Search results for: Riener muscle model
5076 Simulation Research of Diesel Aircraft Engine
Authors: Łukasz Grabowski, Michał Gęca, Mirosław Wendeker
Abstract:
This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: aircraft, diesel, engine, simulation
Procedia PDF Downloads 2075075 Nonparametric Path Analysis with Truncated Spline Approach in Modeling Rural Poverty in Indonesia
Authors: Usriatur Rohma, Adji Achmad Rinaldo Fernandes
Abstract:
Nonparametric path analysis is a statistical method that does not rely on the assumption that the curve is known. The purpose of this study is to determine the best nonparametric truncated spline path function between linear and quadratic polynomial degrees with 1, 2, and 3-knot points and to determine the significance of estimating the best nonparametric truncated spline path function in the model of the effect of population migration and agricultural economic growth on rural poverty through the variable unemployment rate using the t-test statistic at the jackknife resampling stage. The data used in this study are secondary data obtained from statistical publications. The results showed that the best model of nonparametric truncated spline path analysis is quadratic polynomial degree with 3-knot points. In addition, the significance of the best-truncated spline nonparametric path function estimation using jackknife resampling shows that all exogenous variables have a significant influence on the endogenous variables.Keywords: nonparametric path analysis, truncated spline, linear, quadratic, rural poverty, jackknife resampling
Procedia PDF Downloads 475074 Evolution of Performance Measurement Methods in Conditions of Uncertainty: The Implementation of Fuzzy Sets in Performance Measurement
Authors: E. A. Tkachenko, E. M. Rogova, V. V. Klimov
Abstract:
One of the basic issues of development management is connected with performance measurement as a prerequisite for identifying the achievement of development objectives. The aim of our research is to develop an improved model of assessing a company’s development results. The model should take into account the cyclical nature of development and the high degree of uncertainty in dealing with numerous management tasks. Our hypotheses may be formulated as follows: Hypothesis 1. The cycle of a company’s development may be studied from the standpoint of a project cycle. To do that, methods and tools of project analysis are to be used. Hypothesis 2. The problem of the uncertainty when justifying managerial decisions within the framework of a company’s development cycle can be solved through the use of the mathematical apparatus of fuzzy logic. The reasoned justification of the validity of the hypotheses made is given in the suggested article. The fuzzy logic toolkit applies to the case of technology shift within an enterprise. It is proven that some restrictions in performance measurement that are incurred to conventional methods could be eliminated by implementation of the fuzzy logic apparatus in performance measurement models.Keywords: logic, fuzzy sets, performance measurement, project analysis
Procedia PDF Downloads 3825073 Modelling of Aerosols in Absorption Column
Authors: Hammad Majeed, Hanna Knuutila, Magne Hillestad, Hallvard F. Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas cleaning processes. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this, aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. The model predicts the droplet size, the droplet internal variable profiles, and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and describes how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles.Keywords: absorption columns, aerosol formation, amine emissions, internal droplet profiles, monoethanolamine (MEA), post combustion CO2 capture, simulation
Procedia PDF Downloads 2445072 Optimization Studies on Biosorption of Ni(II) and Cd(II) from Wastewater Using Pseudomonas putida in a Packed Bed Bioreactor
Authors: K.Narasimhulu, Y. Pydi Setty
Abstract:
The objective of this present study is the optimization of process parameters in biosorption of Ni(II) and Cd(II) ions by Pseudomonas putida using Response Surface Methodology in a Packed bed bioreactor. The experimental data were also tested with theoretical models to find the best fit model. The present paper elucidates RSM as an efficient approach for predictive model building and optimization of Ni(II) and Cd(II) ions using Pseudomonas putida. In packed bed biosorption studies, comparison of the breakthrough curves of Ni(II) and Cd(II) for Agar immobilized and PAA immobilized Pseudomonas putida at optimum conditions of flow rate of 300 mL/h, initial metal ion concentration of 100 mg/L and bed height of 20 cm with weight of biosorbent of 12 g, it was found that the Agar immobilized Pseudomonas putida showed maximum percent biosorption and bed saturation occurred at 20 minutes. Optimization results of Ni(II) and Cd(II) by Pseudomonas putida from the Design Expert software were obtained as bed height of 19.93 cm, initial metal ion concentration of 103.85 mg/L, and flow rate of 310.57 mL/h. The percent biosorption of Ni(II) and Cd(II) is 87.2% and 88.2% respectively. The predicted optimized parameters are in agreement with the experimental results.Keywords: packed bed bioreactor, response surface mthodology, pseudomonas putida, biosorption, waste water
Procedia PDF Downloads 4525071 Prediction of Critical Flow Rate in Tubular Heat Exchangers for the Onset of Damaging Flow-Induced Vibrations
Authors: Y. Khulief, S. Bashmal, S. Said, D. Al-Otaibi, K. Mansour
Abstract:
The prediction of flow rates at which the vibration-induced instability takes place in tubular heat exchangers due to cross-flow is of major importance to the performance and service life of such equipment. In this paper, the semi-analytical model for square tube arrays was extended and utilized to study the triangular tube patterns. A laboratory test rig with instrumented test section is used to measure the fluidelastic coefficients to be used for tuning the mathematical model. The test section can be made of any bundle pattern. In this study, two test sections were constructed for both the normal triangular and the rotated triangular tube arrays. The developed scheme is utilized in predicting the onset of flow-induced instability in the two triangular tube arrays. The results are compared to those obtained for two other bundle configurations. The results of the four different tube patterns are viewed in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more conservative in all configurations consideredKeywords: fluid-structure interaction, cross-flow, heat exchangers,
Procedia PDF Downloads 2775070 Characterization of Aerosol Droplet in Absorption Columns to Avoid Amine Emissions
Authors: Hammad Majeed, Hanna Knuutila, Magne Hilestad, Hallvard Svendsen
Abstract:
Formation of aerosols can cause serious complications in industrial exhaust gas CO2 capture processes. SO3 present in the flue gas can cause aerosol formation in an absorption based capture process. Small mist droplets and fog formed can normally not be removed in conventional demisting equipment because their submicron size allows the particles or droplets to follow the gas flow. As a consequence of this aerosol based emissions in the order of grams per Nm3 have been identified from PCCC plants. In absorption processes aerosols are generated by spontaneous condensation or desublimation processes in supersaturated gas phases. Undesired aerosol development may lead to amine emissions many times larger than what would be encountered in a mist free gas phase in PCCC development. It is thus of crucial importance to understand the formation and build-up of these aerosols in order to mitigate the problem.Rigorous modelling of aerosol dynamics leads to a system of partial differential equations. In order to understand mechanics of a particle entering an absorber an implementation of the model is created in Matlab. The model predicts the droplet size, the droplet internal variable profiles and the mass transfer fluxes as function of position in the absorber. The Matlab model is based on a subclass method of weighted residuals for boundary value problems named, orthogonal collocation method. The model comprises a set of mass transfer equations for transferring components and the essential diffusion reaction equations to describe the droplet internal profiles for all relevant constituents. Also included is heat transfer across the interface and inside the droplet. This paper presents results describing the basic simulation tool for the characterization of aerosols formed in CO2 absorption columns and gives examples as to how various entering droplets grow or shrink through an absorber and how their composition changes with respect to time. Below are given some preliminary simulation results for an aerosol droplet composition and temperature profiles. Results: As an example a droplet of initial size of 3 microns, initially containing a 5M MEA, solution is exposed to an atmosphere free of MEA. Composition of the gas phase and temperature is changing with respect to time throughout the absorber.Keywords: amine solvents, emissions, global climate change, simulation and modelling, aerosol generation
Procedia PDF Downloads 2655069 Evaluation of the Families' Psychological Nature and the Relationship between the Academic Success According to the Students' Opinion
Authors: Sebnem Erismen, Ahmet Guneyli, Azize Ummanel
Abstract:
The purpose of this study is to explore the relationship between the students' academic success and families' psychological nature. The study based upon the quantitative research, and descriptive model is used. Relational descriptive model is used while evaluating the relation between families’ psychological nature and the academic success level of the students. A total of 523 secondary school students have participated the study. Personal Information Form, Family Structure Evaluation Form (FSEF) and School Reports were employed as the primary methods of data gathering. ANOVA and LSD Scheffe Test were used for analysing the data. Results of the study indicate that there are differences between the FSEF scores according to the students’ and teachers’ gender; however, no differences between the class level and seniority of the teachers were seen. Regarding the academic success of the students, it was seen that majority of them have high points. It was also seen that the academic success level of the students differentiates regarding to the classroom teachers’ gender and seniority. In conclusion, it was seen that there is a relation between the families’ psychological nature and students' academic success.Keywords: families’ perceived psychological nature, academic success, families effect on the academic success, education
Procedia PDF Downloads 2935068 Macroeconomic Impact of Economic Growth on Unemployment: A Case of South Africa
Authors: Ashika Govender
Abstract:
This study seeks to determine whether Okun’s Law is valid for the South African economy, using time series data for the period 2004 to 2014. The data were accessed from the South African Reserve Bank and Stats SA. The stationarity of the variables was analysed by applying unit root tests via the Augmented Dickey-Fuller test (ADF), the Phillips-Perron (PP) test, and the Kwiatkowski–Phillips–Schmidt–Shin test (KPSS) test. The study used an ordinary least square (OLS) model in analysing the dynamic version of Okun’s law. The Error Correction Model (ECM) was used to analyse the short-run impact of GDP growth on unemployment, as well as the speed of adjustment. The results indicate a short run and long run relationship between unemployment rate and GDP growth rate in period 2004q1-2014q4, suggesting that Okun’s law is valid for the South African economy. With a 1 percent increase in GDP, unemployment can decrease by 0.13 percent, ceteris paribus. The research culminates in important policy recommendations, highlighting the relationship between unemployment and economic growth in the spirit of the National Development Plan.Keywords: unemployment, economic growth, Okun's law, South Africa
Procedia PDF Downloads 2725067 Leveraging Quality Metrics in Voting Model Based Thread Retrieval
Authors: Atefeh Heydari, Mohammadali Tavakoli, Zuriati Ismail, Naomie Salim
Abstract:
Seeking and sharing knowledge on online forums have made them popular in recent years. Although online forums are valuable sources of information, due to variety of sources of messages, retrieving reliable threads with high quality content is an issue. Majority of the existing information retrieval systems ignore the quality of retrieved documents, particularly, in the field of thread retrieval. In this research, we present an approach that employs various quality features in order to investigate the quality of retrieved threads. Different aspects of content quality, including completeness, comprehensiveness, and politeness, are assessed using these features, which lead to finding not only textual, but also conceptual relevant threads for a user query within a forum. To analyse the influence of the features, we used an adopted version of voting model thread search as a retrieval system. We equipped it with each feature solely and also various combinations of features in turn during multiple runs. The results show that incorporating the quality features enhances the effectiveness of the utilised retrieval system significantly.Keywords: content quality, forum search, thread retrieval, voting techniques
Procedia PDF Downloads 2135066 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity
Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi
Abstract:
Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load
Procedia PDF Downloads 1505065 Analysis of Path Nonparametric Truncated Spline Maximum Cubic Order in Farmers Loyalty Modeling
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
Path analysis tests the relationship between variables through cause and effect. Before conducting further tests on path analysis, the assumption of linearity must be met. If the shape of the relationship is not linear and the shape of the curve is unknown, then use a nonparametric approach, one of which is a truncated spline. The purpose of this study is to estimate the function and get the best model on the nonparametric truncated spline path of linear, quadratic, and cubic orders with 1 and 2-knot points and determine the significance of the best function estimator in modeling farmer loyalty through the jackknife resampling method. This study uses secondary data through questionnaires to farmers in Sumbawa Regency who use SP-36 subsidized fertilizer products as many as 100 respondents. Based on the results of the analysis, it is known that the best-truncated spline nonparametric path model is the quadratic order of 2 knots with a coefficient of determination of 85.50%; the significance of the best-truncated spline nonparametric path estimator shows that all exogenous variables have a significant effect on endogenous variables.Keywords: nonparametric path analysis, farmer loyalty, jackknife resampling, truncated spline
Procedia PDF Downloads 475064 Using Maximization Entropy in Developing a Filipino Phonetically Balanced Wordlist for a Phoneme-Level Speech Recognition System
Authors: John Lorenzo Bautista, Yoon-Joong Kim
Abstract:
In this paper, a set of Filipino Phonetically Balanced Word list consisting of 250 words (PBW250) were constructed for a phoneme-level ASR system for the Filipino language. The Entropy Maximization is used to obtain phonological balance in the list. Entropy of phonemes in a word is maximized, providing an optimal balance in each word’s phonological distribution using the Add-Delete Method (PBW algorithm) and is compared to the modified PBW algorithm implemented in a dynamic algorithm approach to obtain optimization. The gained entropy score of 4.2791 and 4.2902 for the PBW and modified algorithm respectively. The PBW250 was recorded by 40 respondents, each with 2 sets data. Recordings from 30 respondents were trained to produce an acoustic model that were tested using recordings from 10 respondents using the HMM Toolkit (HTK). The results of test gave the maximum accuracy rate of 97.77% for a speaker dependent test and 89.36% for a speaker independent test.Keywords: entropy maximization, Filipino language, Hidden Markov Model, phonetically balanced words, speech recognition
Procedia PDF Downloads 4585063 Three Dimensional Flexible Dynamics of Continuous Cislunar Payloads Transfer System
Authors: Y. Yang, Dian Ming Xing, Qiu Hua Du
Abstract:
Based on the Motorized Momentum Exchange Tether (MMET), with the principle of momentum exchange, the three dimension flexible dynamics of continuous cislunar payloads transferring system (CCPTS) is built by Lagrange method and its numerical solution is solved by Mathematica software. In the derivation precession of potential energy, this paper uses the Tylor expansion method to simplify the Lagrange equation. Furthermore, the tension coming from the centripetal load is considered in the elastic potential energy. The comparison simulation results between the 3D rigid model and 3D flexible model of CCPTS shows that the tether flexibility has important influence on CCPTS’s orbital parameters (such as radius of CCPTS’s COM and the true anomaly) and the tether’s rotational movement, the relative deviation of radius and the true anomaly between the two dynamic models is about 0.00678% and 0.00259%, the relative deviation of the angle of tether-span and local gravity gradient is about 3.55%. Additionally, the external torque has an apparent influence on the tether’s axial vibration.Keywords: cislunar transfer, dynamics, momentum exchange, tether
Procedia PDF Downloads 2695062 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction
Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage
Abstract:
Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention
Procedia PDF Downloads 725061 Modelling Affordable Waste Management Solutions for India
Authors: Pradip Baishya, D. K. Mahanta
Abstract:
Rapid and unplanned urbanisation in most cities of India has progressively increased the problem of managing municipal waste in the past few years. With insufficient infrastructure and funds, Municipalities in most cities are struggling to cope with the pace of waste generated. Open dumping is widely in practice as a cheaper option. Scientific disposal of waste in such a large scale with the elements of segregation, recycling, landfill, and incineration involves sophisticated and expensive plants. In an effort to finding affordable and simple solutions to address this burning issue of waste disposal, a semi-mechanized plant has been designed underlying the concept of a zero waste community. The fabrication work of the waste management unit is carried out by local skills from locally available materials. A resident colony in the city of Guwahati has been chosen, which is seen as a typical representative of most cities in India in terms of size and key issues surrounding waste management. Scientific management and disposal of waste on site is carried out on the principle of reduce, reuse and recycle from segregation to compositing. It is a local community participatory model, which involves all stakeholders in the process namely rag pickers, residents, municipality and local industry. Studies were conducted to testify the plant as revenue earning self-sustaining model in the long term. Current working efficiency of plant for segregation was found to be 1kg per minute. Identifying bottlenecks in the success of the model, data on efficiency of the plant, economics of its fabrication were part of the study. Similar satellite waste management plants could potentially be a solution to supplement the waste management system of municipalities of similar sized cities in India or South East Asia with similar issues surrounding waste disposal.Keywords: affordable, rag pickers, recycle, reduce, reuse, segregation, zero waste
Procedia PDF Downloads 3055060 Investigation of a Natural Convection Heat Sink for LEDs Based on Micro Heat Pipe Array-Rectangular Channel
Authors: Wei Wang, Yaohua Zhao, Yanhua Diao
Abstract:
The exponential growth of the lighting industry has rendered traditional thermal technologies inadequate for addressing the thermal management challenges inherent to high-power light-emitting diode (LED) technology. To enhance the thermal management of LEDs, this study proposes a heat sink configuration that integrates a miniature heat pipe array based on phase change technology with rectangular channels. The thermal performance of the heat sink was evaluated through experimental testing, and the results demonstrated that when the input power was 100W, 150W, and 200W, the temperatures of the LED substrate were 47.64℃, 56.78℃, and 69.06℃, respectively. Additionally, the maximum temperature difference of the MHPA in the vertical direction was observed to be 0.32℃, 0.30℃, and 0.30℃, respectively. The results demonstrate that the heat sink not only effectively dissipates the heat generated by the LEDs, but also exhibits excellent temperature uniformity. In consideration of the experimental measurement outcomes, a corresponding numerical model was developed as part of this study. Following the model validation, the effect of the structural parameters of the heat sink on its heat dissipation efficacy was examined through the use of response surface methodology (RSM) analysis. The rectangular channel width, channel height, channel length, number of channel cross-sections, and channel cross-section spacing were selected as the input parameters, while the LED substrate temperature and the total mass of the heat sink were regarded as the response variables. Subsequently, the response was subjected to an analysis of variance (ANOVA), which yielded a regression model that predicted the response based on the input variables. This offers some direction for the design of the radiator.Keywords: light-emitting diodes, heat transfer, heat pipe, natural convection, response surface methodology
Procedia PDF Downloads 365059 Design for Safety: Safety Consideration in Planning and Design of Airport Airsides
Authors: Maithem Al-Saadi, Min An
Abstract:
During airport planning and design stages, the major issues of capacity and safety in construction and operation of an airport need to be taken into consideration. The airside of an airport is a major and critical infrastructure that usually consists of runway(s), taxiway system, and apron(s) etc., which have to be designed according to the international standards and recommendations, and local limitations to accommodate the forecasted demands. However, in many cases, airport airsides are suffering from unexpected risks that occurred during airport operations. Therefore, safety risk assessment should be applied in the planning and design of airsides to cope with the probability of risks and their consequences, and to make decisions to reduce the risks to as low as reasonably practicable (ALARP) based on safety risk assessment. This paper presents a combination approach of Failure Modes, Effect, and Criticality Analysis (FMECA), Fuzzy Reasoning Approach (FRA), and Fuzzy Analytic Hierarchy Process (FAHP) to develop a risk analysis model for safety risk assessment. An illustrated example is used to the demonstrate risk assessment process on how the design of an airside in an airport can be analysed by using the proposed safety design risk assessment model.Keywords: airport airside planning and design, design for safety, fuzzy reasoning approach, fuzzy AHP, risk assessment
Procedia PDF Downloads 3665058 Heat and Mass Transfer of Triple Diffusive Convection in a Rotating Couple Stress Liquid Using Ginzburg-Landau Model
Authors: Sameena Tarannum, S. Pranesh
Abstract:
A nonlinear study of triple diffusive convection in a rotating couple stress liquid has been analysed. It is performed to study the effect of heat and mass transfer by deriving Ginzburg-Landau equation. Heat and mass transfer are quantified in terms of Nusselt number and Sherwood numbers, which are obtained as a function of thermal and solute Rayleigh numbers. The obtained Ginzburg-Landau equation is Bernoulli equation, and it has been elucidated numerically by using Mathematica. The effects of couple stress parameter, solute Rayleigh numbers, and Taylor number on the onset of convection and heat and mass transfer have been examined. It is found that the effects of couple stress parameter and Taylor number are to stabilize the system and to increase the heat and mass transfer.Keywords: couple stress liquid, Ginzburg-Landau model, rotation, triple diffusive convection
Procedia PDF Downloads 3385057 Temperature Rises Characteristics of Distinct Double-Sided Flat Permanent Magnet Linear Generator for Free Piston Engines for Hybrid Vehicles
Authors: Ismail Rahama Adam Hamid
Abstract:
This paper presents the development of a thermal model for a flat, double-sided linear generator designed for use in free-piston engines. The study conducted in this paper examines the influence of temperature on the performance of the permeant magnet linear generator, an integral and pivotal component within the system. This research places particular emphasis on the Neodymium Iron Boron (NdFeB) permanent magnet, which serves as a source of magnetic field for the linear generator. In this study, an internal combustion engine that tends to produce heat is connected to a generator. Considering the temperatures rise from both the combustion process and the thermal contributions of current-carrying conductors and frictional forces. Utilizing Computational Fluid Dynamics (CFD) method, a thermal model of the (NdFeB) magnet within the linear generator is constructed and analyzed. Furthermore, the temperature field is examined to ensure that the linear generator operates under stable conditions without the risk of demagnetization.Keywords: free piston engine, permanent magnet, linear generator, demagnetization, simulation
Procedia PDF Downloads 575056 Hate Speech Detection in Tunisian Dialect
Authors: Helmi Baazaoui, Mounir Zrigui
Abstract:
This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation
Procedia PDF Downloads 115055 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 1915054 Fuzzy-Machine Learning Models for the Prediction of Fire Outbreak: A Comparative Analysis
Authors: Uduak Umoh, Imo Eyoh, Emmauel Nyoho
Abstract:
This paper compares fuzzy-machine learning algorithms such as Support Vector Machine (SVM), and K-Nearest Neighbor (KNN) for the predicting cases of fire outbreak. The paper uses the fire outbreak dataset with three features (Temperature, Smoke, and Flame). The data is pre-processed using Interval Type-2 Fuzzy Logic (IT2FL) algorithm. Min-Max Normalization and Principal Component Analysis (PCA) are used to predict feature labels in the dataset, normalize the dataset, and select relevant features respectively. The output of the pre-processing is a dataset with two principal components (PC1 and PC2). The pre-processed dataset is then used in the training of the aforementioned machine learning models. K-fold (with K=10) cross-validation method is used to evaluate the performance of the models using the matrices – ROC (Receiver Operating Curve), Specificity, and Sensitivity. The model is also tested with 20% of the dataset. The validation result shows KNN is the better model for fire outbreak detection with an ROC value of 0.99878, followed by SVM with an ROC value of 0.99753.Keywords: Machine Learning Algorithms , Interval Type-2 Fuzzy Logic, Fire Outbreak, Support Vector Machine, K-Nearest Neighbour, Principal Component Analysis
Procedia PDF Downloads 1825053 Local Government Digital Attention and Green Technology Innovation: Analysis Based on Spatial Durbin Model
Authors: Xin Wang, Chaoqun Ma, Zheng Yao
Abstract:
Although green technology innovation faces new opportunities and challenges in the digital era, its theoretical research remains limited. Drawing on the attention-based view, this study employs the spatial Durbin model to investigate the impact of local government digital attention and digital industrial agglomeration on green technology innovation across 30 Chinese provinces from 2011 to 2021, as well as the spatial spillover effects present. The results suggest that both government digital attention and digital industrial agglomeration positively influence green technology innovation in local and neighboring provinces, with digital industrial agglomeration exhibiting a positive moderating effect on this direct local and indirect spatial spillover relationship. The findings of this study provide a new theoretical perspective for green technology innovation research and hold valuable implications for the advancement of the attention-based view and green technology innovation.Keywords: local government digital attention, digital industrial agglomeration, green technology innovation, attention-based view
Procedia PDF Downloads 705052 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic
Authors: Firas M. Tuaimah, Huda M. Abdul Abbas
Abstract:
Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering
Procedia PDF Downloads 3975051 Effect of Deficit Irrigation on Barley Yield and Water Productivity through Field Experiment and Modeling at Koga Irrigation Scheme, Amhara Region, Ethiopia
Authors: Bekalu Melis Alehegn, Dagnenet Sultan Alemu
Abstract:
The insufficiency of water is the most severe restraint for the expansion of agriculture in arid and semi-arid areas. An important strategy for increasing water productivity and improving water productivity deficit irrigation at different growth stages is important to advance the yield and Water Productivity of barley in water scarce areas. A field experiment was conducted at the Koga irrigation scheme in Ethiopia to examine barley yield response to different irrigation regimes and validate the aqua crop model. The experimental setup comprised six randomized treatments (T) with three replications for one irrigation season because of financial limitations. The irrigation regimes were selected 100%, 75%, and 50% application levels in different growth stages of gross irrigation requirements using trial and error in order to select the optimal water application level. The treatments were: no stress at all (T1), 25% stressed during all crop stages (T2), 50% stressed at all stages (T3), 50% stressed at the development stage (T4), 50% stressed at mid-stage (T5) and 50% stress at initial and late season (T6). The agronomic parameters, including canopy cover, biomass, and grain yield, were collected to compare the ground-based crop yield and the aqua crop model. The results showed that the initial and late stages and stress 25% through the whole season were the right time for practice deficit irrigation without significant yield reduction. The highest (2.62kg/m³) and the lowest (2.03 kg/m³) water productivity were found under T3 and T4, respectively. The stress of 50% at the mid-growth stage and stress 50% of the full irrigation water requirement at all growth stages significantly (α=5%) affected the canopy expansion, biomass and yield production. The aqua Crop model performed well in simulating the yield of barley for most of the treatments (R2 = 0.84 and RMSE = 0.7 t ha–¹).Keywords: aqua crop, barley, deficit irrigation, irrigation regimes, water productivity
Procedia PDF Downloads 275050 Application of Mathematical Models for Conducting Long-Term Metal Fume Exposure Assessments for Workers in a Shipbuilding Factory
Authors: Shu-Yu Chung, Ying-Fang Wang, Shih-Min Wang
Abstract:
To conduct long-term exposure assessments are important for workers exposed to chemicals with chronic effects. However, it usually encounters with several constrains, including cost, workers' willingness, and interference to work practice, etc., leading to inadequate long-term exposure data in the real world. In this study, an integrated approach was developed for conducting long-term exposure assessment for welding workers in a shipbuilding factory. A laboratory study was conducted to yield the fume generation rates under various operating conditions. The results and the measured environmental conditions were applied to the near field/far field (NF/FF) model for predicting long term fume exposures via the Monte Carlo simulation. Then, the predicted long-term concentrations were used to determine the prior distribution in Bayesian decision analysis (BDA). Finally, the resultant posterior distributions were used to assess the long-term exposure and serve as basis for initiating control strategies for shipbuilding workers. Results show that the NF/FF model was a suitable for predicting the exposures of metal contents containing in welding fume. The resultant posterior distributions could effectively assess the long-term exposures of shipbuilding welders. Welders' long-term Fe, Mn and Pb exposures were found with high possibilities to exceed the action level indicating preventive measures should be taken for reducing welders' exposures immediately. Though the resultant posterior distribution can only be regarded as the best solution based on the currently available predicting and monitoring data, the proposed integrated approach can be regarded as a possible solution for conducting long term exposure assessment in the field.Keywords: Bayesian decision analysis, exposure assessment, near field and far field model, shipbuilding industry, welding fume
Procedia PDF Downloads 1415049 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset
Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli
Abstract:
Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence
Procedia PDF Downloads 785048 Modeling of Polyethylene Particle Size Distribution in Fluidized Bed Reactors
Authors: R. Marandi, H. Shahrir, T. Nejad Ghaffar Borhani, M. Kamaruddin
Abstract:
In the present study, a steady state population balance model was developed to predict the polymer particle size distribution (PSD) in ethylene gas phase fluidized bed olefin polymerization reactors. The multilayer polymeric flow model (MPFM) was used to calculate the growth rate of a single polymer particle under intra-heat and mass transfer resistance. The industrial plant data were used to calculate the growth rate of polymer particle and the polymer PSD. Numerical simulations carried out to describe the influence of effective monomer diffusion coefficient, polymerization rate and initial catalyst size on the catalyst particle growth and final polymer PSD. The results present that the intra-heat and mass limitation is important for the ethylene polymerization, the growth rate of particle and the polymer PSD in the fluidized bed reactor. The effect of the agglomeration on the PSD is also considered. The result presents that the polymer particle size distribution becomes broader as the agglomeration exits.Keywords: population balance, olefin polymerization, fluidized bed reactor, particle size distribution, agglomeration
Procedia PDF Downloads 3335047 Horizontal Stress Magnitudes Using Poroelastic Model in Upper Assam Basin, India
Authors: Jenifer Alam, Rima Chatterjee
Abstract:
Upper Assam sedimentary basin is one of the oldest commercially producing basins of India. Being in a tectonically active zone, estimation of tectonic strain and stress magnitudes has vast application in hydrocarbon exploration and exploitation. This East North East –West South West trending shelf-slope basin encompasses the Bramhaputra valley extending from Mikir Hills in the southwest to the Naga foothills in the northeast. Assam Shelf lying between the Main Boundary Thrust (MBT) and Naga Thrust area is comparatively free from thrust tectonics and depicts normal faulting mechanism. The study area is bounded by the MBT and Main Central Thrust in the northwest. The Belt of Schuppen in the southeast, is bordered by Naga and Disang thrust marking the lower limit of the study area. The entire Assam basin shows low-level seismicity compared to other regions of northeast India. Pore pressure (PP), vertical stress magnitude (SV) and horizontal stress magnitudes have been estimated from two wells - N1 and T1 located in Upper Assam. N1 is located in the Assam gap below the Bramhaputra river while T1, lies in the Belt of Schuppen. N1 penetrates geological formations from top Alluvial through Dhekiajuli, Girujan, Tipam, Barail, Kopili, Sylhet and Langpur to the granitic basement while T1 in trusted zone crosses through Girujan Suprathrust, Tipam Suprathrust, Barail Suprathrust to reach Naga Thrust. Normal compaction trend is drawn through shale points through both wells for estimation of PP using the conventional Eaton sonic equation with an exponent of 1.0 which is validated with Modular Dynamic Tester and mud weight. Observed pore pressure gradient ranges from 10.3 MPa/km to 11.1 MPa/km. The SV has a gradient from 22.20 to 23.80 MPa/km. Minimum and maximum horizontal principal stress (Sh and SH) magnitudes under isotropic conditions are determined using poroelastic model. This approach determines biaxial tectonic strain utilizing static Young’s Modulus, Poisson’s Ratio, SV, PP, leak off test (LOT) and SH derived from breakouts using prior information on unconfined compressive strength. Breakout derived SH information is used for obtaining tectonic strain due to lack of measured SH data from minifrac or hydrofracturing. Tectonic strain varies from 0.00055 to 0.00096 along x direction and from -0.0010 to 0.00042 along y direction. After obtaining tectonic strains at each well, the principal horizontal stress magnitudes are calculated from linear poroelastic model. The magnitude of Sh and SH gradient in normal faulting region are 12.5 and 16.0 MPa/km while in thrust faulted region the gradients are 17.4 and 20.2 MPa/km respectively. Model predicted Sh and SH matches well with the LOT data and breakout derived SH data in both wells. It is observed from this study that the stresses SV>SH>Sh prevailing in the shelf region while near the Naga foothills the regime changes to SH≈SV>Sh area corresponds to normal faulting regime. Hence this model is a reliable tool for predicting stress magnitudes from well logs under active tectonic regime in Upper Assam Basin.Keywords: Eaton, strain, stress, poroelastic model
Procedia PDF Downloads 216