Search results for: temperature uniformity
4225 Carbon based Smart Materials: Functional Carbon for Lightweight Automotive Component 3D Printing
Authors: Mohammad M. Garmabia, Peyman Shahia, Jimi Tjonga, Mohini Saina
Abstract:
Flame retardant composite filaments with functional carbon in the composition were fabricated, and printed parts showed enhancedcrash resistance pproperties and imporved EMI shielding. The negligible mass difference after prolonged immersion in automobile chemicals revealed the outstanding performance of parts for under-the-hood high-temperature applications.Keywords: FDM, crash worthy, EMI Shield, lightweight, automotive parts
Procedia PDF Downloads 1014224 The Construction Technology of Dryer Silo Materials to Grains Made from Webbing Bamboo: A Drying Technology Solutions to Empowerment Farmers in Yogyakarta, Indonesia
Authors: Nursigit Bintoro, Abadi Barus, Catur Setyo Dedi Pamungkas
Abstract:
Indonesia is an agrarian country have almost population work as farmers. One of the popular agriculture commodity in Indonesia is paddy and corn. Production of paddy and corn are increased, but not balanced to the development of appropriate technology to farmers. Methods of drying applied with farmers still using sunshine. Drying by this method has some drawbacks, such as differences moisture content of corn grains, time used to dry around 3 days, and less quality of the products obtained. Beside it, the method of drying by using sunshine can’t do when the rainy season arrives. On this season the product obtained has less quality. One solution to the above problems is to create a dryer with simple technology. That technology is made silo dryer from webbing bamboo and wood. This technology is applicable to be applied to farmers' groups as well as the creation technology is quite cheap. The experiment material used in this research will be obtained from the corn grains. The equipment used are woven bamboo with a height of 3 meters and have capacity of up to 900 kgs as a silo, gas, burner, blower, bucket elevators, thermocouple, Arduino microcontroller 2560. This tools automatically records all the data of temperature and relative humidity. During on drying, each 30 minutes take 9 sample for measuring moisture content with moisture meter. By using this technology, farmers can save time, energy, and cost to the drying their agriculture product. In addition, by using this technology have good quality moisture content of grains and have a longer shelf life because the temperature when the heating process is controlled. Therefore, this technology is applicable to be applied to the public because the materials used to make the dryer easier to find, cheaper, and manufacture of the dryer made simple with good quality.Keywords: grains, dryer, moisture content, appropriate technology
Procedia PDF Downloads 3614223 Physico-Chemical Characteristics and Possibilities of Utilization of Elbasan Thermal Waters
Authors: Elvin Çomo, Edlira Tako, Albana Hasimi, Rrapo Ormeni, Olger Gjuzi, Mirela Ndrita
Abstract:
In Albania, only low enthalpy geothermal springs and wells are known, the temperatures of some of them are almost at the upper limits of low enthalpy, reaching over 60°C. These resources can be used to improve the country's energy balance, as well as for profitable economic purposes. The region of Elbasan has the greatest geothermal energy potential in Albania. This bass is one of the most popular and used in our country. This area is a surface with a number of sources, located in the form of a chain, in the sector between Llixha and Hidraj and constitutes a thermo-mineral basin with stable discharge and high temperature. The sources of Elbasan Springs, with the current average flow of thermo mineral water of 12-18 l/s and its temperature 55-65oC, have specific reserves of 39.6 GJ/m2 and potential power to install 2760 kW. For the assessment of physico-chemical parameters and heavy metals, water samples were taken at 5 monitoring stations throughout the year 2022. The levels of basic parameters were analyzed using ISO, EU and APHA 21-th edition standard methods. This study presents the current state of the physico-chemical parameters of this thermal basin, the evaluation of these parameters for curative activities and for industrial processes, as well as the integrated utilization of geothermal energy. Possibilities for using thermomineral waters for heating homes in the area around them or even further, depending on the flow from the source or geothermal well. Sensitization of Albanian investors, medical research and the community for the high economic and curative effectiveness, for the integral use of geothermal energy in this area and the development of the tourist sector. An analysis of the negative environmental impact from the use of thermal water is also provided.Keywords: geothermal energy, Llixha, physic-chemical parameters, thermal water
Procedia PDF Downloads 1474222 Characterization of Electrical Transport across Ultra-Thin SrTiO₃ and BaTiO₃ Barriers in Tunnel Junctions
Authors: Henry Navarro, Martin Sirena, Nestor Haberkorn
Abstract:
We report the electrical transport through voltage-current curves (I-V) in tunnels junction GdBa₂Cu₃O₇-d/ insulator/ GdBa₂Cu₃O₇-d, and Nb/insulator/ GdBa₂Cu₃O₇-d is analyzed using a conducting atomic force microscope (CAFM) at room temperature. The measurements were obtained on tunnel junctions with different areas (900 μm², 400 μm² and 100 μm²). Trilayers with GdBa₂Cu₃O₇-d (GBCO) as the bottom electrode, SrTiO₃ (STO) or BaTiO₃ (BTO) as the insulator barrier (thicknesses between 1.6 nm and 4 nm), and GBCO or Nb as the top electrode were grown by DC sputtering on (100) SrTiO₃ substrates. For STO and BTO barriers, asymmetric IV curves at positive and negative polarization can be obtained using electrodes with different work function. The main difference is that the BTO is a ferroelectric material, while in the STO the ferroelectricity can be produced by stress or deformation at the interfaces. In addition, hysteretic IV curves are obtained for BTO barriers, which can be ascribed to a combined effect of the FE reversal switching polarization and an oxygen vacancy migration. For GBCO/ BTO/ GBCO heterostructures, the IV curves correspond to that expected for asymmetric interfaces, which indicates that the disorder affects differently the properties at the bottom and top interfaces. Our results show the role of the interface disorder on the electrical transport of conducting/ insulator/ conduction heterostructures, which is relevant for different applications, going from resistive switching memories (at room temperature) to Josephson junctions (at low temperatures). The superconducting transition of the GBCO electrode was characterized by electrical transport using the 4-prong configuration with low density of topological defects and with Tc over liquid N₂ can be obtained for thicknesses of 16 nm, our results demonstrate that GBCO films with an average root-mean-square (RMS) smaller than 1 nm and areas (up 100 um²) free of 3-D topological defects can be obtained.Keywords: thin film, sputtering, conductive atomic force microscopy, tunnel junctions
Procedia PDF Downloads 1564221 Studies on the Physico-Chemical Parameters of Jebba Lake, Niger State, Nigeria
Authors: M. B. Mshelia, J. K. Balogun, J. Auta, N. O. Bankole
Abstract:
Studies on some aspects of the physico-chemical parameters of Jebba Lake, Niger State, Nigeria was carried out from January to December, 2011. The aim was to investigate some of the physico-chemical parameters relevant to life and health of fish in the water body. Six (6) sampling sites were selected at random which covered Northern (Faku and Awuru), middle (Old Gbajibo and Shankade) and southern zones (New Gbajibo and Jebba dam} of Jebba Lake. Sampling was carried out for the period of 12 Months. The Physico-chemical parameters that were considered were water temperature, pH, dissolved oxygen, electrical conductivity, water transparency, phosphate and nitrate. They were all measured using standard methods. The results showed that water temperature values ranged between 26.06 ± 0.15a in Jebba lake site to 27.34 ± 0.12b in Shankade sampling site, depth varied from 8.08m to 31.64m, water current was between 20.10.62 cm/sec and 26.46 cm/sec, Secchi disc transparency ranged from0.46±0.01 m in New Gbajibo, while the highest mean value was 0.53 ± 0.04 m in Jebba dam., pH varied from 6.49 ± 0.01 and 7.59,5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.The dissolved oxygen varied between 5.35±0.03a mg/l in New Gbajibo and 6.75 ± 0.03 mg/l in Faku.,The mean conductivity value was highest in Faku and Jebba with 128.8 ± 0.32 and 128.8 ± 0.42homs/cm) respectively, Alkalinity ranged 43.00±0.02 to33.30±0.32 mg/l., The nitrate-nitrogen range (2.37 ± 0.08 – 6.40 ± 0.50mg/l)., The mean values of phosphate-phosphorus (PO4-P) recorded varied between 0.18 ± 0.00 mg/l in Faku to 0.47 + 0.10 mg/l in Old Gbajibo.The highest mean value for total dissolved solids was 57.88 ± 0.28 mg/l in Shankade, while the lowest mean value of 39.17 ± 0.42 mg/l was recorded in Faku. Free CO2 ranged from 1.75 mg/l to 2.94 mg/l, Biochemical oxygen demand (BOD) was between 4.25 mg/l and 5.41 mg/l and nitrate-nitrogen concentration was between 2.37 mg/l and 6.40 mg/l. There were significant differences (P < 0.05) between these parameters in relation to stations. Generally, the physico-chemical characteristics of Lake Jebba were within the productive values for aquatic systems, and strongly indicate that the lake is unpolluted.Keywords: Jebba Lake, water quality, secchi disc, DO meter, sampling sites, physico-chemical parameters
Procedia PDF Downloads 4384220 Acetalization of Carbonyl Compounds by Using Al2 (HPO4)3 under Green Condition Mg HPO4
Authors: Fariba Jafari, Samaneh Heydarian
Abstract:
Al2(HPO4)3 was easily prepared and used as a solid acid in acetalization of carbonyl compounds at room temperature and under solvent-free conditions. The protection was done in short reaction times and in good to high isolated yields. The cheapness and availability of this reagent with easy procedure and work-up make this method attractive for the organic synthesis.Keywords: acetalization, acid catalysis, carbonylcompounds, green condition, protection
Procedia PDF Downloads 3204219 Feasibility of Solar Distillation as Household Water Supply in Saline Zones of Bangladesh
Authors: Md. Rezaul Karim, Md. Ashikur Rahman, Dewan Mahmud Mim
Abstract:
Scarcity of potable water as the result of rapid climate change and saltwater intrusion in groundwater has been a major problem in the coastal regions over the world. In equinoctial countries like Bangladesh, where sunlight is available for more than 10 hours a day, Solar Distillation provides a promising sustainable way for safe drinking water supply in coastal poor households with negligible major cost and difficulty of construction and maintenance. In this paper, two passive type solar stills- a Conventional Single Slope Solar still (CSS) and a Pyramid Solar Sill (PSS) is used and relationship is established between distill water output corresponding to four different factors- temperature, solar intensity, relative humidity and wind speed for Gazipur, Bangladesh. Comparison is analyzed between the two different still outputs for nine months period (January- September) and efficiency is calculated. Later a thermal mathematical model is developed and the distilled water output for Khulna, Bangladesh is computed. Again, difference between the output of the two cities- Gazipur and Khulna is demonstrated and finally an economic analysis is prepared. The distillation output has a positive correlation with temperature and solar intensity, inverse relation with relative humidity and wind speed has nugatory consequence. The maximum output of Conventional Solar Still is obtained 3.8 L/m2/day and Pyramid still is 4.3 L/m2/day for Gazipur and almost 15% more efficiency is found for Pyramid still. Productivity in Khulna is found almost 20% more than Gazipur. Based on economic analysis, taking 10 BDT, per liter, the net profit, benefit cost ratio, payback period all indicates that both stills are feasible but pyramid still is more feasible than Conventional Still. Finally, for a 3-4 member family, area of 4 m2 is suggested for Conventional Still and 3m2 for Pyramid Solar Still.Keywords: solar distillation, household water supply, saline zones, Bangladesh
Procedia PDF Downloads 2744218 Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore
Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale
Abstract:
Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction
Procedia PDF Downloads 3984217 Impact Assessment of Climate Change on Water Resources in the Kabul River Basin
Authors: Tayib Bromand, Keisuke Sato
Abstract:
This paper presents the introduction to current water balance and climate change assessment in the Kabul river basin. The historical and future impacts of climate change on different components of water resources and hydrology in the Kabul river basin. The eastern part of Afghanistan, the Kabul river basin was chosen due to rapid population growth and land degradation to quantify the potential influence of Gobal Climate Change on its hydrodynamic characteristics. Luck of observed meteorological data was the main limitation of present research, few existed precipitation stations in the plain area of Kabul basin selected to compare with TRMM precipitation records, the result has been evaluated satisfactory based on regression and normal ratio methods. So the TRMM daily precipitation and NCEP temperature data set applied in the SWAT model to evaluate water balance for 2008 to 2012. Middle of the twenty – first century (2064) selected as the target period to assess impacts of climate change on hydrology aspects in the Kabul river basin. For this purpose three emission scenarios, A2, A1B and B1 and four GCMs, such as MIROC 3.2 (Med), CGCM 3.1 (T47), GFDL-CM2.0 and CNRM-CM3 have been selected, to estimate the future initial conditions of the proposed model. The outputs of the model compared and calibrated based on (R2) satisfactory. The assessed hydrodynamic characteristics and precipitation pattern. The results show that there will be significant impacts on precipitation patter such as decreasing of snowfall in the mountainous area of the basin in the Winter season due to increasing of 2.9°C mean annual temperature and land degradation due to deforestation.Keywords: climate change, emission scenarios, hydrological components, Kabul river basin, SWAT model
Procedia PDF Downloads 4694216 Predictability of Kiremt Rainfall Variability over the Northern Highlands of Ethiopia on Dekadal and Monthly Time Scales Using Global Sea Surface Temperature
Authors: Kibrom Hadush
Abstract:
Countries like Ethiopia, whose economy is mainly rain-fed dependent agriculture, are highly vulnerable to climate variability and weather extremes. Sub-seasonal (monthly) and dekadal forecasts are hence critical for crop production and water resource management. Therefore, this paper was conducted to study the predictability and variability of Kiremt rainfall over the northern half of Ethiopia on monthly and dekadal time scales in association with global Sea Surface Temperature (SST) at different lag time. Trends in rainfall have been analyzed on annual, seasonal (Kiremt), monthly, and dekadal (June–September) time scales based on rainfall records of 36 meteorological stations distributed across four homogenous zones of the northern half of Ethiopia for the period 1992–2017. The results from the progressive Mann–Kendall trend test and the Sen’s slope method shows that there is no significant trend in the annual, Kiremt, monthly and dekadal rainfall total at most of the station's studies. Moreover, the rainfall in the study area varies spatially and temporally, and the distribution of the rainfall pattern increases from the northeast rift valley to northwest highlands. Methods of analysis include graphical correlation and multiple linear regression model are employed to investigate the association between the global SSTs and Kiremt rainfall over the homogeneous rainfall zones and to predict monthly and dekadal (June-September) rainfall using SST predictors. The results of this study show that in general, SST in the equatorial Pacific Ocean is the main source of the predictive skill of the Kiremt rainfall variability over the northern half of Ethiopia. The regional SSTs in the Atlantic and the Indian Ocean as well contribute to the Kiremt rainfall variability over the study area. Moreover, the result of the correlation analysis showed that the decline of monthly and dekadal Kiremt rainfall over most of the homogeneous zones of the study area are caused by the corresponding persistent warming of the SST in the eastern and central equatorial Pacific Ocean during the period 1992 - 2017. It is also found that the monthly and dekadal Kiremt rainfall over the northern, northwestern highlands and northeastern lowlands of Ethiopia are positively correlated with the SST in the western equatorial Pacific, eastern and tropical northern the Atlantic Ocean. Furthermore, the SSTs in the western equatorial Pacific and Indian Oceans are positively correlated to the Kiremt season rainfall in the northeastern highlands. Overall, the results showed that the prediction models using combined SSTs at various ocean regions (equatorial and tropical) performed reasonably well in the prediction (With R2 ranging from 30% to 65%) of monthly and dekadal rainfall and recommends it can be used for efficient prediction of Kiremt rainfall over the study area to aid with systematic and informed decision making within the agricultural sector.Keywords: dekadal, Kiremt rainfall, monthly, Northern Ethiopia, sea surface temperature
Procedia PDF Downloads 1444215 The Impact of Rising Architectural Façade in Improving Terms of the Physical Urban Ambience Inside the Free Space for Urban Fabric - the Street- Case Study the City of Biskra
Authors: Rami Qaoud, Alkama Djamal
Abstract:
When we ask about the impact of rising architectural façade in improving the terms physical urban ambiance inside the free space for urban fabric. Considered as bringing back life and culture values and civilization to these cities. And This will be the theme of this search. Where we have conducted the study about the relationship that connects the empty and full of in the urban fabric in terms of the density construction and the architectural elevation of its façade to street view. In this framework, we adopted in the methodology of this research the technical field experience. And according to three types of Street engineering(H≥2W, H=W, H≤0.5W). Where we conducted a field to raise the values of the physical ambiance according to three main axes of ambiance. The first axe 1 - Thermal ambiance. Where the temperature values were collected, relative humidity, wind speed, temperature of surfaces (the outer wall-ground). The second axe 2- Visual ambiance. Where we took the values of natural lighting levels during the daytime. The third axe 3- Acoustic ambiance . Where we take sound values during the entire day. That experience, which lasted for three consecutive days, and through six stations of measuring, where it has been one measuring station for each type of the street engineering and in two different way street. Through the obtained results and with the comparison of those values. We noticed the difference between this values and the three type of street engineering. Where the difference the calorific values of air equal 4 ° C , in terms of the visual ambiance the difference in the direct lighting natural periods amounted six hours between the three types of street engineering. As well in terms of sound ambience, registered a difference in values of up 15 (db) between the three types. This difference in values indicates The impact of rising architectural façade in improving the physical urban ambiance within the free field - street- for urban fabric.Keywords: street, physical urban ambience, rising architectural façade, urban fabric
Procedia PDF Downloads 2944214 Analysis of Superconducting and Optical Properties in Atomic Layer Deposition and Sputtered Thin Films for Next-Generation Single-Photon Detectors
Authors: Nidhi Choudhary, Silke A. Peeters, Ciaran T. Lennon, Dmytro Besprozvannyy, Harm C. M. Knoops, Robert H. Hadfield
Abstract:
Superconducting Nanowire Single Photon Detectors (SNSPDs) have become leading devices in quantum optics and photonics, known for their exceptional efficiency in detecting single photons from ultraviolet to mid-infrared wavelengths with minimal dark counts, low noise, and reduced timing jitter. Recent advancements in materials science focus attention on refractory metal thin films such as NbN and NbTiN to enhance the optical properties and superconducting performance of SNSPDs, opening the way for next-generation detectors. These films have been deposited by several different techniques, such as atomic layer deposition (ALD), plasma pro-advanced plasma processing (ASP) and magnetron sputtering. The fabrication flexibility of these films enables precise control over morphology, crystallinity, stoichiometry and optical properties, which is crucial for optimising the SNSPD performance. Hence, it is imperative to study the optical and superconducting properties of these materials across a wide range of wavelengths. This study provides a comprehensive analysis of the optical and superconducting properties of some important materials in this category (NbN, NbTiN) by different deposition methods. Using Variable angle ellipsometry spectroscopy (VASE), we measured the refractive index, extinction, and absorption coefficient across a wide wavelength range (200-1700 nm) to enhance light confinement for optical communication devices. The critical temperature and sheet resistance were measured using a four-probe method in a custom-built, cryogen-free cooling system with a Sumitomo RDK-101D cold head and CNA-11C compressor. Our results indicate that ALD-deposited NbN shows a higher refractive index and extinction coefficient in the near-infrared region (~1500 nm) than sputtered NbN of the same thickness. Further, the analysis of the optical properties of plasma pro-ASP deposited NbTiN was performed at different substrate bias voltages and different thicknesses. The analysis of substrate bias voltage indicates that the maximum value of the refractive index and extinction coefficient observed for the substrate biasing of 50-80 V across a substrate bias range of (0 V - 150 V). The optical properties of sputtered NbN films are also investigated in terms of the different substrate temperatures during deposition (100 °C-500 °C). We find the higher the substrate temperature during deposition, the higher the value of the refractive index and extinction coefficient has been observed. In all our superconducting thin films ALD-deposited NbN films possess the highest critical temperature (~12 K) compared to sputtered (~8 K) and plasma pro-ASP (~5 K).Keywords: optical communication, thin films, superconductivity, atomic layer deposition (ALD), niobium nitride (NbN), niobium titanium nitride (NbTiN), SNSPD, superconducting detector, photon-counting.
Procedia PDF Downloads 414213 Machine Learning Approach in Predicting Cracking Performance of Fiber Reinforced Asphalt Concrete Materials
Authors: Behzad Behnia, Noah LaRussa-Trott
Abstract:
In recent years, fibers have been successfully used as an additive to reinforce asphalt concrete materials and to enhance the sustainability and resiliency of transportation infrastructure. Roads covered with fiber-reinforced asphalt concrete (FRAC) require less frequent maintenance and tend to have a longer lifespan. The present work investigates the application of sasobit-coated aramid fibers in asphalt pavements and employs machine learning to develop prediction models to evaluate the cracking performance of FRAC materials. For the experimental part of the study, the effects of several important parameters such as fiber content, fiber length, and testing temperature on fracture characteristics of FRAC mixtures were thoroughly investigated. Two mechanical performance tests, i.e., the disk-shaped compact tension [DC(T)] and indirect tensile [ID(T)] strength tests, as well as the non-destructive acoustic emission test, were utilized to experimentally measure the cracking behavior of the FRAC material in both macro and micro level, respectively. The experimental results were used to train the supervised machine learning approach in order to establish prediction models for fracture performance of the FRAC mixtures in the field. Experimental results demonstrated that adding fibers improved the overall fracture performance of asphalt concrete materials by increasing their fracture energy, tensile strength and lowering their 'embrittlement temperature'. FRAC mixtures containing long-size fibers exhibited better cracking performance than regular-size fiber mixtures. The developed prediction models of this study could be easily employed by pavement engineers in the assessment of the FRAC pavements.Keywords: fiber reinforced asphalt concrete, machine learning, cracking performance tests, prediction model
Procedia PDF Downloads 1454212 Harnessing the Generation of Ferromagnetic and Silver Nanostructures from Tropical Aquatic Microbial Nanofactories
Authors: Patricia Jayshree Jacob, Mas Jaffri Masarudinb, Mohd Zobir Hussein, Raha Abdul Rahim
Abstract:
Iron based ferromagnetic nanoparticles (IONP) and silver nanostructures (AgNP) have found a wide range of application in antimicrobial therapy, cell targeting, and environmental applications. As such, the design of well-defined monodisperse IONPs and AgNPs have become an essential tool in nanotechnology. Fabrication of these nanostructures using conventional methods is not environmentally conducive and weigh heavily on energy and outlays. Selected microorganisms possess the innate ability to reduce metallic ions in colloidal aqueous solution to generate nanoparticles. Hence, harnessing this potential is a way forward in constructing microbial nano-factories, capable of churning out high yields of well-defined IONP’s and AgNP's with physicochemical characteristics on par with the best synthetically produced nanostructures. In this paper, we report the isolation and characterization of bacterial strains isolated from the tropical marine and freshwater ecosystems of Malaysia that demonstrated facile and rapid generation of ferromagnetic nanoparticles and silver nanostructures when precursors such as FeCl₃.6H₂O and AgNO₃ were added to the cell-free bacterial lysate in colloidal solution. Characterization of these nanoparticles was carried out using FESEM, UV Spectrophotometer, XRD, DLS and FTIR. This aerobic bioprocess was carried out at ambient temperature and humidity and has the potential to be developed for environmental friendly, cost effective large scale production of IONP’s. A preliminary bioprocess study on the harvesting time, incubation temperature and pH was also carried out to determine pertinent abiotic parameters contributing to the optimal production of these nanostructures.Keywords: iron oxide nanoparticles, silver nanoparticles, biosynthesis, aquatic bacteria
Procedia PDF Downloads 2874211 Effect of Fiber Inclusion on the Geotechnical Parameters of Clayey Soil Subjected to Freeze-Thaw Cycles
Authors: Arun Prasad, P. B. Ramudu, Deep Shikha, Deep Jyoti Singh
Abstract:
A number of studies have been conducted recently to investigate the influence of randomly oriented fibers on some engineering properties of cohesive soils.Freezing and thawing of soil affects the strength, durability and permeability of soil adversely. Experiments were carried out in order to investigate the effect of inclusion of randomly distributed polypropylene fibers on the strength, hydraulic conductivity and durability of local soil (CL) subjected to freeze–thaw cycles. For evaluating the change in strength of soil, a series of unconfined compression tests as well as tri-axial tests were carried out on reinforced and unreinforced soil samples. All the samples were subjected to seven cycles of freezing and thawing. Freezing was carried out at a temperature of - 15 to -18 °C; and thawing was carried out by keeping the samples at room temperature. The reinforcement of soil samples was done by mixing with polypropylene fibers, 12 mm long and with an aspect ratio of 240. The content of fibers was varied from 0.25 to 1% by dry weight of soil. The maximum strength of soil was found in samples having a fiber content of 0.75% for all the samples that were prepared at optimum moisture content (OMC), and if the OMC was increased (+2% OMC) or decreased (-2% OMC), the maximum strength observed at 0.5% fiber inclusion. The effect of fiber inclusion and freeze–thaw on the hydraulic conductivity was studied increased from around 25 times to 300 times that of the unreinforced soil, without subjected to any freeze-thaw cycles. For studying the increased durability of soil, mass loss after each freeze-thaw cycle was calculated and it was found that samples reinforced with polypropylene fibers show 50-60% less loss in weight than that of the unreinforced soil.Keywords: fiber reinforcement, freezingand thawing, hydraulic conductivity, unconfined compressive strength
Procedia PDF Downloads 4064210 Exergy Analysis of a Vapor Absorption Refrigeration System Using Carbon Dioxide as Refrigerant
Authors: Samsher Gautam, Apoorva Roy, Bhuvan Aggarwal
Abstract:
Vapor absorption refrigeration systems can replace vapor compression systems in many applications as they can operate on a low-grade heat source and are environment-friendly. Widely used refrigerants such as CFCs and HFCs cause significant global warming. Natural refrigerants can be an alternative to them, among which carbon dioxide is promising for use in automotive air conditioning systems. Its inherent safety, ability to withstand high pressure and high heat transfer coefficient coupled with easy availability make it a likely choice for refrigerant. Various properties of the ionic liquid [bmim][PF₆], such as non-toxicity, stability over a wide temperature range and ability to dissolve gases like carbon dioxide, make it a suitable absorbent for a vapor absorption refrigeration system. In this paper, an absorption chiller consisting of a generator, condenser, evaporator and absorber was studied at an operating temperature of 70⁰C. A thermodynamic model was set up using the Peng-Robinson equations of state to predict the behavior of the refrigerant and absorbent pair at different points in the system. A MATLAB code was used to obtain the values of enthalpy and entropy at selected points in the system. The exergy destruction in each component and exergetic coefficient of performance (ECOP) of the system were calculated by performing an exergy analysis based on the second law of thermodynamics. Graphs were plotted between varying operating conditions and the ECOP obtained in each case. The effect of every component on the ECOP was examined. The exergetic coefficient of performance was found to be lesser than the coefficient of performance based on the first law of thermodynamics.Keywords: [bmim][PF₆] as absorbent, carbon dioxide as refrigerant, exergy analysis, Peng-Robinson equations of state, vapor absorption refrigeration
Procedia PDF Downloads 2924209 Impact of Heat Moisture Treatment on the Yield of Resistant Starch and Evaluation of Functional Properties of Modified Mung Bean (Vigna radiate) Starch
Authors: Sreejani Barua, P. P. Srivastav
Abstract:
Formulation of new functional food products for diabetes patients and obsessed people is a challenge for food industries till date. Starch is a certainly happening, ecological, reasonable and profusely obtainable polysaccharide in plant material. In the present scenario, there is a great interest in modifying starch functional properties without destroying its granular structure using different modification techniques. Resistant starch (RS) contains almost zero calories and can control blood glucose level to prevent diabetes. The current study focused on modification of mung bean starch which is a good source of legumes carbohydrate for the production of functional food. Heat moisture treatment (HMT) of mung starch was conducted at moisture content of 10-30%, temperature of 80-120 °C and time of 8-24 h.The content of resistant starch after modification was significantly increased from native starches containing RS 7.6%. The design combinations of HMT had been completed through Central Composite Rotatable Design (CCRD). The effects of HMT process variables on the yield of resistant starch was studied through Rapid Surface Methodology (RSM). The highest increase of resistant starch was found up to 34.39% when treated the native starch with 30% m.c at 120 °C temperature for 24 h.The functional properties of both native and modified mung bean starches showed that there was a reduction in the swelling power and swelling volume of HMT starches. However, the solubility of the HMT starches was higher than that of untreated native starch and also observed change in structural (scanning electron microscopy), X-Ray diffraction (XRD) pattern, blue value and thermal (differential scanning calorimetry) properties. Therefore, replacing native mung bean starch with heat-moisture treated mung bean starch leads to the development of new products with higher resistant starch levels and functional properties.Keywords: Mung bean starch, heat moisture treatment, functional properties, resistant starch
Procedia PDF Downloads 2074208 Transient Simulation Using SPACE for ATLAS Facility to Investigate the Effect of Heat Loss on Major Parameters
Authors: Suhib A. Abu-Seini, Kyung-Doo Kim
Abstract:
A heat loss model for ATLAS facility was introduced using SPACE code predefined correlations and various dialing factors. As all previous simulations were carried out using a heat loss free input; the facility was considered to be completely insulated and the core power was reduced by the experimentally measured values of heat loss to compensate to the account for the loss of heat, this study will consider heat loss throughout the simulation. The new heat loss model will be affecting SPACE code simulation as heat being leaked out of the system throughout a transient will alter many parameters corresponding to temperature and temperature difference. For that, a Station Blackout followed by a multiple Steam Generator Tube Rupture accident will be simulated using both the insulated system approach and the newly introduced heat loss input of the steady state. Major parameters such as system temperatures, pressure values, and flow rates to be put into comparison and various analysis will be suggested upon it as the experimental values will not be the reference to validate the expected outcome. This study will not only show the significance of heat loss consideration in the processes of prevention and mitigation of various incidents, design basis and beyond accidents as it will give a detailed behavior of ATLAS facility during both processes of steady state and major transient, but will also present a verification of how credible the data acquired of ATLAS are; since heat loss values for steady state were already mismatched between SPACE simulation results and ATLAS data acquiring system. Acknowledgement- This work was supported by the Korean institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea.Keywords: ATLAS, heat loss, simulation, SPACE, station blackout, steam generator tube rupture, verification
Procedia PDF Downloads 2294207 Isolation and Characterization of an Ethanol Resistant Bacterium from Sap of Saccharum officinarum for Efficient Fermentation
Authors: Rukshika S Hewawasam, Sisira K. Weliwegamage, Sanath Rajapakse, Subramanium Sotheeswaran
Abstract:
Bio fuel is one of the emerging industries around the world due to arise of crisis in petroleum fuel. Fermentation is a cost effective and eco-friendly process in production of bio-fuel. So inventions in microbes, substrates, technologies in fermentation cause new modifications in fermentation. One major problem in microbial ethanol fermentation is the low resistance of conventional microorganisms to the high ethanol concentrations, which ultimately lead to decrease in the efficiency of the process. In the present investigation, an ethanol resistant bacterium was isolated from sap of Saccharum officinarum (sugar cane). The optimal cultural conditions such as pH, temperature, incubation period, and microbiological characteristics, morphological characteristics, biochemical characteristics, ethanol tolerance, sugar tolerance, growth curve assay were investigated. Isolated microorganism was tolerated to 18% (V/V) of ethanol concentration in the medium and 40% (V/V) glucose concentration in the medium. Biochemical characteristics have revealed as Gram negative, non-motile, negative for Indole test ,Methyl Red test, Voges- Proskauer`s test, Citrate Utilization test, and Urease test. Positive results for Oxidase test was shown by isolated bacterium. Sucrose, Glucose, Fructose, Maltose, Dextrose, Arabinose, Raffinose, Lactose, and Sachcharose can be utilized by this particular bacterium. It is a significant feature in effective fermentation. The fermentation process was carried out in glucose medium under optimum conditions; pH 4, temperature 30˚C, and incubated for 72 hours. Maximum ethanol production was recorded as 12.0±0.6% (V/V). Methanol was not detected in the final product of the fermentation process. This bacterium is especially useful in bio-fuel production due to high ethanol tolerance of this microorganism; it can be used to enhance the fermentation process over conventional microorganisms. Investigations are currently conducted on establishing the identity of the bacteriumKeywords: bacterium, bio-fuel, ethanol tolerance, fermentation
Procedia PDF Downloads 3454206 Effects of Forest Bathing on Cardiovascular and Metabolic Parameters in Middle-Aged Males
Authors: Qing Li, Maiko Kobayashi, Shigeyoshi Kumeda, Hiroko Ochiai, Toshiya Ochiai, Takashi Miura, Takahide Kagawa, Michiko Imai, Toshiaki Otsuka, Tomoyuki Kawada
Abstract:
In the present study, we investigated the effects of a forest bathing program on cardiovascular and metabolic parameters. Nineteen healthy male subjects (mean age: 51.3 ± 8.8 years) were selected after obtaining informed consent. These subjects took day trips to a forest park named Akasawa Shizen Kyuyourin, Agematsu, Nagano Prefecture (situated in central Japan), and to an urban area of Nagano Prefecture as a control in August 2015. On both trips, they walked 2.6 km for 80 min each in the morning and afternoon on Saturdays. Blood and urine were sampled in the morning before and after each trip. Cardiovascular and metabolic parameters were measured. Blood pressure and pulse rate were measured by an ambulatory automatic blood pressure monitor. The Japanese version of the profile of mood states (POMS) test was conducted before, during and after the trips. Ambient temperature and humidity were monitoring during the trips. The forest bathing program significantly reduced pulse rate, and significantly increased the score for vigor and decreased the scores for depression, fatigue, and confusion in the POMS test. The levels of urinary noradrenaline and dopamine after forest bathing were significantly lower than those after urban area walking, suggesting the relaxing effect of the forest bathing program. The level of adiponectin in serum after the forest bathing program was significantly greater than that after urban area walking. There was no significant difference in blood pressure between forest and urban area trips during the trips.Keywords: ambient temperature, blood pressure, forest bathing, forest therapy, human health, POMS, pulse rate
Procedia PDF Downloads 4444205 New Insulation Material for Solar Thermal Collectors
Authors: Nabila Ihaddadene, Razika Ihaddadene, Abdelwahaab Betka
Abstract:
1973 energy crisis (rising oil prices) pushed the world to consider other alternative energy resources to existing conventional energies consisting predominantly of hydrocarbons. Renewable energies such as solar, the wind and geothermal have received renewed interest, especially to preserve nature ( the low-temperature rise of global environmental problems). Solar energy as an available, cheap and environmental friendly alternative source has various applications such as heating, cooling, drying, power generation, etc. In short, there is no life on earth without this enormous nuclear reactor, called the sun. Among available solar collector designs, flat plate collector (FPC) is low-temperature applications (heating water, space heating, etc.) due to its simple design and ease of manufacturing. Flat plate collectors are permanently fixed in position and do not track the sun (non-concentrating collectors). They operate by converting solar radiation into heat and transferring that heat to a working fluid (usually air, water, water plus antifreeze additive) flowing through them. An FPC generally consists of the main following components: glazing, absorber plate of high absorptivity, fluid tubes welded to or can be an integral part of the absorber plate, insulation and container or casing of the above-mentioned components. Insulation is of prime importance in thermal applications. There are three main families of insulation: mineral insulation; vegetal insulation and synthetic organic insulation. The old houses of the inhabitants of North Africa were built of brick made of composite material that is clay and straw. These homes are characterized by their thermal comfort; i.e. the air inside these houses is cool in summer and warm in winter. So, the material composed from clay and straw act as a thermal insulation. In this research document, the polystyrene used as insulation in the ET200 flat plate solar collector is replaced by the cheapest natural material which is clay and straw. Trials were carried out on a solar energy demonstration system (ET 200). This system contains a solar collector, water storage tank, a high power lamp simulating solar energy and a control and command cabinet. In the experimental device, the polystyrene is placed under the absorber plate and in the edges of the casing containing the components of the solar collector. In this work, we have replaced the polystyrene of the edges by the composite material. The use of the clay and straw as insulation instead of the polystyrene increases temperature difference (T2-T1) between the inlet and the outlet of the absorber by 0.9°C; thus increases the useful power transmitted to water in the solar collector. Tank Water is well heated when using the clay and straw as insulation. However, it is less heated when using the polystyrene as insulation. Clay and straw material improves also the performance of the solar collector by 5.77%. Thus, it is recommended to use this cheapest non-polluting material instead of synthetic insulation to improve the performance of the solar collector.Keywords: clay, insulation material, polystyrene, solar collector, straw
Procedia PDF Downloads 4644204 Enhancing Warehousing Operation In Cold Supply Chain Through The Use Of IOT And Lifi Technologies
Authors: Sarah El-Gamal, Passent Hossam, Ahmed Abd El Aziz, Rojina Mahmoud, Ahmed Hassan, Dalia Hilal, Eman Ayman, Hana Haytham, Omar Khamis
Abstract:
Several concerns fall upon the supply chain, especially the cold supply chain. According to the literature, the main challenges in the cold supply chain are the distribution and storage phases. In this research, researchers focused on the storage area, which contains several activities such as the picking activity that faces a lot of obstacles and challenges The implementation of IoT solutions enables businesses to monitor the temperature of food items, which is perhaps the most critical parameter in cold chains. Therefore, researchers proposed a practical solution that would help in eliminating the problems related to ineffective picking for products, especially fish and seafood products, by using IoT technology, most notably LiFi technology. Thus, guaranteeing sufficient picking, reducing waste, and consequently lowering costs. A prototype was specially designed and examined. This research is a single case study research. Two methods of data collection were used; observation and semi-structured interviews. Semi-structured interviews were conducted with managers and decision maker at Carrefour Alexandria to validate the problem and the proposed practical solution using IoTandLiFi technology. A total of three interviews were conducted. As a result, a SWOT analysis was achieved in order to highlight all the strengths and weaknesses of using the recommended Lifi solution in the picking process. According to the investigations, it was found that the use of IoT and LiFi technology is cost effective, efficient, and reduces human errors, minimize the percentage of product waste and thus save money and cost. Thus, increasing customer satisfaction and profits gained.Keywords: cold supply chain, picking process, temperature control, IOT, warehousing, LIFI
Procedia PDF Downloads 1974203 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition
Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria
Abstract:
Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses
Procedia PDF Downloads 1584202 Phenotypic and Genotypic Expression of Hylomma Anatolicum Ticks Silenced for Ferritin Genes through RNA Interference Technology
Authors: Muhammad Sohail Sajid, Mahvish Maqbool, Hafiz Muhammad Rizwan, Muhammad Saqib, Haroon Ahmad
Abstract:
Ticks are blood-sucking ectoparasite that causes a decrease in production and economic losses and affects mammals, reptiles, and birds. Hyalomma anatolicum is the main vector for CCHF transmission and Pakistan has faced several outbreaks of CCHF in the recent past. Ferritin (fer)is a highly conserved molecule that is ubiquitous in most tick tissues and responsible for iron metabolism and storage. It was hypothesized that the development of acaricidal resistance and residual effects of commercially used acaricides could be controlled by using alternative control methods, including RNA interference. The current study aimed to evaluate the fer silencing effects on tick feeding, average body weight, egg mass index, and mortality. Ticks, collected through the standard collection protocols were further subjected to RNA isolation using the Trizol method. Commercially available kit procedures were followed for cDNA and dsRNA synthesis. The soaking/Immersion method was used for dsRNA delivery. Our findings have shown a 27% reduction in body weight of fer silenced group and showed a significant association of fer and body weight. Silencing of fer had a significant effect on the engorgement percentage (P= 0.0007), oviposition (P=0.008), egg mass (P= 0.004) and hatching (P= 0.001). The soaking method was used for dsRNA delivery and 15°C was found to be an optimum temperature for inducing gene silencing in ticks as at this temperature, maximum survivability after immersion was attained. This study along with previous studies, described that iron toxicity due to the silencing of fer could play an important role in the control of ticks and fer can be used as a potent candidate for vaccine development.Keywords: ticks, iron, ferritin, engorgement, oviposition, immersion, RNA interference
Procedia PDF Downloads 984201 Habitat Studies of Etheria elliptica in Some Water Bodies (River Ogbese and Owena Reservoir) in Ondo State, Nigeria
Authors: O. O. Olawusi-Peters, M. O. Adediran, O. A. Ajibare
Abstract:
Etheria elliptica population is declining due to various human activities on the freshwater habitat. This necessitate the habitat study of the mussel in river Ogbese and Owena reservoir in Ondo state, Nigeria in order to know the status of the organism within the ecosystem. Thirty (30) specimens each from River Ogbese and Owena reservoir were sampled between May and August 2012. The meristic variables such as length, breadth, shell thickness and weight of the mussel were measured. Also, some physico-chemical parameters, flow rate and soil profile of the two rivers were studied. In River Ogbese, the weight, length, breadth and thickness variables obtained were; 49.73g, 8.42cm, 3.78cm and 0.53cm respectively. In Owena reservoir, the values were; 111.17g, 8.80cm, 6.64cm, 0.22cm respectively. The condition factor showed that the samples from Owena reservoir (K = 16.33) were healthier than River Ogbese (K = 8.34). Also, the length-weight relationship indicated isometric growth in both water bodies (Ogbese r2 = 0.68; Owena r2 = 0.66). In River Ogbese, the physico-chemical parameters obtained were; temperature (24.3oC), pH (7.12), TDS (72ppm), DO (3.2mg/l), conductivity (145µ), BOD (0.7mg/l). The mean temperature (24.1oC), pH (7.69), TDS (102ppm), DO (3.1mg/l), conductivity (183µ), BOD (0.8mg/l) were obtained from Owena reservoir. The soil samples values obtained from both water bodies are; River Ogbese –phosphorus; 78.78, calcium; 3.60, magnesium; 1.90 and organic matter; 0.17. Owena reservoir - Phosphorus; 3.34, calcium; 4.40, magnesium; 1.20 and organic matter; 0.66. The river flow rate was 0.22m/s for Owena reservoir and 0.26m/s for river Ogbese. The study revealed that Etheria elliptica in Owena reservoir and Ogbese were in good and healthy conditions despite the various human activities on the water bodies. The water quality parameters obtained were within the preferred requirements of the mussels.Keywords: Etheria elliptica, mussels, Owena reservoir, River Ogbese
Procedia PDF Downloads 5134200 Coupling Strategy for Multi-Scale Simulations in Micro-Channels
Authors: Dahia Chibouti, Benoit Trouette, Eric Chenier
Abstract:
With the development of micro-electro-mechanical systems (MEMS), understanding fluid flow and heat transfer at the micrometer scale is crucial. In the case where the flow characteristic length scale is narrowed to around ten times the mean free path of gas molecules, the classical fluid mechanics and energy equations are still valid in the bulk flow, but particular attention must be paid to the gas/solid interface boundary conditions. Indeed, in the vicinity of the wall, on a thickness of about the mean free path of the molecules, called the Knudsen layer, the gas molecules are no longer in local thermodynamic equilibrium. Therefore, macroscopic models based on the continuity of velocity, temperature and heat flux jump conditions must be applied at the fluid/solid interface to take this non-equilibrium into account. Although these macroscopic models are widely used, the assumptions on which they depend are not necessarily verified in realistic cases. In order to get rid of these assumptions, simulations at the molecular scale are carried out to study how molecule interaction with walls can change the fluid flow and heat transfers at the vicinity of the walls. The developed approach is based on a kind of heterogeneous multi-scale method: micro-domains overlap the continuous domain, and coupling is carried out through exchanges of information between both the molecular and the continuum approaches. In practice, molecular dynamics describes the fluid flow and heat transfers in micro-domains while the Navier-Stokes and energy equations are used at larger scales. In this framework, two kinds of micro-simulation are performed: i) in bulk, to obtain the thermo-physical properties (viscosity, conductivity, ...) as well as the equation of state of the fluid, ii) close to the walls to identify the relationships between the slip velocity and the shear stress or between the temperature jump and the normal temperature gradient. The coupling strategy relies on an implicit formulation of the quantities extracted from micro-domains. Indeed, using the results of the molecular simulations, a Bayesian regression is performed in order to build continuous laws giving both the behavior of the physical properties, the equation of state and the slip relationships, as well as their uncertainties. These latter allow to set up a learning strategy to optimize the number of micro simulations. In the present contribution, the first results regarding this coupling associated with the learning strategy are illustrated through parametric studies of convergence criteria, choice of basis functions and noise of input data. Anisothermic flows of a Lennard Jones fluid in micro-channels are finally presented.Keywords: multi-scale, microfluidics, micro-channel, hybrid approach, coupling
Procedia PDF Downloads 1724199 Elastomeric Nanocomposites for Space Applications
Authors: Adriana Stefan, Cristina-Elisabeta Pelin, George Pelin, Maria Daniela Stelescu, Elena Manaila
Abstract:
Elastomeric composites have been known for a long time, but, to our knowledge, space and the aeronautic community has been directing a special attention to them only in the last decade. The required properties of advanced elastomeric materials used in space applications (such as O-rings) are sealing, abrasion, low-temperature flexibility, the long-term compression set properties, impact resistance and low-temperature thermal stability in different environments, such as ionized radiations. Basically, the elastomeric nanocomposites are composed of a rubber matrix and a wide and varied range of nanofillers, added with the aim of improving the physico-mechanical and elasticity modulus properties of the materials as well as their stability in different environments. The paper presents a partial synthesis of the research regarding the use of silicon carbide in nanometric form and/or organophylized montmorillonite as fillers in butyl rubber matrix. The need of composite materials arose from the fact that stand-alone polymers are ineffective in providing all the superior properties required by different applications. These drawbacks can be diminished or even eliminated by incorporating a new range of additives into the organic matrix, fillers that have important roles in modifying properties of various polymers. A composite material can provide superior and unique mechanical and physical properties because it combines the most desirable properties of its constituents while suppressing their least desirable properties. The commercial importance of polymers and the continuous increase of their use results in the continuous demand for improvement in their properties to meet the necessary conditions. To study the performance of the elastomeric nanocomposites were mechanically tested, it will be tested the qualities of tensile at low temperatures and RT and the behavior at the compression at cryogenic to room temperatures and under different environments. The morphology of specimens will be investigated by optical and scanning electronic microscopy.Keywords: elastomeric nanocomposites, O-rings, space applications, mechanical properties
Procedia PDF Downloads 2884198 The Influence of Thermal Radiation and Chemical Reaction on MHD Micropolar Fluid in The Presence of Heat Generation/Absorption
Authors: Binyam Teferi
Abstract:
Numerical and theoretical analysis of mixed convection flow of magneto- hydrodynamics micropolar fluid with stretching capillary in the presence of thermal radiation, chemical reaction, viscous dissipation, and heat generation/ absorption have been studied. The non-linear partial differential equations of momentum, angular velocity, energy, and concentration are converted into ordinary differential equations using similarity transformations which can be solved numerically. The dimensionless governing equations are solved by using Runge Kutta fourth and fifth order along with the shooting method. The effect of physical parameters viz., micropolar parameter, unsteadiness parameter, thermal buoyancy parameter, concentration buoyancy parameter, Hartmann number, spin gradient viscosity parameter, microinertial density parameter, thermal radiation parameter, Prandtl number, Eckert number, heat generation or absorption parameter, Schmidt number and chemical reaction parameter on flow variables viz., the velocity of the micropolar fluid, microrotation, temperature, and concentration has been analyzed and discussed graphically. MATLAB code is used to analyze numerical and theoretical facts. From the simulation study, it can be concluded that an increment of micropolar parameter, Hartmann number, unsteadiness parameter, thermal and concentration buoyancy parameter results in decrement of velocity flow of micropolar fluid; microrotation of micropolar fluid decreases with an increment of micropolar parameter, unsteadiness parameter, microinertial density parameter, and spin gradient viscosity parameter; temperature profile of micropolar fluid decreases with an increment of thermal radiation parameter, Prandtl number, micropolar parameter, unsteadiness parameter, heat absorption, and viscous dissipation parameter; concentration of micropolar fluid decreases as unsteadiness parameter, Schmidt number and chemical reaction parameter increases. Furthermore, computational values of local skin friction coefficient, local wall coupled coefficient, local Nusselt number, and local Sherwood number for different values of parameters have been investigated. In this paper, the following important results are obtained; An increment of micropolar parameter and Hartmann number results in a decrement of velocity flow of micropolar fluid. Microrotation decreases with an increment of the microinertial density parameter. Temperature decreases with an increasing value of the thermal radiation parameter and viscous dissipation parameter. Concentration decreases as the values of Schmidt number and chemical reaction parameter increases. The coefficient of local skin friction is enhanced with an increase in values of both the unsteadiness parameter and micropolar parameter. Increasing values of unsteadiness parameter and micropolar parameter results in an increment of the local couple stress. An increment of values of unsteadiness parameter and thermal radiation parameter results in an increment of the rate of heat transfer. As the values of Schmidt number and unsteadiness parameter increases, Sherwood number decreases.Keywords: thermal radiation, chemical reaction, viscous dissipation, heat absorption/ generation, similarity transformation
Procedia PDF Downloads 1344197 Recent Climate Variability and Crop Production in the Central Highlands of Ethiopia
Authors: Arragaw Alemayehu, Woldeamlak Bewket
Abstract:
The aim of this study was to understand the influence of current climate variability on crop production in the central highlands of Ethiopia. We used monthly rainfall and temperature data from 132 points each representing a pixel of 10×10 km. The data are reconstructions based on station records and meteorological satellite observations. Production data of the five major crops in the area were collected from the Central Statistical Agency for the period 2004-2013 and for the main cropping season, locally known as Meher. The production data are at the Enumeration Area (EA ) level and hence the best available dataset on crop production. The results show statistically significant decreasing trends in March–May (Belg) rainfall in the area. However, June – September (Kiremt) rainfall showed increasing trends in Efratana Gidim and Menz Gera Meder which the latter is statistically significant. Annual rainfall also showed positive trends in the area except Basona Werana where significant negative trends were observed. On the other hand, maximum and minimum temperatures showed warming trends in the study area. Correlation results have shown that crop production and area of cultivation have positive correlation with rainfall, and negative with temperature. When the trends in crop production are investigated, most crops showed negative trends and below average production was observed. Regression results have shown that rainfall was the most important determinant of crop production in the area. It is concluded that current climate variability has a significant influence on crop production in the area and any unfavorable change in the local climate in the future will have serious implications for household level food security. Efforts to adapt to the ongoing climate change should begin from tackling the current climate variability and take a climate risk management approach.Keywords: central highlands, climate variability, crop production, Ethiopia, regression, trend
Procedia PDF Downloads 4414196 Generative Design Method for Cooled Additively Manufactured Gas Turbine Parts
Authors: Thomas Wimmer, Bernhard Weigand
Abstract:
The improvement of gas turbine efficiency is one of the main drivers of research and development in the gas turbine market. This has led to elevated gas turbine inlet temperatures beyond the melting point of the utilized materials. The turbine parts need to be actively cooled in order to withstand these harsh environments. However, the usage of compressor air as coolant decreases the overall gas turbine efficiency. Thus, coolant consumption needs to be minimized in order to gain the maximum advantage from higher turbine inlet temperatures. Therefore, sophisticated cooling designs for gas turbine parts aim to minimize coolant mass flow. New design space is accessible as additive manufacturing is maturing to industrial usage for the creation of hot gas flow path parts. By making use of this technology more efficient cooling schemes can be manufacture. In order to find such cooling schemes a generative design method is being developed. It generates cooling schemes randomly which adhere to a set of rules. These assure the sanity of the design. A huge amount of different cooling schemes are generated and implemented in a simulation environment where it is validated. Criteria for the fitness of the cooling schemes are coolant mass flow, maximum temperature and temperature gradients. This way the whole design space is sampled and a Pareto optimum front can be identified. This approach is applied to a flat plate, which resembles a simplified section of a hot gas flow path part. Realistic boundary conditions are applied and thermal barrier coating is accounted for in the simulation environment. The resulting cooling schemes are presented and compared to representative conventional cooling schemes. Further development of this method can give access to cooling schemes with an even better performance having higher complexity, which makes use of the available design space.Keywords: additive manufacturing, cooling, gas turbine, heat transfer, heat transfer design, optimization
Procedia PDF Downloads 354