli) to indicate one that best fits the conditions of convective drying process using performance indicators associated with each model: accuracy (Af) and noise factors (Bf), mean square error (RMSE) and standard error of prediction (% SEP). Jackfruit drying was carried out in convective type tray dryer at a temperature of 50°C for 9 hours. It is observed that the model Midili was more accurate with Af: 1.39, Bf: 1.33, RMSE: 0.01%, and SEP: 5.34. However, the use of the Model Midilli is not appropriate for purposes of control process due to need four tuning parameters. With the performance indicators used in this paper, the Page model showed similar results with only two parameters. It is concluded that the best correlation between the experimental and estimated data is given by the Page’s model.Keywords: drying, models, jackfruit, biotechnology
Procedia PDF Downloads 3833796 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear
Procedia PDF Downloads 3023795 Potential Effects of Green Infrastructures on the Land Surface Temperatures in Arid Areas
Authors: Adila Shafqat
Abstract:
Climate change and urbanization has changed the face of many cities in developing countries. Urbanization is linked with land use and land cover change, that is further intensify by the effects of changing climates. Green infrastructures provide numerous ecosystem services which effect the physical set up of the cities in the long run. Land surface temperatures is considered as defining parameter in the studies of the thermal impact on the land cover. Current study is conducted in the semi-arid urban areas of the Bahawalpur region. Accordingly, Land Surface Temperatures and land cover maps are derived from Landsat image through remote sensing techniques. The cooling impact of green infrastructure is determined by calculating land surface temperature of buffered zones around green infrastructures. A regression model is applied for results. It is seen that land surface temperature around green infrastructures in 1 to 3 degrees lower than the built up surroundings. The result indicates that the urban green infrastructures should be planned according to the local needs and characteristics of landuse so that they can effectively tackle land surface temperatures of urban areas.Keywords: climate change, surface temperatures, green spaces, urban planning
Procedia PDF Downloads 1233794 In Vitro and in Vivo Biological Investigations of Philodendron Bipinnatifidum Schott Ex Endl (Araceae) and Its Bioactive Phenolic Constituents
Authors: Alia Ragheb
Abstract:
Philodendron species were reported in traditional medicine for the treatment of several diseases. From the 70% methanol extract of the aerial parts of Philodendron bipinnatifidum Schott ex Endl, nine flavonoid compounds were isolated and identified for the first time; saponarin, genkwanin 8-C-(2′′-O-β-glucopyranosyl)-β-glucopyranoside, apigenin 6-C-(2′′-O-β-glucopyranosyl)-β-glucopyranoside, schaftoside, swertisin, swertiajaponin, isoswertisin, isorhamnetin 3-O-(2′′-acetyl)-β-glucopyranoside and apigenin. Characterization of the plant was achieved using chromatographic, physical, chemical, spectroscopic, and spectrometric techniques. The 70% methanol aerial parts extract and the methanol fraction of the plant were in vivo screened for their acute anti-inflammatory, antipyretic and analgesic effects where significant effects were exhibited compared to that of reference drugs. From the reported literature, these biological activities could be attributed to its phenolic constituent. The 70% methanol aerial parts and successive extracts, as well as some pure isolated flavonoid compounds, were in vitro investigated for their antioxidant, antimicrobial and cytotoxic activities.Keywords: antioxidant, araceae, cytotoxicity, flavonoids
Procedia PDF Downloads 1853793 Quantum Entangled States and Image Processing
Authors: Sanjay Singh, Sushil Kumar, Rashmi Jain
Abstract:
Quantum registering is another pattern in computational hypothesis and a quantum mechanical framework has a few helpful properties like Entanglement. We plan to store data concerning the structure and substance of a basic picture in a quantum framework. Consider a variety of n qubits which we propose to use as our memory stockpiling. In recent years classical processing is switched to quantum image processing. Quantum image processing is an elegant approach to overcome the problems of its classical counter parts. Image storage, retrieval and its processing on quantum machines is an emerging area. Although quantum machines do not exist in physical reality but theoretical algorithms developed based on quantum entangled states gives new insights to process the classical images in quantum domain. Here in the present work, we give the brief overview, such that how entangled states can be useful for quantum image storage and retrieval. We discuss the properties of tripartite Greenberger-Horne-Zeilinger and W states and their usefulness to store the shapes which may consist three vertices. We also propose the techniques to store shapes having more than three vertices.Keywords: Greenberger-Horne-Zeilinger, image storage and retrieval, quantum entanglement, W states
Procedia PDF Downloads 3083792 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks
Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin
Abstract:
This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer
Procedia PDF Downloads 4033791 Ordered Mesoporous WO₃-TiO₂ Nanocomposites for Enhanced Xylene Gas Detection
Authors: Vijay K. Tomer, Ritu Malik, Satya P. Nehra, Anshu Sharma
Abstract:
Highly ordered mesoporous WO₃-TiO₂ nanohybrids with large intrinsic surface area and highly ordered pore channels were synthesized using mesoporous silica, KIT-6 as hard template using a nanocasting strategy. The nanohybrid samples were characterized by a variety of physico-chemical techniques including X-ray diffraction, Nitrogen adsorption-desorption isotherms, and high resolution transmission electron microscope. The nanohybrids were tested for detection of important indoor Volatile Organic Compounds (VOCs) including acetone, ethanol, n-butanol, toluene, and xylene. The sensing result illustrates that the nanocomposite sensor was highly responsive towards xylene gas at relatively lower operating temperature. A rapid response and recovery time, highly linear response and excellent stability in the concentration ranges from 1 to 100 ppm was observed for xylene gas. It is believed that the promising results of this study can be utilized in the synthesis of ordered mesoporous nanostructures which can extend its configuration for the development of new age e-nose type sensors with enhanced gas-sensing performance.Keywords: nanohybrids, response, sensor, VOCs, xylene
Procedia PDF Downloads 3333790 MIL-88b(Fe)-MOF Grafted Carbon Dot Nanocomposites as Effective Photocatalysts for Fenton-Like Photodegradation of Amphotericin B and Naproxen Under Visible Light Irradiation
Authors: Payam Hayati, Fateme Firoozbakht, Gholamhassan Azimi, Shahram Tangestaninejad
Abstract:
The synthesis of a photocatalytic adsorbent involved the integration of carbon dots (CD) into a metal-organic framework (MOF) of MIL-88B(Fe) using the solvothermal technique. Characterization of the resulting CD@MIL-88B(Fe) was conducted using various analytical methods, including X-ray-based microscopic and spectroscopic techniques, electrochemical impedance spectroscopy, UV–Vis, FT-IR, DRS, TGA, and photoluminescence (PL) analysis. The adsorbent demonstrated significant photocatalytic activity, achieving up to 92% and 90% removal of amphotericin B (AmB) and naproxen (Nap) from aqueous solutions under visible light, with an RSD value of around 5%. The study explored the factors influencing the degradation of pharmaceuticals and determined the optimal conditions for the process, including pH values of 3 and 4 for AmB and Nap, a photocatalyst concentration of 0.2 g L-1, and an H2O2 concentration ranging from 40 to 50 mM. Reactive oxidative species such as ⋅OH and ⋅O2 were identified through the examination of different scavengers. Additionally, the adsorption isotherm and kinetic studies revealed that the synthesized photocatalyst functions as an effective adsorbent, with maximum adsorption capacities of 42.5 and 121.5 mg g-1 for AmB and Nap, while also serving as a photocatalytic agent for removal purposes.Keywords: fenton-like degradation, metal-organic frameworks, heterogenous photocatalysts, naproxen
Procedia PDF Downloads 803789 Impact of α-Adrenoceptor Antagonists on Biochemical Relapse in Men Undergoing Radiotherapy for Localised Prostate Cancer
Authors: Briohny H. Spencer, Russ Chess-Williams, Catherine McDermott, Shailendra Anoopkumar-Dukie, David Christie
Abstract:
Background: Prostate cancer is the second most common cancer diagnosed in men worldwide and the most prevalent in Australian men. In 2015, it was estimated that approximately 18,000 new cases of prostate cancer were diagnosed in Australia. Currently, for localised disease, androgen depravation therapy (ADT) and radiotherapy are a major part of the curative management of prostate cancer. ADT acts to reduce the levels of circulating androgens, primarily testosterone and the locally produced androgen, dihydrotestosterone (DHT), or by preventing the subsequent activation of the androgen receptor. Thus, the growth of the cancerous cells can be reduced or ceased. Radiation techniques such as brachytherapy (radiation delivered directly to the prostate by transperineal implant) or external beam radiation therapy (exposure to a sufficient dose of radiation aimed at eradicating malignant cells) are also common techniques used in the treatment of this condition. Radiotherapy (RT) has significant limitations, including reduced effectiveness in treating malignant cells present in hypoxic microenvironments leading to radio-resistance and poor clinical outcomes and also the significant side effects for the patients. Alpha1-adrenoceptor antagonists are used for many prostate cancer patients to control lower urinary tract symptoms, due to the progression of the disease itself or may arise as an adverse effect of the radiotherapy treatment. In Australia, a significant number (not a majority) of patients receive a α1-ADR antagonist and four drugs are available including prazosin, terazosin, alfuzosin and tamsulosin. There is currently limited published data on the effects of α1-ADR antagonists during radiotherapy, but it suggests these medications may improve patient outcomes by enhancing the effect of radiotherapy. Aim: To determine the impact of α1-ADR antagonists treatments on time to biochemical relapse following radiotherapy. Methods: A retrospective study of male patients receiving radiotherapy for biopsy-proven localised prostate cancer was undertaken to compare cancer outcomes for drug-naïve patients and those receiving α1-ADR antagonist treatments. Ethical approval for the collection of data at Genesis CancerCare QLD was obtained and biochemical relapse (defined by a PSA rise of >2ng/mL above the nadir) was recorded in months. Rates of biochemical relapse, prostate specific antigen doubling time (PSADT) and Kaplan-Meier survival curves were also compared. Treatment groups were those receiving α1-ADR antagonists treatment before or concurrent with their radiotherapy. Data was statistically analysed using One-way ANOVA and results expressed as mean ± standard deviation. Major findings: The mean time to biochemical relapse for tamsulosin, prazosin, alfuzosin and controls were 45.3±17.4 (n=36), 41.5±19.6 (n=11), 29.3±6.02 (n=6) and 36.5±17.6 (n=16) months respectively. Tamsulosin, prazosin but not alfuzosin delayed time to biochemical relapse although the differences were not statistically significant. Conclusion: Preliminary data for the prior and/or concurrent use of tamsulosin and prazosin showed a positive trend in delaying time to biochemical relapse although no statistical significance was shown. Larger clinical studies are indicated and with thousands of patient records yet to be analysed, it may determine if there is a significant effect of these drugs on control of prostate cancer.Keywords: alpha1-adrenoceptor antagonists, biochemical relapse, prostate cancer, radiotherapy
Procedia PDF Downloads 3773788 Optimized Processing of Neural Sensory Information with Unwanted Artifacts
Authors: John Lachapelle
Abstract:
Introduction: Neural stimulation is increasingly targeted toward treatment of back pain, PTSD, Parkinson’s disease, and for sensory perception. Sensory recording during stimulation is important in order to examine neural response to stimulation. Most neural amplifiers (headstages) focus on noise efficiency factor (NEF). Conversely, neural headstages need to handle artifacts from several sources including power lines, movement (EMG), and neural stimulation itself. In this work a layered approach to artifact rejection is used to reduce corruption of the neural ENG signal by 60dBv, resulting in recovery of sensory signals in rats and primates that would previously not be possible. Methods: The approach combines analog techniques to reduce and handle unwanted signal amplitudes. The methods include optimized (1) sensory electrode placement, (2) amplifier configuration, and (3) artifact blanking when necessary. The techniques together are like concentric moats protecting a castle; only the wanted neural signal can penetrate. There are two conditions in which the headstage operates: unwanted artifact < 50mV, linear operation, and artifact > 50mV, fast-settle gain reduction signal limiting (covered in more detail in a separate paper). Unwanted Signals at the headstage input: Consider: (a) EMG signals are by nature < 10mV. (b) 60 Hz power line signals may be > 50mV with poor electrode cable conditions; with careful routing much of the signal is common to both reference and active electrode and rejected in the differential amplifier with <50mV remaining. (c) An unwanted (to the neural recorder) stimulation signal is attenuated from stimulation to sensory electrode. The voltage seen at the sensory electrode can be modeled Φ_m=I_o/4πσr. For a 1 mA stimulation signal, with 1 cm spacing between electrodes, the signal is <20mV at the headstage. Headstage ASIC design: The front end ASIC design is designed to produce < 1% THD at 50mV input; 50 times higher than typical headstage ASICs, with no increase in noise floor. This requires careful balance of amplifier stages in the headstage ASIC, as well as consideration of the electrodes effect on noise. The ASIC is designed to allow extremely small signal extraction on low impedance (< 10kohm) electrodes with configuration of the headstage ASIC noise floor to < 700nV/rt-Hz. Smaller high impedance electrodes (> 100kohm) are typically located closer to neural sources and transduce higher amplitude signals (> 10uV); the ASIC low-power mode conserves power with 2uV/rt-Hz noise. Findings: The enhanced neural processing ASIC has been compared with a commercial neural recording amplifier IC. Chronically implanted primates at MGH demonstrated the presence of commercial neural amplifier saturation as a result of large environmental artifacts. The enhanced artifact suppression headstage ASIC, in the same setup, was able to recover and process the wanted neural signal separately from the suppressed unwanted artifacts. Separately, the enhanced artifact suppression headstage ASIC was able to separate sensory neural signals from unwanted artifacts in mouse-implanted peripheral intrafascicular electrodes. Conclusion: Optimizing headstage ASICs allow observation of neural signals in the presence of large artifacts that will be present in real-life implanted applications, and are targeted toward human implantation in the DARPA HAPTIX program.Keywords: ASIC, biosensors, biomedical signal processing, biomedical sensors
Procedia PDF Downloads 3313787 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology
Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy
Abstract:
Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.Keywords: legacy systems, redocumentation, big data analysis, parallel processing
Procedia PDF Downloads 493786 Teaching in the Post Truth Era: A Narrative Analysis of Modern Anti-Scientific Discourses in the Classroom
Authors: Jason T. Hilton
Abstract:
The ‘post-truth era’ is marked by a shift toward a period in which objective facts are less influential in shaping public opinion than appeals to emotion and personal belief. Applying narrative analysis techniques to current public discourses in education that run counter to scientific findings, it becomes possible to identify weakness in modern pedagogy and suggest ways to counter false narratives in the classroom. Results of this study indicate that a failure to engage with popular narratives lessens teachers’ ability to be convincing in the classroom, even when presenting information supported by scientific evidence. This study seeks to empower teachers by illustrating the influence of story within the post-truth era and the ways in which narrative and rhetorical elements take hold in social media contexts. Equipped with this knowledge, teachers can create a shift in pedagogy, away from transmission of knowledge toward the crafting of powerful narratives, built upon evidence, and connected to the lives of modern learners.Keywords: 21st century learner, critical pedagogy, culture, narrative, post-truth era, social media
Procedia PDF Downloads 2693785 Inferring Human Mobility in India Using Machine Learning
Authors: Asra Yousuf, Ajaykumar Tannirkulum
Abstract:
Inferring rural-urban migration trends can help design effective policies that promote better urban planning and rural development. In this paper, we describe how machine learning algorithms can be applied to predict internal migration decisions of people. We consider data collected from household surveys in Tamil Nadu to train our model. To measure the performance of the model, we use data on past migration from National Sample Survey Organisation of India. The factors for training the model include socioeconomic characteristic of each individual like age, gender, place of residence, outstanding loans, strength of the household, etc. and his past migration history. We perform a comparative analysis of the performance of a number of machine learning algorithm to determine their prediction accuracy. Our results show that machine learning algorithms provide a stronger prediction accuracy as compared to statistical models. Our goal through this research is to propose the use of data science techniques in understanding human decisions and behaviour in developing countries.Keywords: development, migration, internal migration, machine learning, prediction
Procedia PDF Downloads 2723784 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 129