Search results for: multifunctional structures
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4325

Search results for: multifunctional structures

1295 Prediction of Solanum Lycopersicum Genome Encoded microRNAs Targeting Tomato Spotted Wilt Virus

Authors: Muhammad Shahzad Iqbal, Zobia Sarwar, Salah-ud-Din

Abstract:

Tomato spotted wilt virus (TSWV) belongs to the genus Tospoviruses (family Bunyaviridae). It is one of the most devastating pathogens of tomato (Solanum Lycopersicum) and heavily damages the crop yield each year around the globe. In this study, we retrieved 329 mature miRNA sequences from two microRNA databases (miRBase and miRSoldb) and checked the putative target sites in the downloaded-genome sequence of TSWV. A consensus of three miRNA target prediction tools (RNA22, miRanda and psRNATarget) was used to screen the false-positive microRNAs targeting sites in the TSWV genome. These tools calculated different target sites by calculating minimum free energy (mfe), site-complementarity, minimum folding energy and other microRNA-mRNA binding factors. R language was used to plot the predicted target-site data. All the genes having possible target sites for different miRNAs were screened by building a consensus table. Out of these 329 mature miRNAs predicted by three algorithms, only eight miRNAs met all the criteria/threshold specifications. MC-Fold and MC-Sym were used to predict three-dimensional structures of miRNAs and further analyzed in USCF chimera to visualize the structural and conformational changes before and after microRNA-mRNA interactions. The results of the current study show that the predicted eight miRNAs could further be evaluated by in vitro experiments to develop TSWV-resistant transgenic tomato plants in the future.

Keywords: tomato spotted wild virus (TSWV), Solanum lycopersicum, plant virus, miRNAs, microRNA target prediction, mRNA

Procedia PDF Downloads 155
1294 Improving Psychological Safety in Teaching and Social Organizations in Finland

Authors: Eija Raatikainen

Abstract:

The aim of the study is to examine psychological safety in the context of change in working life and continuous learning in social- and educational organizations. The participants in the study are social workers and vocational teachers working as employees and supervisors in the capital region of Finland (public and private sectors). Research data has been collected during 2022-2023 using the qualitative method called empathy-based stories (MEBS). Research participants were asked to write short stories about situations related to their work and work community. As researchers, we created and varied the framework narratives (MEBS) in line with the aim of the study and theoretical background. The data were analyzed with content analysis. According to the results, the barriers and prerequisites for psychological safety at work could be located in four different working culture dimensions. The work culture dimensions were named as follows: 1) a work culture focusing on interaction and emotional culture between colleagues, 2) communal work culture, 3) a work culture that enables learning, and 4) a work culture focused on structures and operating models. All these have detailed elements of barriers and prerequisites of psychological safety at work. The results derived from the enlivening methods can be utilized when working with the work community and have discussed psychological safety at work. Also, the method itself (MEBS) can prevent open discussion and reflection on psychological safety at work because of the sensitivity of the topic. Method aloud to imagine, not just talk and share your experiences directly. Additionally, the results of the study can offer one tool or framework while developing phycological safety at work.

Keywords: psychological safety, empathy, empathy-based stories, working life

Procedia PDF Downloads 72
1293 Temperature-Responsive Shape Memory Polymer Filament Integrated Smart Polyester Knitted Fabric Featuring Memory Behavior

Authors: Priyanka Gupta, Bipin Kumar

Abstract:

Recent developments in smart materials motivate researchers to create novel textile products for innovative and functional applications, which have several potential uses beyond the conventional. This study investigates the memory behavior of shape memory filaments integrated into a knitted textile structure. The research advances the knowledge of how these intelligent materials respond within textile structures. This integration may also open new avenues for developing smart fabrics with unique sensing and actuation capabilities. A shape memory filament and polyester yarn were knitted to produce a shape memory knitted fabric (SMF). Thermo-mechanical tensile test was carried out to quantify the memory behavior of SMF under different conditions. The experimental findings demonstrate excellent shape recovery (100%) and shape fixity up to 88% at different strains (20% and 60%) and temperatures (30 ℃ and 50 ℃). Experimental results reveal that memory filament behaves differently in a fabric structure than in its pristine condition at various temperatures and strains. The cycle test of SMF under different thermo-mechanical conditions indicated complete shape recovery with an increase in shape fixity. So, the utterly recoverable textile structure was achieved after a few initial cycles. These intelligent textiles are beneficial for the development of novel, innovative, and functional fabrics like elegant curtains, pressure garments, compression stockings, etc. In addition to fashion and medical uses, this unique feature may also be leveraged to build textile-based sensors and actuators.

Keywords: knitting, memory filament, shape memory, smart textiles, thermo-mechanical cycle

Procedia PDF Downloads 89
1292 Effect of Alkaline Activator, Water, Superplasticiser and Slag Contents on the Compressive Strength and Workability of Slag-Fly Ash Based Geopolymer Mortar Cured under Ambient Temperature

Authors: M. Al-Majidi, A. Lampropoulos, A. Cundy

Abstract:

Geopolymer (cement-free) concrete is the most promising green alternative to ordinary Portland cement concrete and other cementitious materials. While a range of different geopolymer concretes have been produced, a common feature of these concretes is heat curing treatment which is essential in order to provide sufficient mechanical properties in the early age. However, there are several practical issues with the application of heat curing in large-scale structures. The purpose of this study is to develop cement-free concrete without heat curing treatment. Experimental investigations were carried out in two phases. In the first phase (Phase A), the optimum content of water, polycarboxylate based superplasticizer contents and potassium silicate activator in the mix was determined. In the second stage (Phase B), the effect of ground granulated blast furnace slag (GGBFS) incorporation on the compressive strength of fly ash (FA) and Slag based geopolymer mixtures was evaluated. Setting time and workability were also conducted alongside with compressive tests. The results showed that as the slag content was increased the setting time was reduced while the compressive strength was improved. The obtained compressive strength was in the range of 40-50 MPa for 50% slag replacement mixtures. Furthermore, the results indicated that increment of water and superplasticizer content resulted to retarding of the setting time and slight reduction of the compressive strength. The compressive strength of the examined mixes was considerably increased as potassium silicate content was increased.

Keywords: fly ash, geopolymer, potassium silicate, slag

Procedia PDF Downloads 223
1291 [Keynote Talk]: Applying p-Balanced Energy Technique to Solve Liouville-Type Problems in Calculus

Authors: Lina Wu, Ye Li, Jia Liu

Abstract:

We are interested in solving Liouville-type problems to explore constancy properties for maps or differential forms on Riemannian manifolds. Geometric structures on manifolds, the existence of constancy properties for maps or differential forms, and energy growth for maps or differential forms are intertwined. In this article, we concentrate on discovery of solutions to Liouville-type problems where manifolds are Euclidean spaces (i.e. flat Riemannian manifolds) and maps become real-valued functions. Liouville-type results of vanishing properties for functions are obtained. The original work in our research findings is to extend the q-energy for a function from finite in Lq space to infinite in non-Lq space by applying p-balanced technique where q = p = 2. Calculation skills such as Hölder's Inequality and Tests for Series have been used to evaluate limits and integrations for function energy. Calculation ideas and computational techniques for solving Liouville-type problems shown in this article, which are utilized in Euclidean spaces, can be universalized as a successful algorithm, which works for both maps and differential forms on Riemannian manifolds. This innovative algorithm has a far-reaching impact on research work of solving Liouville-type problems in the general settings involved with infinite energy. The p-balanced technique in this algorithm provides a clue to success on the road of q-energy extension from finite to infinite.

Keywords: differential forms, holder inequality, Liouville-type problems, p-balanced growth, p-harmonic maps, q-energy growth, tests for series

Procedia PDF Downloads 235
1290 Using Possibility Books to Develop Creativity Mindsets - a New Pedagogy for Learning Science, Math, and Engineering

Authors: Michael R. Taber, Kristin Stanec

Abstract:

This paper presents year-two of a longitudinal study on implementing Possibility Books into undergraduate courses to develop a student's creativity mindset: tolerating ambiguity, willingness to risk failure, curiosity, and openness to embrace possibility thinking through unexpected connections. Courses involved in this research span disciplines in the natural and social sciences and the humanities. Year one of the project developed indices from which baseline data could be analyzed. The two significant indices ( > 0.7) were "creativity mindset" and "intentional interactions." Preliminary qualitative and quantitative data analysis indicated that students found the new pedagogical intervention as a safe space to learn new strategies, recognize patterns, and define structures through innovative notetaking forms. Possibility Books in Natural Science courses were designed to develop students' conceptualization of science and math. Using Possibility Books in all disciplines provided a space for students to practice divergent thinking (i.e.,Possibilities), convergent thinking (i.e., forms that express meaning), and risk-taking (i.e., the vulnerability associated with expression). Qualitative coding of open responses on a post-survey revealed two major themes: 1) Possibility Books provided a mind space for learning about self, and 2) provided a calming opportunity to connect concepts. Quantitative analysis indicated significant correlations between focused headspace and notetaking (r = 0.555, p < 0.001), focused headspace, and connecting with others (r = 0.405, p < 0.001).

Keywords: pedagogy, science education, learning methods, creativity mindsets

Procedia PDF Downloads 24
1289 Analysis of Vibration of Thin-Walled Parts During Milling Made of EN AW-7075 Alloy

Authors: Jakub Czyżycki, Paweł Twardowski

Abstract:

Thin-walled components made of aluminum alloys are increasingly found in many fields of industry, and they dominate the aerospace industry. The machining of thinwalled structures encounters many difficulties related to the high susceptibility of the workpiece, which causes vibrations including the most unfavorable ones called chatter. The effect of these phenomena is the difficulty in obtaining the required geometric dimensions and surface quality. The purpose of this study is to analyze vibrations arising during machining of thin-walled workpieces made of aluminum alloy EN AW-7075. Samples representing actual thin-walled workpieces were examined in a different range of dimensions characterizing thin-walled workpieces. The tests were carried out in HSM high-speed machining (cutting speed vc = 1400 m/min) using a monolithic solid carbide endmill. Measurement of vibration was realized using a singlecomponent piezoelectric accelerometer 4508C from Brüel&Kjær which was mounted directly on the sample before machining, the measurement was made in the normal feed direction AfN. In addition, the natural frequency of the tested thin-walled components was investigated using a laser vibrometer for an broader analysis of the tested samples. The effect of vibrations on machining accuracy was presented in the form of surface images taken with an optical measuring device from Alicona. A classification of the vibrations produced during the test was carried out, and were analyzed in both the time and frequency domains. Observed significant influence of the thickness of the thin-walled component on the course of vibrations during machining.

Keywords: high-speed machining, thin-walled elements, thin-walled components, milling, vibrations

Procedia PDF Downloads 56
1288 Use of Two-Dimensional Hydraulics Modeling for Design of Erosion Remedy

Authors: Ayoub. El Bourtali, Abdessamed.Najine, Amrou Moussa. Benmoussa

Abstract:

One of the main goals of river engineering is river training, which is defined as controlling and predicting the behavior of a river. It is taking effective measurements to eliminate all related risks and thus improve the river system. In some rivers, the riverbed continues to erode and degrade; therefore, equilibrium will never be reached. Generally, river geometric characteristics and riverbed erosion analysis are some of the most complex but critical topics in river engineering and sediment hydraulics; riverbank erosion is the second answering process in hydrodynamics, which has a major impact on the ecological chain and socio-economic process. This study aims to integrate the new computer technology that can analyze erosion and hydraulic problems through computer simulation and modeling. Choosing the right model remains a difficult and sensitive job for field engineers. This paper makes use of the 5.0.4 version of the HEC-RAS model. The river section is adopted according to the gauged station and the proximity of the adjustment. In this work, we will demonstrate how 2D hydraulic modeling helped clarify the design and cover visuals to set up depth and velocities at riverbanks and throughout advanced structures. The hydrologic engineering center's-river analysis system (HEC-RAS) 2D model was used to create a hydraulic study of the erosion model. The geometric data were generated from the 12.5-meter x 12.5-meter resolution digital elevation model. In addition to showing eroded or overturned river sections, the model output also shows patterns of riverbank changes, which can help us reduce problems caused by erosion.

Keywords: 2D hydraulics model, erosion, floodplain, hydrodynamic, HEC-RAS, riverbed erosion, river morphology, resolution digital data, sediment

Procedia PDF Downloads 189
1287 Analysis of Seismic Waves Generated by Blasting Operations and their Response on Buildings

Authors: S. Ziaran, M. Musil, M. Cekan, O. Chlebo

Abstract:

The paper analyzes the response of buildings and industrially structures on seismic waves (low frequency mechanical vibration) generated by blasting operations. The principles of seismic analysis can be applied for different kinds of excitation such as: earthquakes, wind, explosions, random excitation from local transportation, periodic excitation from large rotating and/or machines with reciprocating motion, metal forming processes such as forging, shearing and stamping, chemical reactions, construction and earth moving work, and other strong deterministic and random energy sources caused by human activities. The article deals with the response of seismic, low frequency, mechanical vibrations generated by nearby blasting operations on a residential home. The goal was to determine the fundamental natural frequencies of the measured structure; therefore it is important to determine the resonant frequencies to design a suitable modal damping. The article also analyzes the package of seismic waves generated by blasting (Primary waves – P-waves and Secondary waves S-waves) and investigated the transfer regions. For the detection of seismic waves resulting from an explosion, the Fast Fourier Transform (FFT) and modal analysis, in the frequency domain, is used and the signal was acquired and analyzed also in the time domain. In the conclusions the measured results of seismic waves caused by blasting in a nearby quarry and its effect on a nearby structure (house) is analyzed. The response on the house, including the fundamental natural frequency and possible fatigue damage is also assessed.

Keywords: building structure, seismic waves, spectral analysis, structural response

Procedia PDF Downloads 400
1286 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs

Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou

Abstract:

We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.

Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties

Procedia PDF Downloads 436
1285 Devulcanization of Waste Rubber Tyre Utilizing Deep Eutectic Solvents and Ultrasonic Energy

Authors: Ricky Saputra, Rashmi Walvekar, Mohammad Khalid, Kaveh Shahbaz, Suganti Ramarad

Abstract:

This particular study of interest aims to study the effect of coupling ultrasonic treatment with eutectic solvents in devulcanization process of waste rubber tyre. Specifically, three different types of Deep Eutectic Solvents (DES) were utilized, namely ChCl:Urea (1:2), ChCl:ZnCl₂ (1:2) and ZnCl₂:urea (2:7) in which their physicochemical properties were analysed and proven to have permissible water content that is less than 3.0 wt%, degradation temperature below 200ᵒC and freezing point below 60ᵒC. The mass ratio of rubber to DES was varied from 1:20-1:40, sonicated for 1 hour at 37 kHz and heated at variable time of 5-30 min at 180ᵒC. Energy dispersive x-rays (EDX) results revealed that the first two DESs give the highest degree of sulphur removal at 74.44 and 76.69% respectively with optimum heating time at 15 minutes whereby if prolonged, reformation of crosslink network would be experienced. Such is supported by the evidence shown by both FTIR and FESEM results where di-sulfide peak reappears at 30 minutes and morphological structures from 15 to 30 minutes change from smooth with high voidage to rigid with low voidage respectively. Furthermore, TGA curve reveals similar phenomena whereby at 15 minutes thermal decomposition temperature is at the lowest due to the decrease of molecular weight as a result of sulphur removal but increases back at 30 minutes. Type of bond change was also analysed whereby it was found that only di-sulphide bond was cleaved and which indicates partial-devulcanization. Overall, the results show that DES has a great potential to be used as devulcanizing solvent.

Keywords: crosslink network, devulcanization, eutectic solvents, reformation, ultrasonic

Procedia PDF Downloads 173
1284 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 106
1283 Design and Development of Constant Stress Composite Cantilever Beam

Authors: Vinod B. Suryawanshi, Ajit D. Kelkar

Abstract:

Glass fiber reinforced composites materials, due their unique properties such as high mechanical strength to weight ratio, corrosion resistance, and impact resistance have huge potential as structural materials in automotive, construction and transportation applications. However, these properties often come at higher cost owing to complex design methods, difficult manufacturing processes and raw material cost. In this paper, a cost effective design and manufacturing approach for a composite cantilever beam structure is presented. A constant stress (variable cross section) beam concept has been used to design and optimize the shape of composite cantilever beam and thus obtain the reduction in material used. The variable cross section beam was fabricated from the glass epoxy prepregs using cost effective out of autoclave process. The drop ply technique has been successfully used to obtain the variation in the cross section along the span of the beam. In order to test the beam and validate the design, the beam was subjected to different end loads. Strain gauges were mounted along the length of the beam to obtain strains in the beam at different sections and loads. The strain values were used to calculate the flexural strength and bending stresses in the beam. The stresses obtained through strain measurements from the experiment were found to be uniform along the span of the beam, and thus validates the design. Finally, the finite element model for the constant stress beam was developed using commercial finite element simulation software. It was observed that the simulation results agreed very well with the experimental results.

Keywords: beams, composites, constant cross-section, structures

Procedia PDF Downloads 349
1282 Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions

Authors: Jose Ruiz, Jose Velasquez, Holger Lovon

Abstract:

Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings.

Keywords: fragility functions, university buildings, loss assessment, Montecarlo simulation, latin hypercube

Procedia PDF Downloads 144
1281 Benzene Sulfonamide Derivatives: Synthesis, Absorption, Distribution, Metabolism, and Excretion (ADME) Studies, Anti-proliferative Activity, and Docking Simulation with Theoretical Investigation

Authors: Asmaa M. Fahim

Abstract:

In this elucidation, we synthesized different heterocyclic compounds attached to Benzene sulfonamide moiety via (E)-N-(4-(3-(4-bromophenyl)acryloyl)phenyl)-4-methyl benzene sulfonamide which is obtained from Nucleophilic substitution reaction between 4-methylbenzene sulfonyl chloride and 1-(4-aminophenyl)ethan-1-one in pyridine to get N-(4-acetyl phenyl)-4-methyl benzenesulfonamide which reacted 4-bromobenzal dehyde undergoes aldol condensation in NaOH to afford the corresponding chalchone 4. Moreover, the reactivity of chalchone 4 showed several active methylene derivatives utilized the pressurized microwave irradiation as a green energy resource. Chalcone 4 was allowed to react with ethyl cyanoacetate and acetylacetone, respectively, at 70 °C with pressure under microwave reaction condition to afford the 5-cyano-6-oxo-1,2,5,6-tetrahydropyridin-2-yl)-4-methylbenzenesulfonamide 6 and N-(4'-acetyl-4''-bromo-5'-oxo-2',3',4',5'-tetrahydro-[1,1':3',1''-terphenyl]-4-yl)-4-methylbenzenesulfonamide 8 derivatives. Moreover, the reactivity of this sulphonamide chalchone with NH2NH2 in EtOH and acetic acid, which gave 2,5-dihydro-1H-imidazol-4-yl)-4-methyl benzenesulfonamide, 1H-pyrazol-3-yl)-4-methyl and reactivity with NH2OH.HCl gave isoxazol-3-yl)-4-methylbenzenesulfonamide derivatives. The synthesized compounds were screened for their ADME properties and directed to antitumor activity on HepG2 hepatocellular carcinoma and MCF-7 breast cancer and exhibited excellent behavior against standard drugs; these results were confirmed through molecular simulations with different proteins. Additionally, the Density Functional Theory analysis of optimized structures investigated their physical descriptors, FMO, ESP and MEP, which correlated with biological evaluation.

Keywords: synthesis, green chemistry, antitumor activity, DFT study

Procedia PDF Downloads 82
1280 Beyond Juridical Approaches: The Role of Sociological Approach in Promoting Human Rights of Migrants

Authors: Ali Aghahosseini Dehaghani

Abstract:

Every year in this globalized world, thousands of migrants leave their countries hoping to find a better situation of life in other parts of the world. In this regard, many questions, from a human rights point of view, have been raised about how this phenomenon should be managed in the host countries. Although legal approaches such as legislation and litigation are inevitable in the way to respect the human rights of migrants, there is an increasing consensus about the fact that a strict juridical approach is inadequate to protect as well as to prevent violations of migrants’ rights. Indeed, given the multiplicity of factors that affect and shape the application of these rights and considering the fact that law is a social phenomenon, what is needed is an interdisciplinary approach, which combines both juridical approaches and perspectives from other disciplines. In this respect, a sociological approach is important because it shows the social processes through which human rights of migrants have been constructed or violated in particular social situations. Sociologists who study international migration ask the questions such as how many people migrate, who migrates, why people migrate, what happens to them once they arrive in the host country, how migration affects sending and receiving communities, the extent to which migrants help the economy, the effects of migration on crimes, and how migrants change the local communities. This paper is an attempt to show how sociology can promote human rights of migrants. To this end, the article first explores the usefulness and value of an interdisciplinary approach to realize how and to what extent sociology may improve and promote the human rights of migrants in the destination country. It then examines mechanisms which help to reach to a systematic integration of law and sociological discipline to advance migrants’ rights as well as to encourage legal scholars to consider the implications of societal structures in their works.

Keywords: human rights, migrants, sociological approach, interdisciplinary study

Procedia PDF Downloads 454
1279 Evaluation of Limestone as Self-Curing Aggregate for Concretes in the Southeast of Yucatan Peninsula

Authors: D. G. Rejon-Parra, B. Escobar-Morales, Romeli Barbosa, J. C. Cruz

Abstract:

In the southeast of Yucatan Peninsula, sedimentary limestone has different degrees of compaction. Due to its recent geological formation (Quaternary) and weathering effects causing an affordable aggregate for local manufacturers of concrete. It is characterized as lightweight aggregates (average density of 2,50), susceptible to abrasion and varying porosities (water content exceeding 7,50 % of its mass, in saturated condition). In this study, local aggregates with two moisture conditions (saturated and dry), have been examined in order to compare them for optimizing the performance of concrete. It is possible that these aggregates favour a phenomenon of mass transport (self-curing by porous aggregate); influencing the water reactions to form crystalline and gel hydration products. Based on the ACI methodology, a concrete mixture of 250 kg/cm2 was designed, with portland blended cement 30R. The bond between the mortar and the coarse aggregate was characterized as physicochemical based on trials which were carefully observed during time span of 28 days. The BET technique was used to analyse the micro porosity and surface areas of contact of the different crystalline phases of the limestone. Its chemical composition and crystal structures were verified with scanning electron microscopy SEM-EDS. On the third day, the samples with saturated aggregate reached 237 kg/cm2 of resistence, nearly the design strength; while samples with dry aggregate, exceeded the design strength, with a capacity of 308 kg/cm2. Aggregates in dry conditions demand a high quantity of water in the initial mixture, causing high resistance at the early stages. In saturated conditions, the development of resistance is progressive but constant.

Keywords: concrete, internal curing, limestone aggregate, porosity

Procedia PDF Downloads 390
1278 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis

Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam

Abstract:

The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.

Keywords: hollow steel plate shear wall, time history analysis, finite element method, abaqus software

Procedia PDF Downloads 103
1277 A Diagnostic Study of Rape Culture in India

Authors: V. U. Ameera

Abstract:

Rape has become an epidemic in India. Rape becomes a repressive weapon, which used to make them silent or used sometimes as a mode of punishment. Even for marrying above their status or for caste violation through a marriage of their choice, women are sentenced for mass rape, and the retribution is done in the presence of her family and villagers. Dalit or lower class women are brutally raped in a process of chastisement carried out by the upper class to keep the former always under their feet. Even in police stations, women are raped so that, their wretched condition will compel them to blurt out the truth. In a patriarchal society, for every trespass of woman, she is retaliated with a trespass into her body, which they think is the finest fine she can pay, as they are still driven by Victorian morality and believe once ‘the jewel’ is stolen, it is stolen forever. Even when the reports of brutal rapes comes out, those who are in responsible position also take the girls to task for going out in inappropriate time. As it is elsewhere in the world, in India too rape is a destructive weapon used to destroy men folk morally and psychologically, as they deem their honor rest in their protecting the purity of their women. During the communal skirmishes, as it is evident from Gujarat and Muzzafar Nagar recently, women are subjected to mass rape so that they can terrorize their men. Even women writers are threatened with rape for criticizing the maneuvers and manipulations of political parties. This becomes possible because of the undue weight given to the chastity of women. This study intends to analyze the nature of rapes occurring in India, including its use as a tool to establish and perpetuate the dominant position of men in social power structures. The study reveals how society, media and literature have imbibed and spread the notion of this sacred glass bowl which is the proud possession of men, the breaking of which steals them of their honor.

Keywords: guardians of chastity, patriarchal mindset, power tool, punishment rape

Procedia PDF Downloads 217
1276 The Morphological and Morphometrical Evaluation of the Bores That Transmit Emissary Veins in Terms of Surgery

Authors: Fikri Turk, Sahika Pinar Akyer, Mevci Ozdemir, Mehmet Bulent Ozdemir, Ilgaz Akdogan

Abstract:

The complications such as bleeding, thrombosis and air embolism depend on injuries emissary veins is often encountered in surgery. Detailed descriptions of the mastoid foramen, occipital foramen, parietal foramen, posterior condylar canal and foramen vesalius are lacking in the literature. For this reason, the purpose of our study was to explore and represent the morphology and morphometry of these emissary foramina in order to prevent complications and to guide for surgeons. The present study was made on 60 dry human skull in the laboratories of Pamukkale University, Faculty of Medicine Department of Anatomy. After taken photograph of emissary foramens by Canon 650D professional camera, the evaluation and measurement’s these foramens made with Matlab program by computer. The overall prevalence of mastoid foramen was 90.52%, occipital foramen was 72.52%, parietal foramen was 42.85%, posterior condylar canal was 91.25% and foramen vesalius was 78.26%. The mean diameter of the mastoid foramen was 1.81±0.76 mm, occipital foramen was 1.20±0.25 mm, parietal foramen was 1.49±0.46 mm, posterior condylar canal was 2.83±1.33 mm and foramen vesalius was 1.74±0.60 mm. Distances between emissary foramina and fixed bony landmarks were measured. Emissary veins are important in clinic practice and surgical procedures because they act a route of spread of exracranial infection to the intracranial structures and these veins may be a significant bleeding during surgery of the skull and they can be source of thrombosis and air embolism. The detailed anatomical knowledge of these veins and foraminas may help to prevent complications and to guide for surgeons.

Keywords: emissary foramina, mastoid foramen, occipital foramen, parietal foramen, posterior condylar canal, foramen vesalius, morphology, morphometry

Procedia PDF Downloads 365
1275 Service Flow in Multilayer Networks: A Method for Evaluating the Layout of Urban Medical Resources

Authors: Guanglin Song

Abstract:

(Objective) Situated within the context of China's tiered medical treatment system, this study aims to analyze spatial causes of urban healthcare access difficulties from the perspective of the configuration of healthcare facilities. (Methods) A social network analysis approach is employed to construct a healthcare demand and supply flow network between major residential clusters and various tiers of hospitals in the city.(Conclusion) The findings reveal that:1.there exists overall maldistribution and over-concentration of healthcare resources in Study Area, characterized by structural imbalance; 2.the low rate of primary care utilization in Study Area is a key factor contributing to congestion at higher-tier hospitals, as excessive reliance on these institutions by neighboring communities exacerbates the problem; 3.gradual optimization of the healthcare facility layout in Study Area, encompassing holistic, local, and individual institutional levels, can enhance systemic efficiency and resource balance.(Prospects) This research proposes a method for evaluating urban healthcare resource distribution structures based on service flows within hierarchical networks. It offers spatially targeted optimization suggestions for promoting the implementation of the tiered healthcare system and alleviating challenges related to accessibility and congestion in seeking medical care. Provide some new ideas for researchers and healthcare managers in countries, cities, and healthcare management around the world with similar challenges.

Keywords: flow of public services, urban networks, healthcare facilities, spatial planning, urban networks

Procedia PDF Downloads 68
1274 Reinforced Concrete Foundation for Turbine Generators

Authors: Siddhartha Bhattacharya

Abstract:

Steam Turbine-Generators (STG) and Combustion Turbine-Generator (CTG) are used in almost all modern petrochemical, LNG plants and power plant facilities. The reinforced concrete table top foundations are required to support these high speed rotating heavy machineries and is one of the most critical and challenging structures on any industrial project. The paper illustrates through a practical example, the step by step procedure adopted in designing a table top foundation supported on piles for a steam turbine generator with operating speed of 60 Hz. Finite element model of a table top foundation is generated in ANSYS. Piles are modeled as springs-damper elements (COMBIN14). Basic loads are adopted in analysis and design of the foundation based on the vendor requirements, industry standards, and relevant ASCE & ACI codal provisions. Static serviceability checks are performed with the help of Misalignment Tolerance Matrix (MTM) method in which the percentage of misalignment at a given bearing due to displacement at another bearing is calculated and kept within the stipulated criteria by the vendor so that the machine rotor can sustain the stresses developed due to this misalignment. Dynamic serviceability checks are performed through modal and forced vibration analysis where the foundation is checked for resonance and allowable amplitudes, as stipulated by the machine manufacturer. Reinforced concrete design of the foundation is performed by calculating the axial force, bending moment and shear at each of the critical sections. These values are calculated through area integral of the element stresses at these critical locations. Design is done as per ACI 318-05.

Keywords: steam turbine generator foundation, finite element, static analysis, dynamic analysis

Procedia PDF Downloads 295
1273 Evaluation of Water-Soluble Ionic Liquids Based on Quaternized Hyperbranched Polyamidoamine and Amino Acids for Chemical Enhanced Oil Recovery

Authors: Rasha Hosny, Ahmed Zahran, Mahmoud Ramzi, Fatma Mahmoud Abdelhafiz, Ammona S. Mohamed, Mahmoud Fathy Mubarak

Abstract:

Ionic liquids' ability to be tuned and stability under challenging environmental conditions are their significant features in enhanced oil recovery. In this study, two amino acid ionic liquids (AAILs) were prepared from quaternized hyperbranched polyamidoamine PAMAM (G0.5 C12) and amino acids (Cysteine and Lysine). The chemical structures of the prepared AAILs were verified by using FTIR and 1H-NMR spectra. These AAILs were tested for solubility, thermal stability, and surface activity in the presence of Egyptian medium crude oils under different PVT parameters after being diluted in several brine solutions of various salt compositions at 10% (w/w) salinity. The measurements reveal that the produced AAILs have good solubility and thermal stability. The effect of different concentrations of AAILs (0.1-5%) and salinity (20000-70000 ppm) on Interfacial tension (IFT) were studied. To test the efficacy of (AAILs) for a CEOR, numerous flooding experiments were carried out in samples of sandstone rock. Rock wettability is important for sandstone rocks, so conduct wettability alteration by contact angle (CA) of (30-55) and IFT of (7-13). The additional oil recovery was largely influenced by ionic liquid concentration, which may be changed by dilution with the formation and injected brines. This research has demonstrated that EOR techniques led to a recovery wt. (22-45%).

Keywords: amino acid ionic liquids, surface activity, critical micelle concentration, interfacial tension, contact angle, chemical enhanced oil recovery, wettability

Procedia PDF Downloads 111
1272 A Relative Entropy Regularization Approach for Fuzzy C-Means Clustering Problem

Authors: Ouafa Amira, Jiangshe Zhang

Abstract:

Clustering is an unsupervised machine learning technique; its aim is to extract the data structures, in which similar data objects are grouped in the same cluster, whereas dissimilar objects are grouped in different clusters. Clustering methods are widely utilized in different fields, such as: image processing, computer vision , and pattern recognition, etc. Fuzzy c-means clustering (fcm) is one of the most well known fuzzy clustering methods. It is based on solving an optimization problem, in which a minimization of a given cost function has been studied. This minimization aims to decrease the dissimilarity inside clusters, where the dissimilarity here is measured by the distances between data objects and cluster centers. The degree of belonging of a data point in a cluster is measured by a membership function which is included in the interval [0, 1]. In fcm clustering, the membership degree is constrained with the condition that the sum of a data object’s memberships in all clusters must be equal to one. This constraint can cause several problems, specially when our data objects are included in a noisy space. Regularization approach took a part in fuzzy c-means clustering technique. This process introduces an additional information in order to solve an ill-posed optimization problem. In this study, we focus on regularization by relative entropy approach, where in our optimization problem we aim to minimize the dissimilarity inside clusters. Finding an appropriate membership degree to each data object is our objective, because an appropriate membership degree leads to an accurate clustering result. Our clustering results in synthetic data sets, gaussian based data sets, and real world data sets show that our proposed model achieves a good accuracy.

Keywords: clustering, fuzzy c-means, regularization, relative entropy

Procedia PDF Downloads 259
1271 Life Locked Up in Immigration Detention: An Exploratory Study of Education in Australian Refugee Prisons

Authors: Carly Hawkins

Abstract:

Forced migration is at unprecedented levels globally, and many countries have implemented harsh policies regarding people seeking asylum. Australia legislates one of the harshest and most controversial responses in the world, sending any asylum seeker arriving by boat to indefinite offshore immigration detention. This includes children, families and unaccompanied minors. Asylum seekers and refugees are detained indefinitely by the Australian government in the Pacific Island countries of Papua New Guinea and Nauru. Global research on the impact of immigration detention has primarily focused on mental health and psychological concerns for both adults and children. Research into Australian immigration detention has largely overlooked the schooling and education of children detained in Nauru, despite refugee children spending more than five years in detention, a significant portion of a child’s life. This research focused on the experience of education for children detained offshore in Nauru from 2013-2019. 21 qualitative interviews were conducted with children, parents and service providers between 2021-2022. Interviews explored experiences of schooling, power structures, and barriers and support to education. Findings show that a lack of belonging and lack of agency negatively affected school engagement. A sense of hopelessness and uncertainty also affected their motivation to attend school, with many children missing school for months and years. The research indicates that Australia’s current policy of offshore detention has been detrimental to children’s educational experiences.

Keywords: asylum seeker, children, education, immigration detention, policy, refugee, school

Procedia PDF Downloads 77
1270 Flirting with Ephemerality and the Daily Production of the Fleeting City

Authors: Rafael Martinez

Abstract:

Our view of cities is dominated by the built environment. Buildings, streets, avenues, bridges, flyovers, and so on virtually exclude anything not fixed, permanently alterable or indefinitely temporal. Yet, city environments can also be shaped by temporally produced structures which, regardless of their transience, act as thresholds separating or segregating people and spaces. Academic works on cities conceptualize them, whether temporary or permanent, as tangible environments. This paper considers the idea of the ephemeral city, a city purposely produced and lived in as an impermanent, fluid and transitional environment resulting from an alignment of different forces. In particular, the paper proposes to observe how certain performative practices inform the emergence of ephemeral spaces in the city’s daily life. With Singapore as its backdrop and focusing foreign workers, the paper aims at documenting how everyday life practices, such as flirting, result in production of transitional space, informed by semiotic blurs, and yet material, perceptible, human and tangible for some. In this paper, it is argued that flirting for Singapore's foreign workers entails skillful understanding of what is proposed as the 'flirting cartography.' Thus, spatially, flirtation becomes not only a matter to be taken for granted but also a form of producing a fleeting space that requires deployment of various techniques drawn upon a particular knowledge. The paper is based upon a performative methodology which seeks to understand the praxis and rationale of the ephemerality of some spaces produced by foreign workers within this cosmopolitan city. By resorting to this methodological approach, the paper aims to establish the connection between the visibility gained by usually marginalized populations through their ephemeral reclamation of public spaces in the city.

Keywords: ephemeral, flirting, Singapore, space

Procedia PDF Downloads 108
1269 Effectiveness of Myofascial Release Technique in Treatment of Sacroiliac Joint Hypo-Mobility in Postnatal Women

Authors: Ahmed A. Abd El Rahim, Mohamed M. M. Essa, Magdy M. A. Shabana, Said A. Mohamed, Mohamed Ibrahim Mabrouk

Abstract:

Background: Sacroiliac joint (SIJ) dysfunction is considered the main cause of pregnancy-related back pain, which may continue to persist postnatally. Myofascial release technique (MFR) is an application of low-intensity, prolonged stretch to myofascial structures to improve function by increasing the sliding properties of restricted myofascial tissues. Purpose: This study was designed to investigate the effect of MFR on postnatal SIJ hypo-mobility. Materials and Methods: Fifty postnatal women complaining of SIJ hypo-mobility participated in this study. Their ages ranged from 26 to 35 yrs., and their body mass index (BMI) didn`t exceed 30 kg/m2. They were randomly assigned to two equal groups, group A (Gr. A) and group B (Gr. B). Both groups received three sessions per week for eight successive weeks. Gr. A received a traditional physical therapy program, while Gr. B received a traditional physical therapy program in addition to MFR. Doppler imaging of vibration was utilized to measure SIJ mobility pre- and post-intervention, and an electronic digital goniometer was used to measure back flexion and extension Range of motion. Results: Findings revealed a statistical improvement in post-intervention values of SIJ mobility in addition to trunk flexion and extension ROM in Gr. B compared to Gr. A (P<0.001). Conclusion: Adding MFR to traditional physical therapy programs is highly recommended in the treatment of SIJ hypo-mobility in postnatal women.

Keywords: sacroiliac hypo-mobility, sacroiliac dysfunction, myofascial release technique, traditional physical therapy, postnatal

Procedia PDF Downloads 102
1268 Critically Sampled Hybrid Trigonometry Generalized Discrete Fourier Transform for Multistandard Receiver Platform

Authors: Temidayo Otunniyi

Abstract:

This paper presents a low computational channelization algorithm for the multi-standards platform using poly phase implementation of a critically sampled hybrid Trigonometry generalized Discrete Fourier Transform, (HGDFT). An HGDFT channelization algorithm exploits the orthogonality of two trigonometry Fourier functions, together with the properties of Quadrature Mirror Filter Bank (QMFB) and Exponential Modulated filter Bank (EMFB), respectively. HGDFT shows improvement in its implementation in terms of high reconfigurability, lower filter length, parallelism, and medium computational activities. Type 1 and type 111 poly phase structures are derived for real-valued HGDFT modulation. The design specifications are decimated critically and over-sampled for both single and multi standards receiver platforms. Evaluating the performance of oversampled single standard receiver channels, the HGDFT algorithm achieved 40% complexity reduction, compared to 34% and 38% reduction in the Discrete Fourier Transform (DFT) and tree quadrature mirror filter (TQMF) algorithm. The parallel generalized discrete Fourier transform (PGDFT) and recombined generalized discrete Fourier transform (RGDFT) had 41% complexity reduction and HGDFT had a 46% reduction in oversampling multi-standards mode. While in the critically sampled multi-standard receiver channels, HGDFT had complexity reduction of 70% while both PGDFT and RGDFT had a 34% reduction.

Keywords: software defined radio, channelization, critical sample rate, over-sample rate

Procedia PDF Downloads 148
1267 Panganay-bunso Syndrome: A Contextualized Filipino Concept of Seniority in an Industrial Setting

Authors: Anne Camille P. Balabag, Via B. Cabarda, Ruffa Mae Lomboy, Aira Joyce Nesus

Abstract:

Nowadays, Filipinos seem to dominate the outsourcing industry, one factor that affects quality service is organization mismanagement. Traditionally, Filipino promotions are based on tenure rather than competence. Seniority refers to a superior rank that an employee holds in an industrial setting based on a position withheld in a company. Yet, seniority also holds the paradigm for Filipino family structures. With this, the researchers believe that Filipinos have a deeper take on seniority, which became the motivation for this study. The researchers wanted to contextualize the Filipino concept of seniority, the perception, and reactions of Filipino employees to its existence, and uncover their relevant experiences within the industrial setting. Following a phenomenological research design, data collected from ten (10) participants with various demographic backgrounds, chosen through purposive sampling, and interviewed utilizing a semi-structured interview and analyzed using thematic analysis revealed seven primary themes: (1) Reality of Tenureship and Competence, (2) Disparity in Age Influence, (3) Special Power of Seniority, (4) Seniority is Necessity, (5) The Filipino Organizational Values, (6) Art of Seniority in Human Resource, and (7) Confessions of the Inner Child. The findings suggest that seniority exists based on a ranking system created through human resource management and mirrored from traditional Filipino values. Also, the researchers identified three Filipino industrial values: respect, pakikipagkapwa-tao (treating others as a fellow human being), and utang na loob (debt of gratitude). Lastly, birth order was found to have direct and indirect effects on their conduct in an industrial context.

Keywords: organizational psychology, human resource management, filipino psychology, industrial values

Procedia PDF Downloads 124
1266 Adsorption of Heavy Metals Using Chemically-Modified Tea Leaves

Authors: Phillip Ahn, Bryan Kim

Abstract:

Copper is perhaps the most prevalent heavy metal used in the manufacturing industries, from food additives to metal-mechanic factories. Common methodologies to remove copper are expensive and produce undesired by-products. A good decontaminating candidate should be environment-friendly, inexpensive, and capable of eliminating low concentrations of the metal. This work suggests chemically modified spent tea leaves of chamomile, peppermint and green tea in their thiolated, sulfonated and carboxylated forms as candidates for the removal of copper from solutions. Batch experiments were conducted to maximize the adsorption of copper (II) ions. Effects such as acidity, salinity, adsorbent dose, metal concentration, and presence of surfactant were explored. Experimental data show that maximum adsorption is reached at neutral pH. The results indicate that Cu(II) can be removed up to 53%, 22% and 19% with the thiolated, carboxylated and sulfonated adsorbents, respectively. Maximum adsorption of copper on TPM (53%) is achieved with 150 mg and decreases with the presence of salts and surfactants. Conversely, sulfonated and carboxylated adsorbents show better adsorption in the presence of surfactants. Time-dependent experiments show that adsorption is reached in less than 25 min for TCM and 5 min for SCM. Instrumental analyses determined the presence of active functional groups, thermal resistance, and scanning electron microscopy, indicating that both adsorbents are promising materials for the selective recovery and treatment of metal ions from wastewaters. Finally, columns were prepared with these adsorbents to explore their application in scaled-up processes, with very positive results. A long-term goal involves the recycling of the exhausted adsorbent and/or their use in the preparation of biofuels due to changes in materials’ structures.

Keywords: heavy metal removal, adsorption, wastewaters, water remediation

Procedia PDF Downloads 290