Search results for: power trading enhancement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7734

Search results for: power trading enhancement

4734 Flame Spread along Fuel Cylinders in High Pressures

Authors: Yanli Zhao, Jian Chen, Shouxiang Lu

Abstract:

Flame spread over solid fuels in high pressure situations such as nuclear containment shells and hyperbaric oxygen chamber has potential to result in catastrophic disaster, thus requiring best knowledge. This paper reveals experimentally the flame spread behaviors over fuel cylinders in high pressures. The fuel used in this study is polyethylene and polymethyl methacrylate cylinders with 4mm diameter. Ambient gas is fixed as air and total pressures are varied from naturally normal pressure (100kPa) to elevated pressure (400kPa). Flame appearance, burning rate and flame spread were investigated experimentally and theoretically. Results show that high pressure significantly affects the flame appearance, which is as the pressure increases, flame color changes from luminous yellow to orange and the orange part extends down towards the base of flame. Besides, the average flame width and height, and the burning rate are proved to increase with increasing pressure. What is more, flame spread rates become higher as pressure increases due to the enhancement of heat transfer from flame to solid surface in elevated pressure by performing a simplified heat balance analysis.

Keywords: cylinder fuel, flame spread, heat transfer, high pressure

Procedia PDF Downloads 378
4733 Enhancing Photocatalytic Activity of Oxygen Vacancies-Rich Tungsten Trioxide (WO₃) for Sustainable Energy Conversion and Water Purification

Authors: Satam Alotibi, Osama A. Hussein, Aziz H. Al-Shaibani, Nawaf A. Al-Aqeel, Abdellah Kaiba, Fatehia S. Alhakami, Mohammed Alyami, Talal F. Qahtan

Abstract:

The demand for sustainable and efficient energy conversion using solar energy has grown rapidly in recent years. In this pursuit, solar-to-chemical conversion has emerged as a promising approach, with oxygen vacancies-rich tungsten trioxide (WO₃) playing a crucial role. This study presents a method for synthesizing oxygen vacancies-rich WO3, resulting in a significant enhancement of its photocatalytic activity, representing a significant step towards sustainable energy solutions. Experimental results underscore the importance of oxygen vacancies in modifying the properties of WO₃. These vacancies introduce additional energy states within the material, leading to a reduction in the bandgap, increased light absorption, and acting as electron traps, thereby reducing emissions. Our focus lies in developing oxygen vacancies-rich WO₃, which demonstrates unparalleled potential for improved photocatalytic applications. The effectiveness of oxygen vacancies-rich WO₃ in solar-to-chemical conversion was showcased through rigorous assessments of its photocatalytic degradation performance. Sunlight irradiation was employed to evaluate the material's effectiveness in degrading organic pollutants in wastewater. The results unequivocally demonstrate the superior photocatalytic performance of oxygen vacancies-rich WO₃ compared to conventional WO₃ nanomaterials, establishing its efficacy in sustainable and efficient energy conversion. Furthermore, the synthesized material is utilized to fabricate films, which are subsequently employed in immobilized WO₃ and oxygen vacancies-rich WO₃ reactors for water purification under natural sunlight irradiation. This application offers a sustainable and efficient solution for water treatment, harnessing solar energy for effective decontamination. In addition to investigating the photocatalytic capabilities, we extensively analyze the structural and chemical properties of the synthesized material. The synthesis process involves in situ thermal reduction of WO₃ nano-powder in a nitrogen environment, meticulously monitored using thermogravimetric analysis (TGA) to ensure precise control over the synthesis of oxygen vacancies-rich WO₃. Comprehensive characterization techniques such as UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR, Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) provide deep insights into the material's optical properties, chemical composition, elemental states, structure, surface properties, and crystalline structure. This study represents a significant advancement in sustainable energy conversion through solar-to-chemical processes and water purification. By harnessing the unique properties of oxygen vacancies-rich WO₃, we not only enhance our understanding of energy conversion mechanisms but also pave the way for the development of highly efficient and environmentally friendly photocatalytic materials. The application of this material in water purification demonstrates its versatility and potential to address critical environmental challenges. These findings bring us closer to a sustainable energy future and cleaner water resources, laying a solid foundation for a more sustainable planet.

Keywords: sustainable energy conversion, solar-to-chemical conversion, oxygen vacancies-rich tungsten trioxide (WO₃), photocatalytic activity enhancement, water purification

Procedia PDF Downloads 69
4732 Differential Effect of Technique Majors on Isokinetic Strength in Youth Judoka Athletes

Authors: Chungyu Chen, Yi-Cheng Chen, Po-Hsian Hsu, Hsin-Ying Chen, Yen-Po Hsiao

Abstract:

The purpose of this study was to assess the muscular strength performance of upper and lower extremity in isokinetic system for the youth judo players, and also to compare the strength difference between major techniques. Sixteen male and 20 female judo players (age: 16.7 ± 1.6 years old, training age: 4.5 ± 0.8 years) were served as the volunteers for this study. There were 21 players major hand techniques and 15 players major foot techniques. The Biodex S4 Pro was used to assess the strength performance of extensor and flexor of concentric action under the load condition of 30 degree/sec, 60 degree/sec, and 120 degree/sec for elbow joints and knee joints. The strength parameters were included the maximal torque, the normalized maximal torque, the average power, and the average maximal torque. A t test for independent groups was used to evaluate whether hand major and foot major differ significantly with an alpha level of .05. The result showed the maximal torque of left knee extensor in foot major players (243.5 ± 36.3 Nm) was higher significantly than hand major (210.7 ± 21.0 Nm) under the load of 30 degree/sec (p < .05). There were no differences in upper extremity strength between the hand and foot techniques major in three loads (ps < .05). It indicated that the judo player is required to develop the upper extremity strength overall to secure the execution of major techniques.

Keywords: knee, elbow, power, judo

Procedia PDF Downloads 456
4731 Review on Low Actuation Voltage RF Mems Switches

Authors: Hassan Saffari, Reza Askari Moghadam

Abstract:

In modern communication systems, it is highly demanded to achieve high performance with minimal power consumption. Low actuation voltage RF MEMS (Micro-Electro-Mechanical Systems) switches represent a significant advancement in this regard. These switches, with their ability to operate at lower voltages, offer promising solutions for enhancing connectivity while minimizing energy consumption. Microelectromechanical switches are good alternatives for electronic and mechanical switches due to their low insertion loss, high isolation, and fast switching speeds. They have attracted more attention in recent years. Most of the presented RF MEMS switches use electrostatic actuators due to their low power consumption. Low actuation voltage RF MEMS switches are among the important issues that have been investigated in research articles. The actuation voltage can be reduced by different methods. One usually implemented method is low spring constant structures. However, despite their numerous benefits, challenges remain in the widespread adoption of low-actuation voltage RF MEMS switches. Issues related to reliability, durability, and manufacturing scalability need to be addressed to realize their full potential in commercial applications. While overcoming certain challenges, their exceptional performance characteristics and compatibility with miniaturized electronic systems make them a promising choice for next-generation wireless communication and RF applications. In this paper, some previous works that proposed low-voltage actuation RF MEMS switches are investigated and analyzed.

Keywords: RF MEMS switches, low actuation voltage, small spring constant structures, electrostatic actuation

Procedia PDF Downloads 47
4730 Pre-Lithiation of SiO₂ Nanoparticles-Based Anode for Lithium Ion Battery Application

Authors: Soraya Hoornam, Zeinab Sanaee

Abstract:

Lithium-ion batteries are widely used for providing energy for mobile electronic devices. Graphite is a traditional anode material that was used in almost all commercialized lithium-ion batteries. It gives a specific capacity of 372 mAh/g for lithium storage. But there are multiple better choices for storing lithium that propose significantly higher specific capacities. As an example, silicon-based materials can be mentioned. In this regard, SiO₂ material can offer a huge specific capacity of 1965 mAh/g. Due to this high lithium storage ability, large volume change occurs in this electrode material during insertion and extraction of lithium, which may lead to cracking and destruction of the electrode. The use of nanomaterials instead of bulk material can significantly solve this problem. In addition, if we insert lithium in the active material of the battery before its cycling, which is called pre-lithiation, a further enhancement in the performance is expected. Here, we have fabricated an anode electrode of the battery using SiO₂ nanomaterial mixed with Graphite and assembled a lithium-ion battery half-cell with this electrode. Next, a pre-lithiation was performed on the SiO₂ nanoparticle-containing electrode, and the resulting anode material was investigated. This electrode has great potential for high-performance lithium-ion batteries.

Keywords: SiO₂ nanoparticles, lithium-ion battery, pre-lithiation, anode material

Procedia PDF Downloads 119
4729 Feasibility Study of a Solar Farm Project with an Executive Approach

Authors: Amir Reza Talaghat

Abstract:

Since 2015, a new approach and policy regarding energy resources protection and using renewable energies has been started in Iran which was developing new projects. Investigating about the feasibility study of these new projects helped to figure out five steps to prepare an executive feasibility study of the concerned projects, which are proper site selections, authorizations, design and simulation, economic study and programming, respectively. The results were interesting and essential for decision makers and investors to start implementing of these projects in reliable condition. The research is obtained through collection and study of the project's documents as well as recalculation to review conformity of the results with GIS data and the technical information of the bidders. In this paper, it is attempted to describe the result of the performed research by describing the five steps as an executive methodology, for preparing a feasible study of installing a 10 MW – solar farm project. The corresponding results of the research also help decision makers to start similar projects is explained in this paper as follows: selecting the best location for the concerned PV plant, reliable and safe conditions for investment and the required authorizations to start implementing the solar farm project in the concerned region, selecting suitable component to achieve the best possible performance for the plant, economic profit of the investment, proper programming to implement the project on time.

Keywords: solar farm, solar energy, execution of PV power plant PV power plant

Procedia PDF Downloads 179
4728 Enhancement of Hardness and Corrosion Resistance of Plasma Nitrided Low Alloy Tool Steel

Authors: Kalimi Trinadh, Corinne Nouveau, A. S. Khanna, Karanveer S. Aneja, K. Ram Mohan Rao

Abstract:

This study concerns improving the corrosion resistance of low alloy steel after plasma nitriding performed at variable time and temperature. Nitriding carried out in the temperature range of 450-550ᵒC for a various time period of 1-8 hrs. at 500Pa in a glow discharge plasma of H₂ and N₂ (80:20). The substrate was kept biased negatively at 250V. Following nitriding the X-ray diffraction studies shown that the phases formed were mainly γ′ (Fe₄N) and ε (Fe₂₋₃N). The ε (Fe₂₋₃N) phase found to be the dominating phase. Cross sections of the samples under scanning electron microscope point analyses revealed the presence of nitrogen in the surface region. For the assessment of corrosion resistance property, potentiodynamic polarization tests were performed in 3.5% NaCl solution. It has been shown that the plasma nitriding significantly improved the corrosion resistance when compared to the as-received steel. Furthermore, it has also been found that nitriding for 6h has more corrosion resistance than nitriding for the 8h duration. The hardness of the nitrided samples was measured by Vicker’s microhardness tester. The hardness of the nitrided steel was found to be improved much above the hardness of the steel in the as-received condition. It was found to be around two-fold of the initial hardness.

Keywords: corrosion, steel, plasma nitriding, X-ray diffraction

Procedia PDF Downloads 199
4727 Using The Flight Heritage From >150 Electric Propulsion Systems To Design The Next Generation Field Emission Electric Propulsion Thrusters

Authors: David Krejci, Tony Schönherr, Quirin Koch, Valentin Hugonnaud, Lou Grimaud, Alexander Reissner, Bernhard Seifert

Abstract:

In 2018 the NANO thruster became the first Field Emission Electric Propulsion (FEEP) system ever to be verified in space in an In-Orbit Demonstration mission conducted together with Fotec. Since then, 160 additional ENPULSION NANO propulsion systems have been deployed in orbit on 73 different spacecraft across multiple customers and missions. These missions included a variety of different satellite bus sizes ranging from 3U Cubesats to >100kg buses, and different orbits in Low Earth Orbit and Geostationary Earth orbit, providing an abundance of on orbit data for statistical analysis. This large-scale industrialization and flight heritage allows for a holistic way of gathering data from testing, integration and operational phases, deriving lessons learnt over a variety of different mission types, operator approaches, use cases and environments. Based on these lessons learnt a new generation of propulsion systems is developed, addressing key findings from the large NANO heritage and adding new capabilities, including increased resilience, thrust vector steering and increased power and thrust level. Some of these successor products have already been validated in orbit, including the MICRO R3 and the NANO AR3. While the MICRO R3 features increased power and thrust level, the NANO AR3 is a successor of the heritage NANO thruster with added thrust vectoring capability. 5 NANO AR3 have been launched to date on two different spacecraft. This work presents flight telemetry data of ENPULSION NANO systems and onorbit statistical data of the ENPULSION NANO as well as lessons learnt during onorbit operations, customer assembly, integration and testing support and ground test campaigns conducted at different facilities. We discuss how transfer of lessons learnt and operational improvement across independent missions across customers has been accomplished. Building on these learnings and exhaustive heritage, we present the design of the new generation of propulsion systems that increase the power and thrust level of FEEP systems to address larger spacecraft buses.

Keywords: FEEP, field emission electric propulsion, electric propulsion, flight heritage

Procedia PDF Downloads 92
4726 Hidro-IA: An Artificial Intelligent Tool Applied to Optimize the Operation Planning of Hydrothermal Systems with Historical Streamflow

Authors: Thiago Ribeiro de Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite

Abstract:

The area of the electricity sector that deals with energy needs by the hydroelectric in a coordinated manner is called Operation Planning of Hydrothermal Power Systems (OPHPS). The purpose of this is to find a political operative to provide electrical power to the system in a given period, with reliability and minimal cost. Therefore, it is necessary to determine an optimal schedule of generation for each hydroelectric, each range, so that the system meets the demand reliably, avoiding rationing in years of severe drought, and that minimizes the expected cost of operation during the planning, defining an appropriate strategy for thermal complementation. Several optimization algorithms specifically applied to this problem have been developed and are used. Although providing solutions to various problems encountered, these algorithms have some weaknesses, difficulties in convergence, simplification of the original formulation of the problem, or owing to the complexity of the objective function. An alternative to these challenges is the development of techniques for simulation optimization and more sophisticated and reliable, it can assist the planning of the operation. Thus, this paper presents the development of a computational tool, namely Hydro-IA for solving optimization problem identified and to provide the User an easy handling. Adopted as intelligent optimization technique is Genetic Algorithm (GA) and programming language is Java. First made the modeling of the chromosomes, then implemented the function assessment of the problem and the operators involved, and finally the drafting of the graphical interfaces for access to the User. The results with the Genetic Algorithms were compared with the optimization technique nonlinear programming (NLP). Tests were conducted with seven hydroelectric plants interconnected hydraulically with historical stream flow from 1953 to 1955. The results of comparison between the GA and NLP techniques shows that the cost of operating the GA becomes increasingly smaller than the NLP when the number of hydroelectric plants interconnected increases. The program has managed to relate a coherent performance in problem resolution without the need for simplification of the calculations together with the ease of manipulating the parameters of simulation and visualization of output results.

Keywords: energy, optimization, hydrothermal power systems, artificial intelligence and genetic algorithms

Procedia PDF Downloads 420
4725 Spatial Suitability Assessment of Onshore Wind Systems Using the Analytic Hierarchy Process

Authors: Ayat-Allah Bouramdane

Abstract:

Since 2010, there have been sustained decreases in the unit costs of onshore wind energy and large increases in its deployment, varying widely across regions. In fact, the onshore wind production is affected by air density— because cold air is more dense and therefore more effective at producing wind power— and by wind speed—as wind turbines cannot operate in very low or extreme stormy winds. The wind speed is essentially affected by the surface friction or the roughness and other topographic features of the land, which slow down winds significantly over the continent. Hence, the identification of the most appropriate locations of onshore wind systems is crucial to maximize their energy output and therefore minimize their Levelized Cost of Electricity (LCOE). This study focuses on the preliminary assessment of onshore wind energy potential, in several areas in Morocco with a particular focus on the Dakhla city, by analyzing the diurnal and seasonal variability of wind speed for different hub heights, the frequency distribution of wind speed, the wind rose and the wind performance indicators such as wind power density, capacity factor, and LCOE. In addition to climate criterion, other criteria (i.e., topography, location, environment) were selected fromGeographic Referenced Information (GRI), reflecting different considerations. The impact of each criterion on the suitability map of onshore wind farms was identified using the Analytic Hierarchy Process (AHP). We find that the majority of suitable zones are located along the Atlantic Ocean and the Mediterranean Sea. We discuss the sensitivity of the onshore wind site suitability to different aspects such as the methodology—by comparing the Multi-Criteria Decision-Making (MCDM)-AHP results to the Mean-Variance Portfolio optimization framework—and the potential impact of climate change on this suitability map, and provide the final recommendations to the Moroccan energy strategy by analyzing if the actual Morocco's onshore wind installations are located within areas deemed suitable. This analysis may serve as a decision-making framework for cost-effective investment in onshore wind power in Morocco and to shape the future sustainable development of the Dakhla city.

Keywords: analytic hierarchy process (ahp), dakhla, geographic referenced information, morocco, multi-criteria decision-making, onshore wind, site suitability.

Procedia PDF Downloads 169
4724 The Old Basis of Press Authority and New Media: Devolution of Communication Power Base in Nigeria by X (Formally Twitter)

Authors: Nzeaka Emmanuel Ezimako

Abstract:

With the advent of new media, especially X, the government's previous foundation of media power and control in Nigeria has been diminished because they can no longer regulate the public sphere to control social action and reactions. This study examined how IPOB (Indigenous People of Biafra) resistance and the 2020 #Endsars aborted revolution were able to control public discourse during social upheavals, as well as how the new media have diminished the influence that the government and media owners once had over Nigerians. This study is significant because it recognizes the social transformation brought about by the emergence of new media, particularly with the most widely used social media platform in Nigeria, X, and how citizen media activity is altering the media ecosystem and challenging the government and private media owners' hegemony over news coverage in Nigeria to the point where the government saw X as a blatant threat to its hegemony and banned it in 2021. This study used a triangulation of qualitative and quantitative analysis with 300 respondents (n=300) from different sectors of the media practitioners, scholars, and university students in Nigeria to draw a conclusion in line with Democratic Participant Media Theory, which questions the necessity for centralized media regulated by the government and conglomerates. The contributions to filling the gap in the literature are meant to aid readers in comprehending how X has developed into a dominant force in Nigerian media, particularly during the crisis. The study offers recommendations for media executives, policymakers, and the public on how to manage the media conflict that has developed because of the loss of official government oversight of the mass media due to the emergence of X in the media space.

Keywords: Twitter, new media, regulations, dominance, resistance

Procedia PDF Downloads 88
4723 Improvement of the Robust Proportional–Integral–Derivative (PID) Controller Parameters for Controlling the Frequency in the Intelligent Multi-Zone System at the Present of Wind Generation Using the Seeker Optimization Algorithm

Authors: Roya Ahmadi Ahangar, Hamid Madadyari

Abstract:

The seeker optimization algorithm (SOA) is increasingly gaining popularity among the researchers society due to its effectiveness in solving some real-world optimization problems. This paper provides the load-frequency control method based on the SOA for removing oscillations in the power system. A three-zone power system includes a thermal zone, a hydraulic zone and a wind zone equipped with robust proportional-integral-differential (PID) controllers. The result of simulation indicates that load-frequency changes in the wind zone for the multi-zone system are damped in a short period of time. Meanwhile, in the oscillation period, the oscillations amplitude is not significant. The result of simulation emphasizes that the PID controller designed using the seeker optimization algorithm has a robust function and a better performance for oscillations damping compared to the traditional PID controller. The proposed controller’s performance has been compared to the performance of PID controller regulated with Particle Swarm Optimization (PSO) and. Genetic Algorithm (GA) and Artificial Bee Colony (ABC) algorithms in order to show the superior capability of the proposed SOA in regulating the PID controller. The simulation results emphasize the better performance of the optimized PID controller based on SOA compared to the PID controller optimized with PSO, GA and ABC algorithms.

Keywords: load-frequency control, multi zone, robust PID controller, wind generation

Procedia PDF Downloads 303
4722 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros

Authors: Fernando Maass, Pablo Martin, Jorge Olivares

Abstract:

The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.

Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations

Procedia PDF Downloads 251
4721 The Consequences of Regime Change in Iraq; Formation and Continuation of Geopolitical Crises

Authors: Ali Asghar Sotoudeh

Abstract:

Since the US invasion of Iraq in 2003 and the subsequent regime change, internal conflicts between political and ethnic-religious groups have become a hallmark of Iraqi political dynamism. The most important manifestations of these conflicts are the Kurdish-central government conflicts, as well as fundamentalism since 2003. As a result, it seems not only US presence in Iraq under the pretext of fighting terrorism and expanding democracy has not had a positive effect on controlling fundamentalism and political stability in Iraq, but it has paved the way for the formation and continuation of geopolitical crises in the form of disputes over territory and sources of power. In this regard, given the importance of the study, the main purpose of this study is to examine the process of the impact of US regime-change policy on the formation and continuation of geopolitical crises in Iraq. The central question of this study is, what effect has the US regime change policy had on Iraq's domestic political processes? Findings show that regime change and subsequent imposed federalism have widened the gaps in Iraq's sectarian-ethnic system. As a result, the geopolitical crisis in the context of the dispute over geographical territory and sources of power between ethnic-religious groups has become the most important political dynamic in Iraq since the occupation. The research method in this article is descriptive-analytical, and the data collection method is library and internet resources.

Keywords: Iraq, united states, geopolitical crisis, ethno-religious conflict, political federalism

Procedia PDF Downloads 147
4720 Carbon Aerogels with Tailored Porosity as Cathode in Li-Ion Capacitors

Authors: María Canal-Rodríguez, María Arnaiz, Natalia Rey-Raap, Ana Arenillas, Jon Ajuria

Abstract:

The constant demand of electrical energy, as well as the increase in environmental concern, lead to the necessity of investing in clean and eco-friendly energy sources that implies the development of enhanced energy storage devices. Li-ion batteries (LIBs) and Electrical double layer capacitors (EDLCs) are the most widespread energy systems. Batteries are able to storage high energy densities contrary to capacitors, which main strength is the high-power density supply and the long cycle life. The combination of both technologies gave rise to Li-ion capacitors (LICs), which offers all these advantages in a single device. This is achieved combining a capacitive, supercapacitor-like positive electrode with a faradaic, battery-like negative electrode. Due to the abundance and affordability, dual carbon-based LICs are nowadays the common technology. Normally, an Active Carbon (AC) is used as the EDLC like electrode, while graphite is the material commonly employed as anode. LICs are potential systems to be used in applications in which high energy and power densities are required, such us kinetic energy recovery systems. Although these devices are already in the market, some drawbacks like the limited power delivered by graphite or the energy limiting nature of AC must be solved to trigger their used. Focusing on the anode, one possibility could be to replace graphite with Hard Carbon (HC). The better rate capability of the latter increases the power performance of the device. Moreover, the disordered carbonaceous structure of HCs enables storage twice the theoretical capacity of graphite. With respect to the cathode, the ACs are characterized for their high volume of micropores, in which the charge is storage. Nevertheless, they normally do not show mesoporous, which are really important mainly at high C-rates as they act as transport channels for the ions to reach the micropores. Usually, the porosity of ACs cannot be tailored, as it strongly depends on the precursor employed to get the final carbon. Moreover, they are not characterized for having a high electrical conductivity, which is an important characteristic to get a good performance in energy storage applications. A possible candidate to substitute ACs are carbon aerogels (CAs). CAs are materials that combine a high porosity with great electrical conductivity, opposite characteristics in carbon materials. Furthermore, its porous properties can be tailored quite accurately according to with the requirements of the application. In the present study, CAs with controlled porosity were obtained from polymerization of resorcinol and formaldehyde by microwave heating. Varying the synthesis conditions, mainly the amount of precursors and pH of the precursor solution, carbons with different textural properties were obtained. The way the porous characteristics affect the performance of the cathode was studied by means of a half-cell configuration. The material with the best performance was evaluated as cathode in a LIC versus a hard carbon as anode. An analogous full LIC made by a high microporous commercial cathode was also assembled for comparison purposes.

Keywords: li-ion capacitors, energy storage, tailored porosity, carbon aerogels

Procedia PDF Downloads 167
4719 Effects of Surface Roughness on a Unimorph Piezoelectric Micro-Electro-Mechanical Systems Vibrational Energy Harvester Using Finite Element Method Modeling

Authors: Jean Marriz M. Manzano, Marc D. Rosales, Magdaleno R. Vasquez Jr., Maria Theresa G. De Leon

Abstract:

This paper discusses the effects of surface roughness on a cantilever beam vibrational energy harvester. A silicon sample was fabricated using MEMS fabrication processes. When etching silicon using deep reactive ion etching (DRIE) at large etch depths, rougher surfaces are observed as a result of increased response in process pressure, amount of coil power and increased helium backside cooling readings. To account for the effects of surface roughness on the characteristics of the cantilever beam, finite element method (FEM) modeling was performed using actual roughness data from fabricated samples. It was found that when etching about 550um of silicon, root mean square roughness parameter, Sq, varies by 1 to 3 um (at 100um thick) across a 6-inch wafer. Given this Sq variation, FEM simulations predict an 8 to148 Hz shift in the resonant frequency while having no significant effect on the output power. The significant shift in the resonant frequency implies that careful consideration of surface roughness from fabrication processes must be done when designing energy harvesters.

Keywords: deep reactive ion etching, finite element method, microelectromechanical systems, multiphysics analysis, surface roughness, vibrational energy harvester

Procedia PDF Downloads 121
4718 Quality Assurance in Cardiac Disorder Detection Images

Authors: Anam Naveed, Asma Andleeb, Mehreen Sirshar

Abstract:

In the article, Image processing techniques have been applied on cardiac images for enhancing the image quality. Two types of methodologies considers for survey, invasive techniques and non-invasive techniques. Different image processes for improvement of cardiac image quality and reduce the amount of radiation exposure for invasive techniques are explored. Different image processing algorithms for enhancing the noninvasive cardiac image qualities are described. Beside these two methodologies, third methodology has applied on live streaming of heart rate on ECG window for extracting necessary information, removing noise and enhancing quality. Sensitivity analyses have been carried out to investigate the impacts of cardiac images for diagnosis of cardiac arteries disease and how the enhancement on images will help the cardiologist to diagnoses disease. The paper evaluates strengths and weaknesses of different techniques applied for improved the image quality and draw a conclusion. Some specific limitations must be considered for whole survey, like the patient heart beat must be 70-75 beats/minute while doing the angiography, similarly patient weight and exposure radiation amount has some limitation.

Keywords: cardiac images, CT angiography, critical analysis, exposure radiation, invasive techniques, invasive techniques, non-invasive techniques

Procedia PDF Downloads 352
4717 The Impact Of Environmental Management System ISO 14001 Adoption on Firm Performance

Authors: Raymond Treacy, Paul Humphreys, Ronan McIvor, Trevor Cadden, Alan McKittrick

Abstract:

This study employed event study methodology to examine the role of institutions, resources and dynamic capabilities in the relationship between the Environmental Management System ISO 14001 adoption and firm performance. Utilising financial data from 140 ISO 14001 certified firms and 320 non-certified firms, the results of the study suggested that the UK and Irish manufacturers were not implementing ISO 14001 solely to gain legitimacy. In contrast, the results demonstrated that firms were fully integrating the ISO 14001 standard within their operations as certified firms were able to improve both financial and operating performance when compared to non-certified firms. However, while there were significant and long lasting improvements for employee productivity, manufacturing cost efficiency, return on assets and sales turnover, the sample firms operating cycle and fixed asset efficiency displayed evidence of diminishing returns in the long-run, underlying the observation that no operating advantage based on incremental improvements can be everlasting. Hence, there is an argument for investing in dynamic capabilities which help renew and refresh the resource base and help the firm adapt to changing environments. Indeed, the results of the regression analysis suggest that dynamic capabilities for innovation acted as a moderator in the relationship between ISO 14001 certification and firm performance. This, in turn, will have a significant and symbiotic influence on sustainability practices within the participating organisations. The study not only provides new and original insights, but demonstrates pragmatically how firms can take advantage of environmental management systems as a moderator to significantly enhance firm performance. However, while it was shown that firm innovation aided both short term and long term ROA performance, adaptive market capabilities only aided firms in the short-term at the marketing strategy deployment stage. Finally, the results have important implications for firms operating in an economic recession as the results suggest that firms should scale back investment in R&D while operating in an economic downturn. Conversely, under normal trading conditions, consistent and long term investments in R&D was found to moderate the relationship between ISO 14001 certification and firm performance. Hence, the results of the study have important implications for academics and management alike.

Keywords: supply chain management, environmental management systems, quality management, sustainability, firm performance

Procedia PDF Downloads 308
4716 Cyber Security Enhancement via Software Defined Pseudo-Random Private IP Address Hopping

Authors: Andre Slonopas, Zona Kostic, Warren Thompson

Abstract:

Obfuscation is one of the most useful tools to prevent network compromise. Previous research focused on the obfuscation of the network communications between external-facing edge devices. This work proposes the use of two edge devices, external and internal facing, which communicate via private IPv4 addresses in a software-defined pseudo-random IP hopping. This methodology does not require additional IP addresses and/or resources to implement. Statistical analyses demonstrate that the hopping surface must be at least 1e3 IP addresses in size with a broad standard deviation to minimize the possibility of coincidence of monitored and communication IPs. The probability of breaking the hopping algorithm requires a collection of at least 1e6 samples, which for large hopping surfaces will take years to collect. The probability of dropped packets is controlled via memory buffers and the frequency of hops and can be reduced to levels acceptable for video streaming. This methodology provides an impenetrable layer of security ideal for information and supervisory control and data acquisition systems.

Keywords: moving target defense, cybersecurity, network security, hopping randomization, software defined network, network security theory

Procedia PDF Downloads 185
4715 A Comparative Study of Innovative Regions in the World Based on the Theory of Innovation Ecosystem: Cases of the Silicon Valley, Cambridge, Tsukuba and Zhongguancun

Authors: Xinlan Zhang, Dandong Ge, Bingying Liu, Haoyang Liang

Abstract:

With the rapid development of technology and urbanization, innovation has become an important driving force for urban development. Since the late 20th Century, a number of cities and regions have emerged in the world with innovation as the main driving force, and many of them are still the most important innovation centers in the world. Based on the perspective of innovation ecosystem theory, this paper compares Silicon Valley in the United States, Cambridge in the United Kingdom, Tsukuba in Japan and Zhongguancun in China to explore the reasons for the success of innovative regions and their respective characteristics, hoping to provide a reference for the development of other innovative cities. The main conclusions of this study are the following; firstly, different countries have different social backgrounds. The development model of innovative regions is closely related to the regional backgrounds. Secondly, the market force and the government power have important significance for the development of the innovation regions. The influence of the government power in the early stage of development is great, and in the latter stage, development is dominated by the market force. In addition, the self-organizing ability of the region has a great impact on the innovation ability of the region. Strong self-organizing ability is conducive to the development of innovation economy.

Keywords: contrastive study, development model, innovation ecosystem, innovative regions

Procedia PDF Downloads 158
4714 Feasibility Study on a Conductive-Type Cooling System for an Axial Flux Permanent Magnet Generator

Authors: Yang-Gyun Kim, Eun-Taek Woo, Myeong-Gon Lee, Yun-Hyun Cho, Seung-Ho Han

Abstract:

For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind turbines such as an axial flux permanent magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5 MW. In this paper, we proposed a newly developed conductive-type cooling system using a heat pipe wound to the stator of a 2.5 MW AFPM generator installed on an offshore wind turbine. The numerical results showed that the temperatures on the stator surface using convective-type cooling system and the proposed conductive-type cooling system at thermal saturation were 60 and 76°C, respectively, which met the requirements for power production. The temperatures of the permanent magnet cased by the radiant heating from the stator surface were 53°C and 66°C, respectively, in each case. As a result, the permanent magnet did not reach the malfunction temperature. Although the cooling temperatures in the case of the conductive-type cooling system were higher than that of the convective-type cooling system, the relatively small size of the water pump and radiators make a light-weight design of the AFPM generator possible.

Keywords: wind turbine, axial flux permanent magnet (AFPM) generator, conductive-type cooling system

Procedia PDF Downloads 327
4713 Enhancement of Mechanical Properties and Thermal Conductivity of Oil Palm Shell Lightweight Concrete Reinforced with High Performance Polypropylene Fibres

Authors: Leong Tatt Loh, Ming Kun Yew, Ming Chian Yew, Lip Huat Saw, Jing Han Beh, Siong Kang Lim, Foo Wei Lee

Abstract:

Oil palm shell (OPS) is the solid waste product from the palm oil sector of the agricultural industry and can be used as alternative coarse aggregates to substitute depleting conventional raw materials. This research aims to investigate the incorporation of various high-performance polypropylene (HPP) fibres with different geometry to enhance the mechanical properties and thermal conductivity of OPS lightweight concrete. The effect of different volume fractions (Vf) (0.05%, 0.10% and 0.15%) were studied for each fibre. The results reveal that the effectiveness of HPP fibres to increase the compressive strength at later ages was more pronounced than at early age. It is found that the use of HPP fibres reinforced OPS lightweight concrete (LWC) induced the advantageous of improving mechanical properties (compressive strength, flexural strength and splitting tensile strength) and thermal conductivity. Hence, this HPP fibres is a promising alternative solution to compensate lower mechanical properties as well as contribute to energy efficiency building material in the construction industry.

Keywords: oil palm shell, high performance polypropylene fibre, lightweight concrete, mechanical properties, thermal conductivity

Procedia PDF Downloads 207
4712 Design Standardization in Aramco: Strategic Analysis

Authors: Mujahid S. Alharbi

Abstract:

The construction of process plants in oil and gas-producing countries, such as Saudi Arabia, necessitates substantial investment in design and building. Each new plant, while unique, includes common building types, suggesting an opportunity for design standardization. This study investigates the adoption of standardized Issue For Construction (IFC) packages for non-process buildings in Saudi Aramco. A SWOT analysis presents the strengths, weaknesses, opportunities, and threats of this approach. The approach's benefits are illustrated using the Hawiyah Unayzah Gas Reservoir Storage Program (HUGRSP) as a case study. Standardization not only offers significant cost savings and operational efficiencies but also expedites project timelines, reduces the potential for change orders, and fosters local economic growth by allocating building tasks to local contractors. Standardization also improves project management by easing interface constraints between different contractors and promoting adaptability to future industry changes. This research underscores the standardization of non-process buildings as a powerful strategy for cost optimization, efficiency enhancement, and local economic development in process plant construction within the oil and gas sector.

Keywords: building, construction, management, project, standardization

Procedia PDF Downloads 64
4711 Studying the Influence of Logistics on Organizational Performance through a Supply Chain Strategy: Case Study in Goldiran Electronics Co.

Authors: Ali Hajiesmaeili, Mehdi Rahimi, Ehsan Jaberi, Amir Abbas Hosseini

Abstract:

The purpose of this study is investigating the influences of logistics performance on organizational performance including both marketing & financial aspects, and showing the financial impacts of selecting the right marketing and logistics priorities in line with their supply chain type, and also giving the practitioners an advance identification of their priorities and participation types of supply chain, and the best combination of their strategies and resources in this regard. We made use of the original model’s questionnaire to gather all expert’s data and also SPSS and AMOS Ver.22 to analyze the gathered data. CFA method was also used to test whether a relationship between observed variables and their underlying latent constructs exists. Supply chain strategy implementation leads to logistics performance improvement, and marketing performance will be affected as well. Logistics service providers should focus on enhancement of supply chain performance, since logistics performance has been considered as a basis of evaluation of supply chain management strategy. Consequently, performance of the organization will be enhanced. This case is the first research made in Iran that analyzes the relationship between Logistics & Organizational performance in Home Appliances and Home Entertainment companies.

Keywords: logistics, organizational, performance, supply chain, strategy

Procedia PDF Downloads 649
4710 Advanced Deployable/Retractable Solar Panel System for Satellite Applications

Authors: Zane Brough, Claudio Paoloni

Abstract:

Modern low earth orbit (LEO) satellites that require multi-mission flexibility are highly likely to be repositioned between different operational orbits. While executing this process the satellite may experience high levels of vibration and environmental hazards, exposing the deployed solar panel to dangerous stress levels, fatigue and space debris, hence it is desirable to retract the solar array before satellite repositioning to avoid damage or failure. Furthermore, to accommodate for today's technological world, the power demand of a modern LEO satellite is rapidly increasing, which consequently provides pressure upon the design of the satellites solar array system to conform to the strict volume and mass limitations. A novel concept of deployable/retractable hybrid solar array system, aimed to provide a greater power to volume ratio while dramatically reducing the disadvantages of system mass and cost is proposed. Taking advantage of the new lightweight technology in solar panels, a mechanical system composed of both rigid and flexible solar panels arranged within a petal formation is proposed to yield a stowed to deployment area ratio up to at least 1:7, which improves the power density dramatically. The system consists of five subsystems, the outer ones based on a novel eight-petal configuration that provides a large surface and supports the flexible solar panels. A single cable and spool based hinge mechanism were designed to synchronously deploy/retract the panels in a safe, simple and efficient manner while the mass compared to the previous systems is considerably reduced. The relevant challenge to assure a smooth movement is resolved by a proper minimization of the gearing system and the use of a micro-controller system. A prototype was designed by 3D simulators and successfully constructed and tested. Further design works are in progress to implement an epicyclical gear hinge mechanism, which will further reduce the volume, mass and complexity of the system significantly. The proposed system due to an effective and reliable mechanism provides a large active surface, whilst being very compact. It could be extremely advantageous for use as ground portable solar panel system.

Keywords: mechatronic engineering, satellite, solar panel, deployable/retractable mechanism

Procedia PDF Downloads 378
4709 Development of a Real-Time Brain-Computer Interface for Interactive Robot Therapy: An Exploration of EEG and EMG Features during Hypnosis

Authors: Maryam Alimardani, Kazuo Hiraki

Abstract:

This study presents a framework for development of a new generation of therapy robots that can interact with users by monitoring their physiological and mental states. Here, we focused on one of the controversial methods of therapy, hypnotherapy. Hypnosis has shown to be useful in treatment of many clinical conditions. But, even for healthy people, it can be used as an effective technique for relaxation or enhancement of memory and concentration. Our aim is to develop a robot that collects information about user’s mental and physical states using electroencephalogram (EEG) and electromyography (EMG) signals and performs costeffective hypnosis at the comfort of user’s house. The presented framework consists of three main steps: (1) Find the EEG-correlates of mind state before, during, and after hypnosis and establish a cognitive model for state changes, (2) Develop a system that can track the changes in EEG and EMG activities in real time and determines if the user is ready for suggestion, and (3) Implement our system in a humanoid robot that will talk and conduct hypnosis on users based on their mental states. This paper presents a pilot study in regard to the first stage, detection of EEG and EMG features during hypnosis.

Keywords: hypnosis, EEG, robotherapy, brain-computer interface (BCI)

Procedia PDF Downloads 256
4708 A Fast Calculation Approach for Position Identification in a Distance Space

Authors: Dawei Cai, Yuya Tokuda

Abstract:

The market of localization based service (LBS) is expanding. The acquisition of physical location is the fundamental basis for LBS. GPS, the de facto standard for outdoor localization, does not work well in indoor environment due to the blocking of signals by walls and ceiling. To acquire high accurate localization in an indoor environment, many techniques have been developed. Triangulation approach is often used for identifying the location, but a heavy and complex computation is necessary to calculate the location of the distances between the object and several source points. This computation is also time and power consumption, and not favorable to a mobile device that needs a long action life with battery. To provide a low power consumption approach for a mobile device, this paper presents a fast calculation approach to identify the location of the object without online solving solutions to simultaneous quadratic equations. In our approach, we divide the location identification into two parts, one is offline, and other is online. In offline mode, we make a mapping process that maps the location area to distance space and find a simple formula that can be used to identify the location of the object online with very light computation. The characteristic of the approach is a good tradeoff between the accuracy and computational amount. Therefore, this approach can be used in smartphone and other mobile devices that need a long work time. To show the performance, some simulation experimental results are provided also in the paper.

Keywords: indoor localization, location based service, triangulation, fast calculation, mobile device

Procedia PDF Downloads 174
4707 Introduction of Knowledge Management in a Public Sector Organization in India

Authors: Siddharth Vashisth, Varun Mathur

Abstract:

This review provides an overview of the impact that implementation of various Knowledge Management (KM) strategies has had on the growth of a department in a Public Sector Company in India. In a regulated utility controlled by the government, the growth of an organization such as Hindustan Petroleum Corporation Limited (HPCL) had depended largely on the efficiencies of the systems and its people. However, subsequent to the de-regularization & to the entry of the private competition, the need for a ‘systematic templating’ of knowledge was recognized. This necessitated the introduction of Knowledge Management Centre (KMC). Projects & Pipelines Department (P&P) of HPCL introduced KMC that contributed significantly towards KM by adopting various strategies such as standardization, leveraging information system, competency enhancement, and improvements & innovations. These strategies gave both tangible as well as intangible benefits towards KM. Knowledge, technology & people are the three pillars that need to be catered for effective knowledge management in any organization. In HPCL, the initiative of KMC has served as an intermediary between these three major pillars as each activity of the strategy was centered on them and contributed significantly to their growth and up-gradation, ensuring overall growth of KM in the department.

Keywords: knowledge, knowledge management, public sector organization, standardization, technology, people, skill, information system, innovation, competency, impact

Procedia PDF Downloads 454
4706 Investigation of Minor Actinide-Contained Thorium Fuel Impacts on CANDU-Type Reactor Neutronics Using Computational Method

Authors: S. A. H. Feghhi, Z. Gholamzadeh, Z. Alipoor, C. Tenreiro

Abstract:

Currently, thorium fuel has been especially noticed because of its proliferation resistance than long half-life alpha emitter minor actinides, breeding capability in fast and thermal neutron flux and mono-isotopic naturally abundant. In recent years, efficiency of minor actinide burning up in PWRs has been investigated. Hence, a minor actinide-contained thorium based fuel matrix can confront both proliferation resistance and nuclear waste depletion aims. In the present work, minor actinide depletion rate in a CANDU-type nuclear core modeled using MCNP code has been investigated. The obtained effects of minor actinide load as mixture of thorium fuel matrix on the core neutronics has been studiedwith comparingpresence and non-presence of minor actinide component in the fuel matrix.Depletion rate of minor actinides in the MA-contained fuel has been calculated using different power loads.According to the obtained computational data, minor actinide loading in the modeled core results in more negative reactivity coefficients. The MA-contained fuel achieves less radial peaking factor in the modeled core. The obtained computational results showed 140 kg of 464 kg initial load of minor actinide has been depleted in during a 6-year burn up in 10 MW power.

Keywords: minor actinide burning, CANDU-type reactor, MCNPX code, neutronic parameters

Procedia PDF Downloads 457
4705 Comparative Analysis of Local Acceptance of Renewable Energy Facilities and Spent Nuclear Fuel Repositories

Authors: Taehyun Kim, Hyunjoo Park, Taehyun Kim

Abstract:

Public deliberation committee on Shin-Gori Nuclear Reactors No. 5 & 6 in South Korea recently suggested policy recommendation in July 2017 including complementary measures for resumption of construction: 1) nuclear power generation reduction, 2) expansion of investment to increase proportion of renewable energy, 3) repositories of spent nuclear fuel. Even when constructing eco-friendly renewable energy facilities such as solar and wind power plants, local residents are opposed to construction of these facilities due to environmental pollution and health impacts. In order to transform eco-friendly energy, it is necessary to convert nuclear energy into renewable energy and to take measures to increase the acceptance of residents through the participation of citizens. Therefore, this study aims to compare the factors of local acceptance of renewable energy facilities and spent nuclear fuel repositories through literature review and in-depth interview. The results show that environmental and economic concerns, risk perceptions, sociality, demographic characteristics and subjective recognition types affect the local acceptance for spent nuclear fuel repository. The factors of local acceptance for renewable energy facilities are partially coincide with those for spent nuclear fuel repository. The results of this study will contribute to improving residents' acceptance and reducing conflicts when determining the location of facilities in the future.

Keywords: local acceptance, renewable energy facility, spent nuclear fuel repository, interview

Procedia PDF Downloads 301