Search results for: external pressure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5944

Search results for: external pressure

2884 Cavitating Jet Design for Enhanced Drilling Performance

Authors: Abdullah Ababtain, Mouhammad El Hassan, Hassan Assoum, Anas Sakout

Abstract:

In this paper, a brief literature review on cavitation jets is presented in order to introduce the cavitation mechanism, strategies to assess when cavitation occurs, and the factors that influence cavitation in cavitating jets. The objectivity of the cavitation number often used to predict cavitation is also discussed. The results show that cavitation cannot be foreseen just using the cavitation number. Therefore, more efforts are needed to innovate and develop a self-resonating jet geometry that would be maintains the flow and the pressure in the cavitation condition just earlier than the flow acts on the target that would be used in such operating conditions. This study focused on a particular aspect related to improving drilling efficiency and the rate of penetration (ROP). In addition, a discussion on the methods used to measure cavitation and the factors that affect cavitation occurrence will be discussed. Two different types of cavitation nozzles were designed and tested. It has been shown that the self-resonating cavitation nozzle presents greater performance than standard non-resonating nozzle. It is thus concluded that a self-resonating cavitation jet present a high potential for improving drilling performance.

Keywords: cavitating jet, erosion, cavitation number, rate of penetration (ROP)

Procedia PDF Downloads 176
2883 Polyethylenimine-Ethoxylated Dual Interfacial Layers for High-Efficient Quantum Dot Light-Emitting Diodes

Authors: Woosuk Lee

Abstract:

We controlled the electron injection rate in inverted quantum dot light-emitting diode (QLED) by inserting PEIE layer between ZnO electron transport layer(ETL) and quantum dots(QDs) layer and successfully demonstrated high efficiency of QLEDs. The inverted QLED has the layer structure of ITO(cathode)/ ZnO NPs/PEIE/QDs/PEIE/P-TPD/MoO3/Al(anode). The PEIE between poly-TPD hole transport layer (HTL) and quantum dot emitting layer protects QD EML during HTL coating process and improves the surface morphology. In addition, the hole injection barrier is reduced by upshifting the valence band maximum (VBM) of QDs. An additional layer of PEIE was introduced between ZnO and QD to balance charge within QD emissive layer in device, which serves as an effective electron blocking layer without changing device operating condition such as turn-on voltage and emissive spectra. As a result, the optimized QLED with 5nm PEIE shows a ~36% improved current efficiency and external quantum efficiency (EQE) compared to the QLED without PEIE.(maximum current efficiency, and EQE are achieved 70cd/A and 17.3%, respectively). In particular, the maximum brightness of the optimized QLED dramatically improved by a factor of 2.3 relative to the QLED without PEIE. The main reasons for these QLED performance improvement are due to the suppressing the leakage current across the device and well confined exciton by inserting PEIE layers.

Keywords: quantum dot light-emitting diodes, interfacial layer, charge-injection balance, suppressing QD charging

Procedia PDF Downloads 165
2882 Identifying the Mindset of Deaf Benildean Students in Learning Anatomy and Physiology

Authors: Joanne Rieta Miranda

Abstract:

Learning anatomy and physiology among Deaf Non-Science major students is a challenge. They have this mindset that Anatomy and Physiology are difficult and very technical. In this study, nine (9) deaf students who are business majors were considered. Non-conventional teaching strategies and classroom activities were employed such as cooperative learning, virtual lab, Facebook live, big sky, blood typing, mind mapping, reflections, etc. Of all the activities; the deaf students ranked cooperative learning as the best learning activity. This is where they played doctors. They measured the pulse rate, heart rate and blood pressure of their partner classmate. In terms of mindset, 2 out of 9 students have a growth mindset with some fixed ideas while 7 have a fixed mindset with some growth ideas. All the students passed the course. Three out of nine students got a grade of 90% and above. The teacher was evaluated by the deaf students as very satisfactory with a mean score of 3.54. This means that the learner-centered practices in the classroom are manifested to a great extent.

Keywords: deaf students, learning anatomy and physiology, teaching strategies, learner-entered practices

Procedia PDF Downloads 212
2881 Globalization as Instrument for Multi-National Corporation in Transforming Asian’s Perspective towards Clean Water Consumption

Authors: Atanta Gian

Abstract:

It is inevitable that globalization has succeeded in transforming the world today. The influence of globalization has emerged in almost every aspect of life nowadays, especially in shaping the perception of the people. It can be seen on how easy for people are affected by the information surrounding them. Due to globalization, the flow of information has become more rapid along with the development of technology. People tend to believe in information that they actually get by themselves, if there is information where most of the people believe it is true, then this information could be categorized as factual and relevant. Therefore if people gain information on what is best for them in terms of daily consumption, then this information could transform their perspective, and it becomes a consideration in selecting their needs for daily consumption. By looking at this trend, the author sees that globalization could be used by Multi-National Corporation (MNC) to enhance the promotion of their products. This is applied by shaping the perspectives of the world regarding what is the best for them. Multi-National Corporation which has better technology in terms of the development of their external promotion could utilize this opportunity to affect people’s perspectives into what they want. In this paper, the author would like to elaborate how globalization is applied by MNC to shape people’s perspective regarding what is the best for them. The author would utilize a case study to analyze on how MNC could transform the perspectives of Asian people regarding the necessary of having a better quality drinking water, which in this case, MNC has shaped the perspective of Asian people in choosing their product by promoting the bottled water as the best choice for them. In the end of this paper, author would come to a conclusion that MNCs are able to shape the world’s perspective regarding the needs of their products which is supported by the globalization that is happening now.

Keywords: consumption, globalisation, influence, information technology, multi-national corporations

Procedia PDF Downloads 199
2880 Multi-Objective Exergy Optimization of an Organic Rankine Cycle with Cyclohexane as Working Fluid

Authors: Touil Djamal, Fergani Zineb

Abstract:

In this study, an Organic Rankine Cycle (ORC) with Cyclohexane working fluid is proposed for cogeneration in the cement industry. In this regard: first, a parametric study is conducted to evaluate the effects of some key parameters on the system performances. Next, single and multi-objective optimizations are performed to achieve the system optimal design. The optimization considers the exergy efficiency, the cost per exergy unit and the environmental impact of the net produced power as objective functions. Finally, exergy, exergoeconomic and exergoenvironmental analysis of the cycle is carried out at the optimum operating conditions. The results show that the turbine inlet pressure, the pinch point temperature difference and the heat transfer fluid temperature have significant effects on the performances of the ORC system.

Keywords: organic rankine cycle, multi-objective optimization, exergy, exergoeconomic, exergoenvironmental, multi-objective optimisation, organic rankine cycle, cement plant

Procedia PDF Downloads 264
2879 Policy Imperatives for Privatisation of Higher Education in India

Authors: Roli Pradhan

Abstract:

All over the globe, the resources of the government are declining, and the funding requirements in education are on a constant rise. The governments are desperately increasing the budgetary allocation for higher education, the economic plans have been labeling investment in higher education to be immensely vital for development of the nation. Still the fact is that the government of the developing nations like India lacks the potential to fund the rising demands of this sector. In the face of declining government funding for higher education, there are the growing needs and justifiable pressure for direct beneficiaries to bear a reasonable part of the cost of higher education. The supply-demand gap in higher education in India is on the increase. This paper evaluates the Indian National Education Policy over the past three decades, furnishes the need of financing of education by private players. The paper also covers the aspects of incorporating the different forms of financing in education and also focuses on the regulations pertaining to quality maintenance in the education system. The paper also targets to suggest policy imperatives for the future education policy for India.

Keywords: national education policy, privatisation, private financing, government funding

Procedia PDF Downloads 310
2878 Thermodynamically Predicting the Impact of Temperature on the Performance of Drilling Bits as a Function of Time

Authors: Talal Al-Bazali

Abstract:

Air drilling has recently received increasing acceptance by the oil and gas industry due to its unique advantages. The main advantages of air drilling include the higher rate of penetration, less formation damage, lower risk of loss of circulation. However, these advantages cannot be fully realized if thermal effects in air drilling are not well understood and minimized. Due to its high frictional coefficient, low heat conductivity, and high compressibility, air can impact the temperature distribution of bit and thus affect its bit performances. Based on energy and mass balances, a transient thermal model that predicts bit temperature is presented along with numerical solutions in this paper. In addition, several important parameters that influence bit temperature distribution are analyzed. Simulation results show that the bit temperature increases with increasing weight on bit and rotary speed but decreases as the standpipe pressure and flow rate increase. These results can be used to optimize drilling operations and flow parameters for an improved bit performance as shown in this paper.

Keywords: air drilling, rate of penetration, temperature, rotary speed

Procedia PDF Downloads 271
2877 Topical Delivery of Griseofulvin via Lipid Nanoparticles

Authors: Yann Jean Tan, Hui Meng Er, Choy Sin Lee, Shew Fung Wong, Wen Huei Lim

Abstract:

Griseofulvin is a long standing fungistatic agent against dermatophytosis. Nevertheless, it has several drawbacks such as poor and highly variable bio availability, long duration of treatment, systemic side effects and drug interactions. Targeted treatment for the superficial skin infection, dermatophytosis via topical route could be beneficial. Nevertheless, griseofulvin is only available in the form of oral preparation. Hence, it generates interest in developing a topical formulation for griseofulvin, by using lipid nano particle as the vehicle. Lipid nanoparticle is a submicron colloidal carrier with a core that is solid in nature (lipid). It has combined advantages of various traditional carriers and is a promising vehicle for topical delivery. The griseofulvin loaded lipid nano particles produced using high pressure homogenization method were characterized and investigated for its skin targeting effect in vitro. It has a mean particle size of 179.8±4.9 nm with polydispersity index of 0.306±0.011. Besides, it showed higher skin permeation and better skin targeting effect compared to the griseofulvin suspension.

Keywords: lipid nanoparticles, griseofulvin, topical, dermatophytosis

Procedia PDF Downloads 439
2876 Comparative Syudy Of Heat Transfer Capacity Limits of Heat Pipe

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also observed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 356
2875 Heat Pipe Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is a simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of the heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force, the liquid phase flows to evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 480
2874 Heat Pipes Thermal Performance Improvement in H-VAC Systems Using CFD Modeling

Authors: M. Heydari, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 431
2873 Assessment of the Indices in Converting Affect Rural to Urban Settlements Case Study: Torqabe and Shandiz Rural Districts in Iran

Authors: Fahimeh Khatami, Elham Sanagar Darbani, Behnosh Khir Khah, R.Khatami

Abstract:

Rural and ruralism is one of the residential forms that form in special natural areas, and the Interaction between their internal and external forces cause developments and changes that are different in time and space. Over time, historical developments, social and economic changes in the political system cause developments and rapid growth of the rural to urban settlements. However, criteria for recognizing rural settlements to the city are different in every land. One of the problems in modern plan is inattention to indicators and criteria of changing these settlements to the city. The method of this research is a type of applied and compilation research and library and field methods are used in it. And also qualitative and quantitative indicators have been provided while collecting documents and studies from rural districts like Dehnow, Virani, Abardeh, Zoshk, Nowchah, Jaqarq in tourism area of Mashhad. In this research, the used tool is questionnaire and for analyzing quantitative variables by Morris and Mac Granahan examination, the importance of each factor and the development settlements are evaluated, and the rural that can convert to the city was defined. In result, according to Askalvgram curve obtained from analysis, it was found that among the mentioned villages, Virani and Nowchah rural districts have this ability to convert to the city; Zoshk rural district will be converting to the city in future and Dehnow, Abardeh and Jaqarq rural districts won’t be converting.

Keywords: rural settlements, city, indicators, Torqabe and Shandiz rural districts

Procedia PDF Downloads 256
2872 Numerical Design and Characterization of SiC Single Crystals Obtained with PVT Method

Authors: T. Wejrzanowski, M. Grybczuk, E. Tymicki, K. J. Kurzydlowski

Abstract:

In the present study, numerical simulations of heat and mass transfer in Physical Vapor Transport reactor during silicon carbide single crystal growth are addressed. Silicon carbide is a wide bandgap material with unique properties making it highly applicable for high power electronics applications. Because of high manufacturing costs improvements of SiC production process are required. In this study, numerical simulations were used as a tool of process optimization. Computer modeling allows for cost and time effective analysis of processes occurring during SiC single crystal growth and provides essential information needed for improvement of the process. Quantitative relationship between process conditions, such as temperature or pressure, and crystal growth rate and shape of crystallization front have been studied and verified using experimental data. Basing on modeling results, several process improvements were proposed and implemented.

Keywords: Finite Volume Method, semiconductors, Physica Vapor Transport, silicon carbide

Procedia PDF Downloads 482
2871 Effects of Heat Treatment on the Elastic Constants of Cedar Wood

Authors: Tugba Yilmaz Aydin, Ergun Guntekin, Murat Aydin

Abstract:

Effects of heat treatment on the elastic constants of cedar wood (Cedrus libani) were investigated. Specimens were exposed to heat under atmospheric pressure at four different temperatures (120, 150, 180, 210 °C) and three different time levels (2, 5, 8 hours). Three Young’s modulus (EL, ER, ET) and six Poisson ratios (μLR, μLT, μRL, μRT, μTL, μTR) were determined from compression test using bi-axial extensometer at constant moisture content (12 %). Three shear modulus were determined using ultrasound. Six shear wave velocities propagating along the principal axes of anisotropy were measured using EPOCH 650 ultrasonic flaw detector with 1 MHz transverse transducers. The properties of the samples tested were significantly affected by heat treatment by different degree. As a result, softer treatments yielded some amount of increase in Young modulus and shear modulus values, but increase of time and temperature resulted in significant decrease for both values. Poisson ratios seemed insensitive to heat treatment.

Keywords: cedar wood, elastic constants, heat treatment, ultrasound

Procedia PDF Downloads 371
2870 Post-Conflict; The Shift of Social Values of Women in Aceh Indonesia Islamic Law

Authors: Khairul Hasni

Abstract:

A Memorandum of Understanding (MoU) for the cessation of hostilities was signed by Aceh's longstanding adversaries (the Government of Indonesia and the Free Aceh Movement (GAM) in August 2005. The Government of Indonesia has given the autonomy to Aceh Province of Indonesia, the Law Number 11 of 2006 the authority of the Aceh government to the implementation of the Islamic Sharia. The implementation of Islamic Sharia, Aceh can be a role model of Islam that glorifies women, the implementation of Islamic law in Aceh when enacted and got legality because it supported the socio-cultural and historical community. The value of the value of women's lives is shifted under the pressure of applying Islamic law, with this argument, the importance of justice and equality of policy enforcement in women's lives. Based on interviews conducted in 2016 and 2017 with women's activists, government officials, women non-governmental organizations in Aceh, this paper finds that there is lack of gender balance because of the many problems involving women in the enactment of regional regulations and control policies on women's bodies. The research points to ensure the implementation of Islamic Sharia practitioners have only directed to women and discrimination against women.

Keywords: women, policy, Islamic law, social

Procedia PDF Downloads 280
2869 Heat Pipe Production and Life Performance Tests in Geosynchronous Telecom Satellites

Authors: Erkam Arslantas

Abstract:

Heat pipes one of the thermal control elements are used in communication satellites. A selection of the heat pipes of satellite thermal design will be emphasized how important and effective it is. In this article, manufacturing and performance control tests of heat pipes are reviewed from the current literature. The heat pipe is expected to function efficiently during all missions of the spacecraft from Beginning of Life (BOL) to End of Life (EOL). There are many parameters that are evaluated in manufacturing and performance control tests of the heat pipes which are used in satellites. These parameters are pressure design, leakage, noncondensable gas level (N.C.G), sine vibration, shock and static load capabilities, aging, bending, proof, final test etc. These parameters will be explained separately for the heat pipes in this review article and young researches working on the thermal control system of Geosynchronous Satellites systems can find easily related information in this article.

Keywords: communication satellite, heat pipe, performance test, thermal control

Procedia PDF Downloads 148
2868 The Way of Life of the Civil Servant Community under the Bureau of the Royal Household: A Case Study of Tha Wasukri, Bangkok

Authors: Vilasinee Jintalikhitdee, Saowapa Phaithayawat

Abstract:

The research on “The Way of Life of the Civil Servant Community under the Bureau of the Royal Household” aims to study 1) the way of life of the people who live in the civil servant community in Tha Wasukri, and 2) the model of community administration of civil servants under the Bureau of the Royal Household. This research is conducted qualitatively and quantitatively by collecting data from interviews, focus group discussion, participant and non-participant observation along with the data from the questionnaire based on age groups which include elder group, working age group and youth group. The result of the research shows that the origin of this community is related to the history during the Rama V’s reign. It has been a harbor for the king to boat in any royal ceremonies; this custom is still maintained until today. The status or position of person who serves the king in terms of working is often inherited from the bureau of the Royal Household based on his/her consanguinity and, hence, further receives the rights to live in the Tha Wasukri area. Therefore, this community has some special characteristics demonstrating the way of living influenced by the regulation of the Bureau of the Royal Household such as respecting elders and interdependence in which there is internal social organization with the practice of bureaucracy in going in and out the community. The person who has rights to live here must be friendly to everybody so that this community will be a safe place for lives and property. The administration based on the model of Bangkok for local administration was used as an external structure only, but the way of living still follows the practice of the Bureau of the Royal Household.

Keywords: way of life, community, Tha Wasukri, Bureau of the Royal Household

Procedia PDF Downloads 449
2867 Appraisal of Transaction Cost in South African Construction Projects

Authors: Kenneth O. Otasowie, Matthew Ikuabe, Clinton Aigbavboa, Ayodeji Oke

Abstract:

Construction project cost are not only made up of production costs. This cost comprises of many other elements such as the preparation of a bidding document, cost estimations, drafting contractual agreements and monitoring that contractual obligations are met. Several studies have stressed the need for transaction costs (TC) to be defined in a way that covers all phases of a project and not only the pre-contract phase. Hence, this study aims to appraise transaction cost in South African (SA) construction projects by assessing what constitutes transaction cost, influencing factors and possible optimisation measures. A survey design was adopted. A total number of eighty (80) questionnaires were administered to quantity surveyors, procurement managers and project managers in Guateng Province, SA and seventy-two (72) were returned and found suitable for analysis. Collected data was analysed using percentage, mean item score, standard deviation, one-sample t-test. The findings show that external technical interaction, uncertainty, human factors are the most significant constituents of TC in SA, while technical competency, experience in similar project type and project characteristics are the leading influencing factors. Furthermore, understanding project characteristics, clear communication and technically competent project teams are most of the significant measures for optimising TC in SA construction projects. Therefore, this study recommends that a competent project team and a clear communication are fundamental to proper management of TC in SA construction projects.

Keywords: construction projects, project cost, South Africa, transaction cost

Procedia PDF Downloads 85
2866 Effects of Biocompatible Substrates on the Electrical Properties of Graphene

Authors: M. Simchi, M. Amiri, E. Rezvani, I. Mirzaei, M. Berahman, A. Simchi, M. Fardmanesh

Abstract:

Graphene is a single-atomic two-dimensional crystal of carbon atoms that has considerable properties due to its unique structure and physics with applications in different fields. Graphene has sensitive electrical properties due to its atomic-thin structure. Along with the substrate materials and their influence on the transport properties in graphene, design and fabrication of graphene-based devices for biomedical and biosensor applications are challenging. In this work, large-area high-quality graphene nanosheets were prepared by low pressure chemical vapor deposition using methane gas as carbon source on copper foil and transferred on the biocompatible substrates. Through deposition of titanium and gold contacts, current-voltage response of the transferred graphene on four biocompatible substrates, including PDMS, SU-8, Nitrocellulose, and Kapton (Fig. 2) were experimentally determined. The considerable effect of the substrate type on the electrical properties of graphene is shown. The sheet resistance of graphene is changed from 0.34 to 14.5 kΩ/sq, depending on the substrate.

Keywords: biocompatible substrates, electrical properties, graphene, sheet resistance

Procedia PDF Downloads 122
2865 Reducing Component Stress during Encapsulation of Electronics: A Simulative Examination of Thermoplastic Foam Injection Molding

Authors: Constantin Ott, Dietmar Drummer

Abstract:

The direct encapsulation of electronic components is an effective way of protecting components against external influences. In addition to achieving a sufficient protective effect, there are two other big challenges for satisfying the increasing demand for encapsulated circuit boards. The encapsulation process should be both suitable for mass production and offer a low component load. Injection molding is a method with good suitability for large series production but also with typically high component stress. In this article, two aims were pursued: first, the development of a calculation model that allows an estimation of the occurring forces based on process variables and material parameters. Second, the evaluation of a new approach for stress reduction by means of thermoplastic foam injection molding. For this purpose, simulation-based process data was generated with the Moldflow simulation tool. Based on this, component stresses were calculated with the calculation model. At the same time, this paper provided a model for estimating the forces occurring during overmolding and derived a solution method for reducing these forces. The suitability of this approach was clearly demonstrated and a significant reduction in shear forces during overmolding was achieved. It was possible to demonstrate a process development that makes it possible to meet the two main requirements of direct encapsulation in addition to a high protective effect.

Keywords: encapsulation, stress reduction, foam-injection-molding, simulation

Procedia PDF Downloads 113
2864 Extractive Desulfurization of Atmospheric Gasoil with N,N-Dimethylformamide

Authors: Kahina Bedda, Boudjema Hamada

Abstract:

Environmental regulations have been introduced in many countries around the world to reduce the sulfur content of diesel fuel to ultra low levels with the intention of lowering diesel engine’s harmful exhaust emissions and improving air quality. Removal of sulfur containing compounds from diesel feedstocks to produce ultra low sulfur diesel fuel by extraction with selective solvents has received increasing attention in recent years. This is because the sulfur extraction technologies compared to the hydrotreating processes could reduce the cost of desulfurization substantially since they do not demand hydrogen, and are carried out at atmospheric pressure. In this work, the desulfurization of distillate gasoil by liquid-liquid extraction with N, N-dimethylformamide was investigated. This fraction was recovered from a mixture of Hassi Messaoud crude oils and Hassi R'Mel gas-condensate in Algiers refinery. The sulfur content of this cut is 281 ppm. Experiments were performed in six-stage with a ratio of solvent:feed equal to 3:1. The effect of the extraction temperature was investigated in the interval 30 ÷ 110°C. At 110°C the yield of refined gas oil was 82% and its sulfur content was 69 ppm.

Keywords: desulfurization, gasoil, N, N-dimethylformamide, sulfur content

Procedia PDF Downloads 366
2863 Numerical Investigation of Oxy-Fuel Combustion in Gasoline Engine for Carbon Capture and Storage

Authors: Zhijun Peng, Xiang Li, Dayou Li, Raouf Mobasheri, Abdel Aitouche

Abstract:

To implement carbon capture and storage (CCS) for eliminating carbon dioxide (CO₂) emissions, this paper describes a study on oxy-fuel combustion (OFC) with an ethanol-gasoline dual-fuel spark ignition (DFSI) engine under economical oxygen consumption at low and mid-high loads which was performed by 1D simulation. It is demonstrated that under OFC mode without other optimisation, brake mean effective pressure (BMEP) can meet the requirement at mid-high load, but it has a considerable decline at low load compared to conventional air combustion (CAC) mode. Moreover, there is a considerable deterioration in brake specific fuel consumption (BSFC) compared to that of CAC mode. A practical method is proposed to optimise the DFSI engine performance under OFC mode by changing intake charge components and utilising appropriate water injection (WI) strategies.

Keywords: oxy-fuel combustion, dual-fuel spark ignition engine, ethanol, gasoline, computer simulation

Procedia PDF Downloads 76
2862 Hydrogen Permeability of BSCY Proton-Conducting Perovskite Membrane

Authors: M. Heidari, A. Safekordi, A. Zamaniyan, E. Ganji Babakhani, M. Amanipour

Abstract:

Perovskite-type membrane Ba0.5Sr0.5Ce0.9Y0.1O3-δ (BSCY) was successfully synthesized by liquid citrate method. The hydrogen permeation and stability of BSCY perovskite-type membranes were studied at high temperatures. The phase structure of the powder was characterized by X-ray diffraction (XRD). Scanning electron microscopy (SEM) was used to characterize microstructures of the membrane sintered under various conditions. SEM results showed that increasing in sintering temperature, formed dense membrane with clear grains. XRD results for BSCY membrane that sintered in 1150 °C indicated single phase perovskite structure with orthorhombic configuration, and SEM results showed dense structure with clear grain size which is suitable for permeation tests. Partial substitution of Sr with Ba in SCY structure improved the hydrogen permeation flux through the membrane due to the larger ionic radius of Ba2+. BSCY membrane shows high hydrogen permeation flux of 1.6 ml/min.cm2 at 900 °C and partial pressure of 0.6.

Keywords: hydrogen separation, perovskite, proton conducting membrane.

Procedia PDF Downloads 324
2861 Effect of CuO, Al₂O₃ and ZnO Nanoparticles on the Response Time for Natural Convection

Authors: Mefteh Bouhalleb

Abstract:

With the recent progress in nanotechnology, nanofluids have excellent potentiality in many modern engineering processes, particularly for solar systems such as concentrated solar power plants (CSP). In this context, a numerical simulation is performed to investigate laminar natural convection nanofluids in an inclined rectangular enclosure. Mass conservation, momentum, and energy equations are numerically solved by the finite volume element method using the SIMPLER algorithm for pressure-velocity coupling. In this work, we tested the acting factors on the system response time, such as the particle volume fraction of nanoparticles, particle material, particle size, an inclination angle of enclosure and Rayleigh number. The results show that the diameter of solid particles and Rayleigh number plays an important role in the system response time. The orientation angle of the cavity affects the system response time. A phenomenon of hysteresis appears when the system does not return to its initial state.

Keywords: nanofluid, nanoparticles, heat transfer, time response

Procedia PDF Downloads 82
2860 Improve Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

A heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At a hot surface of the heat pipe, the liquid phase absorbs heat and changes to the vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to the liquid phase. Due to gravitational force the liquid phase flows to the evaporator section. In HVAC systems, the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses the heater, humidifier, or dryer is a suitable nominate for the utilization of heat pipes. Generally, heat pipes have three main sections: condenser, adiabatic region, and evaporator. Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In the present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of the heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian-Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances its heat transfer capacity.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 421
2859 Employee Engagement: Tool for Success of Higher Education in Thailand

Authors: Pooree Sakot, Marndarath Suksanga

Abstract:

Organizations are under increasing pressure to improve performance and maximize the contribution of every employee. Employee engagement has become an attractive business proposition. The triple bottom line consists of three Ps: profit, people and planet. It aims to measure the financial, social and environmental performance of the corporation over a period of time. People are the most important asset of every organization. Most of the studies suggest that employee engagement improves the bottom line in almost every instance and it is well worth all organizational efforts to actively engage employees. Engaged employees have an impact on productivity and financial performance. Efficient leadership and effective management can take place if emerging paradigm like employee engagement is appropriately understood and put into practice. Employee engagement starts at the first step i.e. recruitment of an employee to the last step i.e. retirement .The HR Practices of an organization play the most major role in helping the employees walk the extra mile. Effective employee engagement is the key component for improved organizational performance.

Keywords: employee engagement, higher education, tool, success

Procedia PDF Downloads 315
2858 A Fully Coupled Thermo-Hydraulic Mechanical Elastoplastic Damage Constitutive Model for Porous Fractured Medium during CO₂ Injection

Authors: Nikolaos Reppas, Yilin Gui

Abstract:

A dual-porosity finite element-code will be presented for the stability analysis of the wellbore during CO₂ injection. An elastoplastic damage response will be considered to the model. The Finite Element Method (FEM) will be validated using experimental results from literature or from experiments that are planned to be undertaken at Newcastle University. The main target of the research paper is to present a constitutive model that can help industries to safely store CO₂ in geological rock formations and forecast any changes on the surrounding rock of the wellbore. The fully coupled elastoplastic damage Thermo-Hydraulic-Mechanical (THM) model will determine the pressure and temperature of the injected CO₂ as well as the size of the radius of the wellbore that can make the Carbon Capture and Storage (CCS) procedure more efficient.

Keywords: carbon capture and storage, Wellbore stability, elastoplastic damage response for rock, constitutive THM model, fully coupled thermo-hydraulic-mechanical model

Procedia PDF Downloads 160
2857 Evaluation of Nanoparticle Application to Control Formation Damage in Porous Media: Laboratory and Mathematical Modelling

Authors: Gabriel Malgaresi, Sara Borazjani, Hadi Madani, Pavel Bedrikovetsky

Abstract:

Suspension-Colloidal flow in porous media occurs in numerous engineering fields, such as industrial water treatment, the disposal of industrial wastes into aquifers with the propagation of contaminants and low salinity water injection into petroleum reservoirs. The main effects are particle mobilization and captured by the porous rock, which can cause pore plugging and permeability reduction which is known as formation damage. Various factors such as fluid salinity, pH, temperature, and rock properties affect particle detachment. Formation damage is unfavorable specifically near injection and production wells. One way to control formation damage is pre-treatment of the rock with nanoparticles. Adsorption of nanoparticles on fines and rock surfaces alters zeta-potential of the surfaces and enhances the attachment force between the rock and fine particles. The main objective of this study is to develop a two-stage mathematical model for (1) flow and adsorption of nanoparticles on the rock in the pre-treatment stage and (2) fines migration and permeability reduction during the water production after the pre-treatment. The model accounts for adsorption and desorption of nanoparticles, fines migration, and kinetics of particle capture. The system of equations allows for the exact solution. The non-self-similar wave-interaction problem was solved by the Method of Characteristics. The analytical model is new in two ways: First, it accounts for the specific boundary and initial condition describing the injection of nanoparticle and production from the pre-treated porous media; second, it contains the effect of nanoparticle sorption hysteresis. The derived analytical model contains explicit formulae for the concentration fronts along with pressure drop. The solution is used to determine the optimal injection concentration of nanoparticle to avoid formation damage. The mathematical model was validated via an innovative laboratory program. The laboratory study includes two sets of core-flood experiments: (1) production of water without nanoparticle pre-treatment; (2) pre-treatment of a similar core with nanoparticles followed by water production. Positively-charged Alumina nanoparticles with the average particle size of 100 nm were used for the rock pre-treatment. The core was saturated with the nanoparticles and then flushed with low salinity water; pressure drop across the core and the outlet fine concentration was monitored and used for model validation. The results of the analytical modeling showed a significant reduction in the fine outlet concentration and formation damage. This observation was in great agreement with the results of core-flood data. The exact solution accurately describes fines particle breakthroughs and evaluates the positive effect of nanoparticles in formation damage. We show that the adsorbed concentration of nanoparticle highly affects the permeability of the porous media. For the laboratory case presented, the reduction of permeability after 1 PVI production in the pre-treated scenario is 50% lower than the reference case. The main outcome of this study is to provide a validated mathematical model to evaluate the effect of nanoparticles on formation damage.

Keywords: nano-particles, formation damage, permeability, fines migration

Procedia PDF Downloads 602
2856 Study of ANFIS and ARIMA Model for Weather Forecasting

Authors: Bandreddy Anand Babu, Srinivasa Rao Mandadi, C. Pradeep Reddy, N. Ramesh Babu

Abstract:

In this paper quickly illustrate the correlation investigation of Auto-Regressive Integrated Moving and Average (ARIMA) and daptive Network Based Fuzzy Inference System (ANFIS) models done by climate estimating. The climate determining is taken from University of Waterloo. The information is taken as Relative Humidity, Ambient Air Temperature, Barometric Pressure and Wind Direction utilized within this paper. The paper is carried out by analyzing the exhibitions are seen by demonstrating of ARIMA and ANIFIS model like with Sum of average of errors. Versatile Network Based Fuzzy Inference System (ANFIS) demonstrating is carried out by Mat lab programming and Auto-Regressive Integrated Moving and Average (ARIMA) displaying is produced by utilizing XLSTAT programming. ANFIS is carried out in Fuzzy Logic Toolbox in Mat Lab programming.

Keywords: ARIMA, ANFIS, fuzzy surmising tool stash, weather forecasting, MATLAB

Procedia PDF Downloads 402
2855 Unsteady Numerical Analysis of Sediment Erosion Affected High Head Francis Turbine

Authors: Saroj Gautam, Ram Lama, Hari Prasad Neopane, Sailesh Chitrakar, Biraj Singh Thapa, Baoshan Zhu

Abstract:

Sediment flowing along with the water in rivers flowing in South Asia erodes the turbine components. The erosion of turbine components is influenced by the nature of fluid flow along with components of typical turbine types. This paper examines two cases of high head Francis turbines with the same speed number numerically. The numerical investigation involves both steady-state and transient analysis of the numerical model developed for both cases. Furthermore, the influence of leakage flow from the clearance gap of guide vanes is also examined and compared with no leakage flow. It presents the added pressure pulsation to rotor-stator-interaction in the turbine runner for both cases due to leakage flow. It was also found that leakage flow was a major contributor to the sediment erosion in those turbines.

Keywords: sediment erosion, Francis turbine, leakage flow, rotor stator interaction

Procedia PDF Downloads 167