Search results for: score prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4152

Search results for: score prediction

1182 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia

Authors: Halefom Kidane

Abstract:

This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.

Keywords: artificial neural networks, forecasting, min-max normalization, wind speed

Procedia PDF Downloads 77
1181 Reliability Modeling on Drivers’ Decision during Yellow Phase

Authors: Sabyasachi Biswas, Indrajit Ghosh

Abstract:

The random and heterogeneous behavior of vehicles in India puts up a greater challenge for researchers. Stop-and-go modeling at signalized intersections under heterogeneous traffic conditions has remained one of the most sought-after fields. Vehicles are often caught up in the dilemma zone and are unable to take quick decisions whether to stop or cross the intersection. This hampers the traffic movement and may lead to accidents. The purpose of this work is to develop a stop and go prediction model that depicts the drivers’ decision during the yellow time at signalised intersections. To accomplish this, certain traffic parameters were taken into account to develop surrogate model. This research investigated the Stop and Go behavior of the drivers by collecting data from 4-signalized intersections located in two major Indian cities. Model was developed to predict the drivers’ decision making during the yellow phase of the traffic signal. The parameters used for modeling included distance to stop line, time to stop line, speed, and length of the vehicle. A Kriging base surrogate model has been developed to investigate the drivers’ decision-making behavior in amber phase. It is observed that the proposed approach yields a highly accurate result (97.4 percent) by Gaussian function. It was observed that the accuracy for the crossing probability was 95.45, 90.9 and 86.36.11 percent respectively as predicted by the Kriging models with Gaussian, Exponential and Linear functions.

Keywords: decision-making decision, dilemma zone, surrogate model, Kriging

Procedia PDF Downloads 309
1180 Zarit Burden Interview among Informal Caregiver of Person with Dementia: A Systematic Review and Meta-Analysis

Authors: Nuraisyah H. Zulkifley, Suriani Ismail, Rosliza Abdul Manaf, Poh Y. Lim

Abstract:

Taking care of a person with dementia (PWD) is one of the most problematic and challenging caregiving situations. Without proper support, caregiver would need to deal with the impact of caregiving that would lead to caregiver burden. One of the most common tools used to measure caregiver burden among caregivers of PWD is Zarit Burden Interview (ZBI). A systematic review has been conducted through searching Medline, Science Direct, Cochrane Library, Embase, PsycINFO, ProQuest, and Scopus databases to identify relevant articles that elaborate on intervention and outcomes on ZBI among informal caregiver of PWD. The articles were searched in October 2019 with no restriction on language or publication status. Inclusion criteria are randomized control trial (RCT) studies, participants were informal caregivers of PWD, ZBI measured as outcomes, and intervention group was compared with no intervention control or usual care control. Two authors reviewed and extracted the data from the full-text articles. From a total of 344 records, nine studies were selected and included in this narrative review, and eight studies were included in the meta-analysis. The types of interventions that were implemented to ease caregiver burden are psychoeducation, physical activity, psychosocial, and computer-based intervention. The meta-analysis showed that there is a significant difference in the mean score of ZBI (p = 0.006) in the intervention group compared to the control group after implementation of intervention. In conclusion, interventions such as psychoeducation, psychosocial, and physical activity can help to reduce the burden experiencing by the caregivers of PWD.

Keywords: dementia, informal caregiver, randomized control trial, Zarit burden interview

Procedia PDF Downloads 181
1179 Monitor Student Concentration Levels on Online Education Sessions

Authors: M. K. Wijayarathna, S. M. Buddika Harshanath

Abstract:

Monitoring student engagement has become a crucial part of the educational process and a reliable indicator of the capacity to retain information. As online learning classrooms are now more common these days, students' attention levels have become increasingly important, making it more difficult to check each student's concentration level in an online classroom setting. To profile student attention to various gradients of engagement, a study is a plan to conduct using machine learning models. Using a convolutional neural network, the findings and confidence score of the high accuracy model are obtained. In this research, convolutional neural networks are using to help discover essential emotions that are critical in defining various levels of participation. Students' attention levels were shown to be influenced by emotions such as calm, enjoyment, surprise, and fear. An improved virtual learning system was created as a result of these data, which allowed teachers to focus their support and advise on those students who needed it. Student participation has formed as a crucial component of the learning technique and a consistent predictor of a student's capacity to retain material in the classroom. Convolutional neural networks have a plan to implement the platform. As a preliminary step, a video of the pupil would be taken. In the end, researchers used a convolutional neural network utilizing the Keras toolkit to take pictures of the recordings. Two convolutional neural network methods are planned to use to determine the pupils' attention level. Finally, those predicted student attention level results plan to display on the graphical user interface of the System.

Keywords: HTML5, JavaScript, Python flask framework, AI, graphical user

Procedia PDF Downloads 101
1178 Feature Based Unsupervised Intrusion Detection

Authors: Deeman Yousif Mahmood, Mohammed Abdullah Hussein

Abstract:

The goal of a network-based intrusion detection system is to classify activities of network traffics into two major categories: normal and attack (intrusive) activities. Nowadays, data mining and machine learning plays an important role in many sciences; including intrusion detection system (IDS) using both supervised and unsupervised techniques. However, one of the essential steps of data mining is feature selection that helps in improving the efficiency, performance and prediction rate of proposed approach. This paper applies unsupervised K-means clustering algorithm with information gain (IG) for feature selection and reduction to build a network intrusion detection system. For our experimental analysis, we have used the new NSL-KDD dataset, which is a modified dataset for KDDCup 1999 intrusion detection benchmark dataset. With a split of 60.0% for the training set and the remainder for the testing set, a 2 class classifications have been implemented (Normal, Attack). Weka framework which is a java based open source software consists of a collection of machine learning algorithms for data mining tasks has been used in the testing process. The experimental results show that the proposed approach is very accurate with low false positive rate and high true positive rate and it takes less learning time in comparison with using the full features of the dataset with the same algorithm.

Keywords: information gain (IG), intrusion detection system (IDS), k-means clustering, Weka

Procedia PDF Downloads 296
1177 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 229
1176 Illness Perception and Health-Related Quality of Life among Young Females Living with Polycystic Ovary Syndrome

Authors: Vibha Kriti

Abstract:

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder generally found in reproductive women. It is associated with significant reproductive, metabolic, cosmetic, and psychological consequences. Objective: There is a high prevalence of PCOS found among reproductive-age women, therefore, the major objective of the present study is to identify the illness perception of PCOS women and to explore the relationship between illness perception and health-related quality of life (HRQoL). Material and Method: A cross-sectional study was conducted in a university tertiary-care center, Sir Sunder Lal Hospital, Banaras Hindu University (B.H.U). Tools used for data collection were self-structured, which included socio-demographic status, illness perception questionnaire (revised version), and short-form 36 for assessing illness perception and health-related quality of life, respectively. Statistical analysis was done by SPSS version ‘24’. Results: The results of correlation analyses indicated that there is a strong relationship between strong illness perception and HRQoL. Stepwise regression indicated that illness identity, long illness duration, and severe consequences were associated with the worse outcome on emotional functioning and on social functioning. A high score on the controllability of the disease and seeking social support was significantly related to better functioning. Conclusion: Illness perception is an important factor in self-care behaviors in PCOS females and has a strong association with health-related quality of life and has a profound effect on it.

Keywords: polycystic ovary syndrome, illness perception, quality of life, young females, mental health

Procedia PDF Downloads 94
1175 Monocular Depth Estimation Benchmarking with Thermal Dataset

Authors: Ali Akyar, Osman Serdar Gedik

Abstract:

Depth estimation is a challenging computer vision task that involves estimating the distance between objects in a scene and the camera. It predicts how far each pixel in the 2D image is from the capturing point. There are some important Monocular Depth Estimation (MDE) studies that are based on Vision Transformers (ViT). We benchmark three major studies. The first work aims to build a simple and powerful foundation model that deals with any images under any condition. The second work proposes a method by mixing multiple datasets during training and a robust training objective. The third work combines generalization performance and state-of-the-art results on specific datasets. Although there are studies with thermal images too, we wanted to benchmark these three non-thermal, state-of-the-art studies with a hybrid image dataset which is taken by Multi-Spectral Dynamic Imaging (MSX) technology. MSX technology produces detailed thermal images by bringing together the thermal and visual spectrums. Using this technology, our dataset images are not blur and poorly detailed as the normal thermal images. On the other hand, they are not taken at the perfect light conditions as RGB images. We compared three methods under test with our thermal dataset which was not done before. Additionally, we propose an image enhancement deep learning model for thermal data. This model helps extract the features required for monocular depth estimation. The experimental results demonstrate that, after using our proposed model, the performance of these three methods under test increased significantly for thermal image depth prediction.

Keywords: monocular depth estimation, thermal dataset, benchmarking, vision transformers

Procedia PDF Downloads 34
1174 Quality of Life and Renal Biomarkers in Feline Chronic Kidney Disease

Authors: Bárbara Durão, Pedro Almeida, David Ramilo, André Meneses, Rute Canejo-Teixeira

Abstract:

The importance of quality of life (QoL) assessment in veterinary medicine is an integral part of patient care. This is especially true in cases of chronic diseases, such as chronic kidney disease (CKD), where the ever more advanced treatment options prolong the patient’s life. Whether this prolongment of life comes with an acceptable quality of life remains has been called into question. The aim of this study was to evaluate the relationship between CKD disease biomarkers and QoL in cats. Thirty-seven cats diagnosed with CKD and with no known concurrent illness were enrolled in an observational study. Through the course of several evaluations, renal biomarkers were assessed in blood and urine samples, and owners retrospectively described their cat’s quality of life using a validated instrument for this disease. Correlations between QoL scores (AWIS) and the biomarkers were assessed using Spearman’s rank test. Statistical significance was set at p-value < 0.05, and every serial sample was considered independent. Thirty-seven cats met the inclusion criteria, and all owners completed the questionnaire every time their pet was evaluated, giving a total of eighty-four questionnaires, and the average-weighted-impact-score was –0.5. Results showed there was a statistically significant correlation between the quality of life and most of 17 the studied biomarkers and confirmed that CKD has a negative impact on QoL in cats especially due to the management of the disease and secondary appetite disorders. To our knowledge, this is the attempt to assess the correlation between renal biomarkers and QoL in cats. Our results reveal a strong potential of this type of approach in clinical management, mainly in situations where it is not possible to measure biomarkers. Whilst health-related QoL is a reliable predictor of mortality and morbidity in humans; our findings can help improve the clinical practice in cats with CKD.

Keywords: chronic kidney disease, biomarkers, quality of life, feline

Procedia PDF Downloads 181
1173 Factors Influencing Site Overhead Cost of Construction Projects in Egypt: A Comparative Analysis

Authors: Aya Effat, Ossama A. Hosny, Elkhayam M. Dorra

Abstract:

Estimating costs is a crucial step in construction management and should be completed at the beginning of every project to establish the project's budget. The precision of the cost estimate plays a significant role in the success of construction projects as it allows project managers to effectively manage the project's costs. Site overhead costs constitute a significant portion of construction project budgets, necessitating accurate prediction and management. These costs are influenced by a multitude of factors, requiring a thorough examination and analysis to understand their relative importance and impact. Thus, the main aim of this research is to enhance the contractor’s ability to predict and manage site overheads by identifying and analyzing the main factors influencing the site overheads costs in the Egyptian construction industry. Through a comprehensive literature review, key factors were first identified and subsequently validated using a thorough comparative analysis of data from 55 real-life construction projects. Through this comparative analysis, the relationship between each factor and site overheads percentage as well as each site overheads subcategory and each project construction phase was identified and examined. Furthermore, correlation analysis was done to check for multicollinearity and identify factors with the highest impact. The findings of this research offer valuable insights into the key drivers of site overhead costs in the Egyptian construction industry. By understanding these factors, construction professionals can make informed decisions regarding the estimation and management of site overhead costs.

Keywords: comparative analysis, cost estimation, construction management, site overheads

Procedia PDF Downloads 22
1172 Factors that Predict Pre-Service Teachers' Decision to Integrate E-Learning: A Structural Equation Modeling (SEM) Approach

Authors: Mohd Khairezan Rahmat

Abstract:

Since the impetus of becoming a develop country by the year 2020, the Malaysian government have been proactive in strengthening the integration of ICT into the national educational system. Teacher-education programs have the responsibility to prepare the nation future teachers by instilling in them the desire, confidence, and ability to fully utilized the potential of ICT into their instruction process. In an effort to fulfill this responsibility, teacher-education program are beginning to create alternatives means for preparing cutting-edge teachers. One of the alternatives is the student’s learning portal. In line with this mission, this study investigates the Faculty of Education, University Teknologi MARA (UiTM) pre-service teachers’ perception of usefulness, attitude, and ability toward the usage of the university learning portal, known as iLearn. The study also aimed to predict factors that might hinder the pre-service teachers’ decision to used iLearn as their platform in learning. The Structural Equation Modeling (SEM), was employed in analyzed the survey data. The suggested findings informed that pre-service teacher’s successful integration of the iLearn was highly influenced by their perception of usefulness of the system. The findings also suggested that the more familiar the pre-service teacher with the iLearn, the more possibility they will use the system. In light of similar study, the present findings hope to highlight the important to understand the user’s perception toward any proposed technology.

Keywords: e-learning, prediction factors, pre-service teacher, structural equation modeling (SEM)

Procedia PDF Downloads 340
1171 The 10,000 Fold Effect Retrograde Neurotransmission: A Newer Concept for Paraplegia’s Physiological Revival by the Use of Intrathecal Sodium Nitroprusside

Authors: V. K. Tewari, M. Hussain, H. K. D. Gupta

Abstract:

B-Methylprednisolone-level-1-benefit (20%) usually given in paraplegia (but within 8hrs). Patients wait-long-duration for physiological-recovery. Intrathecal-Sodium-Nitroprusside(ITSNP) has been used-in vasospasm-due-to-subarachnoid-hemorrhage. ITSNP-has been studied-here for wide-window-period-range for-treatment, fast-recovery/affordability. 2- for acute-cases-and 1-mechanism-for chronic-cases, which-are-interrelated, are being-proposed-for-physiological-recovery. retrograde-neurotransmission, vasospasm and long-term-potentiation-(ltp) mechanisms are proposed here for recovery. It’s a case-control-prospective-study. 82paraplegia-patients(10patients taken as control-no superfusion or dextrose5% superfusion and 72patients as ITSNP-group). The mean time for superfusion was 14.11 days. ITSNP administered at a dosage of 0.2 mg/kg bo wt. Pre/post ITSNP monitored by SSEP/MEP. After-2-Hours in ITSNP-group Mean-Change-From-Baseline-Asia Motor/Sensory-Score 13.84%/13.10%, after-24-hours MOTOR-1.27-points decrease(3.77%) and SENSORY 10.5points-increase(6.22%)as compared to Control-group no-change noted upto 24-hours, At-7days ITSNP motor/sensory;11.56%/6.22% as compared to Control-group 7.60/4.48%, At-2-months in ITSNP 27.69%/6.22% as compared to Control-group 16.02/4.5%. SSEP/MEP-documented-improvements-noted. ITSNP, a-swift-acting-drug in treatment-of-paraplegia, is effective within-two-hours(mean-change-MOTOR-13.84% and SENSORY-13.10%) on-mean14.11th postparaplegia-day with a small-detrimental-response after-24-hours which-recovers-fast.

Keywords: paraplegias, intrathecal sodium nitroprusside, retrograde transmission, the 10, 000 fold effect, perforators, vasodilatations, long term potenciations

Procedia PDF Downloads 409
1170 A Comparative Study of Public and Private School Adolescent Girls on the Issues of Menstrual Hygiene and the Management Issues

Authors: Ashok Pandey, Rajan Adhikari

Abstract:

Introduction: Menstruation is part of the female reproductive cycle that starts when girls become sexually mature at the time of puberty. It is a phenomenon unique to the females. During a menstrual period, a woman bleeds from her uterus via the vagina. For decades, in many countries, academic school ‘type,’ private or public, as a predictor of or factor in future academic success has been researched and debated. MATERIAL AND METHODS: The comparative study was carried out with adolescent girls studying in both public and private schools of Kathmandu valley. A total of 100 girls participated in the survey, and out of them 21 participated in the FGD and 5 in the in- depth interview. Quantitative data from the survey was analyzed using SPSS 16.0 software. Informed verbal consent with the respective head of school and the respondents were taken before data collection. Results:The age of the respondents ranges from 11 to 18 years, with mean age of menarche being 12.37 years in both school adolescent girls. 70 percent of the public school adolescent girls and 72 percent of the private school adolescent girls are feeling upset and tension during menarche. There is a statistically significant difference on take rest during the period and good hygienic practice during menstruation of public/private school, at α=0. 05 level of significance. There is a statistically significant difference on overall score of practice during menstruation between public and private adolescent girls. Conclusion: Private schools children are more knowledgeable and maintain hygiene as compere to public school even though, it can be said that among the adolescent school girls both in public and private school, menstrual knowledge and perceptions are poor and practices often not optimal for proper hygiene. Often ignored issues of privacy affect the hygienic practices and daily lives.

Keywords: Comparison, Menstruation, Private school, Public School

Procedia PDF Downloads 444
1169 The Impact of High Labour Turnover on Sustainable Housing Delivery in South Africa

Authors: Azola Agrienette Mayeza, Madifedile Thasi

Abstract:

Due to the contractual nature of jobs and employment opportunities in the construction industry and the seeming surplus of potential employees in South Africa, there is a little interest on the part of employers to put in place policies to retain experienced workers. Ironically these are the workers that the companies have expended significant resources on, in terms of training and capabilities development. The construction industry has been experiencing high materials wastages and health and safety issues to score very low on the sustainability agenda as regards resources management and safety. This study carried out an assessment of the poor retention of experienced workers in the construction industry on the capacity to deliver sustainable housing in South Africa. It highlights the economic, safety and resources conservation and other benefits accruable from a high retention of key employees to the South African construction industry towards the delivery of sustainable housing. It presents data that strongly support the hypothesis that high turnover of skilled employees as a result of the industry belief of zero incentive to retain employees beyond the contractual period, is responsible for the high wastages of resources in the industry and the safety issues. A high turnover of experienced employees in the construction industry was found to impact on the industry performance in terms of timely, cost effective and quality delivery of construction projects, particularly when measured against the government sustainable housing agenda. It also results in unplanned expenses required to train replacing employees during project executions as well as company goodwill which ultimately has a huge impact on sustainable housing delivery in South Africa.

Keywords: labour turnover, construction industry, sustainable housing, materials wastage, housing delivery, South Africa

Procedia PDF Downloads 370
1168 Advanced Numerical and Analytical Methods for Assessing Concrete Sewers and Their Remaining Service Life

Authors: Amir Alani, Mojtaba Mahmoodian, Anna Romanova, Asaad Faramarzi

Abstract:

Pipelines are extensively used engineering structures which convey fluid from one place to another. Most of the time, pipelines are placed underground and are encumbered by soil weight and traffic loads. Corrosion of pipe material is the most common form of pipeline deterioration and should be considered in both the strength and serviceability analysis of pipes. The study in this research focuses on concrete pipes in sewage systems (concrete sewers). This research firstly investigates how to involve the effect of corrosion as a time dependent process of deterioration in the structural and failure analysis of this type of pipe. Then three probabilistic time dependent reliability analysis methods including the first passage probability theory, the gamma distributed degradation model and the Monte Carlo simulation technique are discussed and developed. Sensitivity analysis indexes which can be used to identify the most important parameters that affect pipe failure are also discussed. The reliability analysis methods developed in this paper contribute as rational tools for decision makers with regard to the strengthening and rehabilitation of existing pipelines. The results can be used to obtain a cost-effective strategy for the management of the sewer system.

Keywords: reliability analysis, service life prediction, Monte Carlo simulation method, first passage probability theory, gamma distributed degradation model

Procedia PDF Downloads 457
1167 The Rational Design of Original Anticancer Agents Using Computational Approach

Authors: Majid Farsadrooh, Mehran Feizi-Dehnayebi

Abstract:

Serum albumin is the most abundant protein that is present in the circulatory system of a wide variety of organisms. Although it is a significant macromolecule, it can contribute to osmotic blood pressure and also, plays a superior role in drug disposition and efficiency. Molecular docking simulation can improve in silico drug design and discovery procedures to propound a lead compound and develop it from the discovery step to the clinic. In this study, the molecular docking simulation was applied to select a lead molecule through an investigation of the interaction of the two anticancer drugs (Alitretinoin and Abemaciclib) with Human Serum Albumin (HSA). Then, a series of new compounds (a-e) were suggested using lead molecule modification. Density functional theory (DFT) including MEP map and HOMO-LUMO analysis were used for the newly proposed compounds to predict the reactivity zones on the molecules, stability, and chemical reactivity. DFT calculation illustrated that these new compounds were stable. The estimated binding free energy (ΔG) values for a-e compounds were obtained as -5.78, -5.81, -5.95, -5,98, and -6.11 kcal/mol, respectively. Finally, the pharmaceutical properties and toxicity of these new compounds were estimated through OSIRIS DataWarrior software. The results indicated no risk of tumorigenic, irritant, or reproductive effects and mutagenicity for compounds d and e. As a result, compounds d and e, could be selected for further study as potential therapeutic candidates. Moreover, employing molecular docking simulation with the prediction of pharmaceutical properties helps to discover new potential drug compounds.

Keywords: drug design, anticancer, computational studies, DFT analysis

Procedia PDF Downloads 78
1166 Comparative Assessment of Finite Element Methodologies for Predicting Post-Buckling Collapse in Stiffened Carbon Fiber-Reinforced Plastic (CFRP) Panels

Authors: Naresh Reddy Kolanu

Abstract:

The stability and collapse behavior of thin-walled composite structures, particularly carbon fiber-reinforced plastic (CFRP) panels, are paramount concerns for structural designers. Accurate prediction of collapse loads necessitates precise modeling of damage evolution in the post-buckling regime. This study conducts a comparative assessment of various finite element (FE) methodologies employed in predicting post-buckling collapse in stiffened CFRP panels. A systematic approach is adopted, wherein FE models with various damage capabilities are constructed and analyzed. The study investigates the influence of interacting intra- and interlaminar damage modes on the post-buckling response and failure behavior of the stiffened CFRP structure. Additionally, the capabilities of shell and brick FE-based models are evaluated and compared to determine their effectiveness in capturing the complex collapse behavior. Conclusions are drawn through quantitative comparison with experimental results, focusing on post-buckling response and collapse load. This comprehensive evaluation provides insights into the most effective FE methodologies for accurately predicting the collapse behavior of stiffened CFRP panels, thereby aiding structural designers in enhancing the stability and safety of composite structures.

Keywords: CFRP stiffened panels, delamination, Hashin’s failure, post-buckling, progressive damage model

Procedia PDF Downloads 44
1165 The Use of Project to Enhance Learning Domains Stated by National Qualifications Framework: TQF

Authors: Duangkamol Thitivesa

Abstract:

This paper explores the use of project work in a content-based instruction in a Rajabhat University, Thailand. The use of project is to promote kinds of learning expected of student teachers as stated by Thailand Quality Framework: TQF. The kinds of learning are grouped into five domains: Ethical and moral development, knowledge, cognitive skill, interpersonal skills and responsibility, and analytical and communication skills. The content taught in class is used to lead the student teachers to relate their previously-acquired linguistic knowledge to meaningful realizations of the language system in passages of immediate relevance to their professional interests, teaching methods in particular. Two research questions are formulate to guide this study: 1) To what degree are the five domains of learning expected of student teachers after the use of project in a content class?, and 2) What is the academic achievement of the students’ writing skills, as part of the learning domains stated by TQF, against the 70% attainment target after the use of project to enhance the skill? The sample of the study comprised of 38 fourth-year English major students. The data was collected by means of a summative achievement test, student writing works, an observation checklist, and project diary. The scores in the summative achievement test were analyzed by mean score, standard deviation, and t-test. Project diary serves as students’ record of the language acquired during the project. List of structures and vocabulary noted in the diary has shown students’ ability to attend to, recognize, and focus on meaningful patterns of language forms.

Keywords: Thailand quality framework, project Work, writing skill, summative

Procedia PDF Downloads 151
1164 MiRNA Regulation of CXCL12β during Inflammation

Authors: Raju Ranjha, Surbhi Aggarwal

Abstract:

Background: Inflammation plays an important role in infectious and non-infectious diseases. MiRNA is also reported to play role in inflammation and associated cancers. Chemokine CXCL12 is also known to play role in inflammation and various cancers. CXCL12/CXCR4 chemokine axis was involved in pathogenesis of IBD specially UC. Supplementation of CXCL12 induces homing of dendritic cells to spleen and enhances control of plasmodium parasite in BALB/c mice. We looked at the regulation of CXCL12β by miRNA in UC colitis. Prolonged inflammation of colon in UC patient increases the risk of developing colorectal cancer. We looked at the expression differences of CXCl12β and its targeting miRNA in cancer susceptible area of colon of UC patients. Aim: Aim of this study was to find out the expression regulation of CXCL12β by miRNA in inflammation. Materials and Methods: Biopsy samples and blood samples were collected from UC patients and non-IBD controls. mRNA expression was analyzed using microarray and real-time PCR. CXCL12β targeting miRNA were looked by using online target prediction tools. Expression of CXCL12β in blood samples and cell line supernatant was analyzed using ELISA. miRNA target was validated using dual luciferase assay. Results and conclusion: We found miR-200a regulate the expression of CXCL12β in UC. Expression of CXCL12β was increased in cancer susceptible part of colon and expression of its targeting miRNA was decreased in the same part of colon. miR-200a regulate CXCL12β expression in inflammation and may be an important therapeutic target in inflammation associated cancer.

Keywords: inflammation, miRNA, regulation, CXCL12

Procedia PDF Downloads 278
1163 Prediction of Distillation Curve and Reid Vapor Pressure of Dual-Alcohol Gasoline Blends Using Artificial Neural Network for the Determination of Fuel Performance

Authors: Leonard D. Agana, Wendell Ace Dela Cruz, Arjan C. Lingaya, Bonifacio T. Doma Jr.

Abstract:

The purpose of this paper is to study the predict the fuel performance parameters, which include drivability index (DI), vapor lock index (VLI), and vapor lock potential using distillation curve and Reid vapor pressure (RVP) of dual alcohol-gasoline fuel blends. Distillation curve and Reid vapor pressure were predicted using artificial neural networks (ANN) with macroscopic properties such as boiling points, RVP, and molecular weights as the input layers. The ANN consists of 5 hidden layers and was trained using Bayesian regularization. The training mean square error (MSE) and R-value for the ANN of RVP are 91.4113 and 0.9151, respectively, while the training MSE and R-value for the distillation curve are 33.4867 and 0.9927. Fuel performance analysis of the dual alcohol–gasoline blends indicated that highly volatile gasoline blended with dual alcohols results in non-compliant fuel blends with D4814 standard. Mixtures of low-volatile gasoline and 10% methanol or 10% ethanol can still be blended with up to 10% C3 and C4 alcohols. Intermediate volatile gasoline containing 10% methanol or 10% ethanol can still be blended with C3 and C4 alcohols that have low RVPs, such as 1-propanol, 1-butanol, 2-butanol, and i-butanol. Biography: Graduate School of Chemical, Biological, and Materials Engineering and Sciences, Mapua University, Muralla St., Intramuros, Manila, 1002, Philippines

Keywords: dual alcohol-gasoline blends, distillation curve, machine learning, reid vapor pressure

Procedia PDF Downloads 103
1162 Estimation of Maize Yield by Using a Process-Based Model and Remote Sensing Data in the Northeast China Plain

Authors: Jia Zhang, Fengmei Yao, Yanjing Tan

Abstract:

The accurate estimation of crop yield is of great importance for the food security. In this study, a process-based mechanism model was modified to estimate yield of C4 crop by modifying the carbon metabolic pathway in the photosynthesis sub-module of the RS-P-YEC (Remote-Sensing-Photosynthesis-Yield estimation for Crops) model. The yield was calculated by multiplying net primary productivity (NPP) and the harvest index (HI) derived from the ratio of grain to stalk yield. The modified RS-P-YEC model was used to simulate maize yield in the Northeast China Plain during the period 2002-2011. The statistical data of maize yield from study area was used to validate the simulated results at county-level. The results showed that the Pearson correlation coefficient (R) was 0.827 (P < 0.01) between the simulated yield and the statistical data, and the root mean square error (RMSE) was 712 kg/ha with a relative error (RE) of 9.3%. From 2002-2011, the yield of maize planting zone in the Northeast China Plain was increasing with smaller coefficient of variation (CV). The spatial pattern of simulated maize yield was consistent with the actual distribution in the Northeast China Plain, with an increasing trend from the northeast to the southwest. Hence the results demonstrated that the modified process-based model coupled with remote sensing data was suitable for yield prediction of maize in the Northeast China Plain at the spatial scale.

Keywords: process-based model, C4 crop, maize yield, remote sensing, Northeast China Plain

Procedia PDF Downloads 378
1161 Obesity and Bone Mineral Density in Patients with Large Joint Osteoarthritis

Authors: Vladyslav Povoroznyuk, Anna Musiienko, Nataliia Zaverukha, Roksolana Povoroznyuk

Abstract:

Along with the global aging of population, the number of people with somatic diseases is increasing, including such interrelated pathologies as obesity, osteoarthritis (OA) and osteoporosis (OP). The objective of the study is to examine the connection between body mass index (BMI), OA and bone mineral density (BMD) of lumbar spine, femoral neck and trabecular bone score (TBS) in postmenopausal women with OA. We have observed 359 postmenopausal women (50-89 years old) and divided them into four groups by age: 50-59 yrs, 60-69 yrs, 70-79 yrs and over 80 years old. In addition, according to the American College of Rheumatology (ACR) Clinical classification criteria for knee and hip OA, we divided them into 2 groups: group I – 117 females with symptomatic OA (including 89 patients with knee OA, 28 patients with hip OA) and group II –242 women with a normal functional activity of large joints. Analysis of data was performed taking into account their BMI, classified by World Health Organization (WHO). Diagnosis of obesity was established when BMI was above 30 kg/m2. In woman with obesity, a symptomatic OA was detected in 44 postmenopausal women (41.1%), a normal functional activity of large joints - in 63 women (58.9%). However, in women with normal BMI – 73 women, who account for 29.0% of cases, a symptomatic OA was detected. According to a chi-squared (χ2) test, a significantly higher level of BMI was detected in postmenopausal women with OA (χ2 = 5.05, p = 0.02). Women with a symptomatic OA had a significantly higher BMD of lumbar spine compared with women who had a normal functional activity of large joints. No significant differences of BMD of femoral necks or TBS were detected in either the group with OA or with a normal functional activity of large joints.

Keywords: bone mineral density, body mass index, obesity, overweight, postmenopausal women, osteoarthritis

Procedia PDF Downloads 125
1160 Thermochemical Modelling for Extraction of Lithium from Spodumene and Prediction of Promising Reagents for the Roasting Process

Authors: Allen Yushark Fosu, Ndue Kanari, James Vaughan, Alexandre Changes

Abstract:

Spodumene is a lithium-bearing mineral of great interest due to increasing demand of lithium in emerging electric and hybrid vehicles. The conventional method of processing the mineral for the metal requires inevitable thermal transformation of α-phase to the β-phase followed by roasting with suitable reagents to produce lithium salts for downstream processes. The selection of appropriate reagent for roasting is key for the success of the process and overall lithium recovery. Several researches have been conducted to identify good reagents for the process efficiency, leading to sulfation, alkaline, chlorination, fluorination, and carbonizing as the methods of lithium recovery from the mineral.HSC Chemistry is a thermochemical software that can be used to model metallurgical process feasibility and predict possible reaction products prior to experimental investigation. The software was employed to investigate and explain the various reagent characteristics as employed in literature during spodumene roasting up to 1200°C. The simulation indicated that all used reagents for sulfation and alkaline were feasible in the direction of lithium salt production. Chlorination was only feasible when Cl2 and CaCl2 were used as chlorination agents but not NaCl nor KCl. Depending on the kind of lithium salt formed during carbonizing and fluorination, the process was either spontaneous or nonspontaneous throughout the temperature range investigated. The HSC software was further used to simulate and predict some promising reagents which may be equally good for roasting the mineral for efficient lithium extraction but have not yet been considered by researchers.

Keywords: thermochemical modelling, HSC chemistry software, lithium, spodumene, roasting

Procedia PDF Downloads 161
1159 Application of Scoring Rubrics by Lecturers towards Objective Assessment of Essay Questions in the Department of Social Science Education, University of Calabar, Nigeria

Authors: Donald B. Enu, Clement O. Ukpor, Abigail E. Okon

Abstract:

Unreliable scoring of students’ performance by lecturers short-chains students’ assessment in terms of underequipping the school authority with facts as intended by society through the curriculum hence, the learners, the school and the society are cheated because the usefulness of testing is defeated. This study, therefore, examined lecturers’ scoring objectivity of essay items in the Department of Social Science Education, University of Calabar, Nigeria. Specifically, it assessed lecturers’ perception of the relevance of scoring rubrics and its level of application. Data were collected from all the 36 lecturers in the Department (28 members and 8 non-members adjourned to the department), through a 20-item questionnaire and checklist instruments. A case-study design was adopted. Descriptive statistics of frequency counts, weighted means, standard deviations, and percentages were used to analyze data gathered. A mean score of 2.5 and or 60 percent and above formed the acceptance or significant level in decision taking. It was found that lecturers perceived the use of scoring rubrics as a relevant practice to ensure fairness and reliable treatment of examiners scripts particularly in marking essay items and that there is a moderately high level of adherence to the application of scoring rubrics. It was also observed that some criteria necessary for the scoring objectivity of essay items were not fully put in place in the department. It was recommended strongly that students’ identities be hidden while marking and that pre-determined marking scheme should be prepared centrally and strictly adhered to during marking and recording of scores. Conference marking should be enforced in the department.

Keywords: essay items, objective scoring, scorers reliability, scoring rubrics

Procedia PDF Downloads 181
1158 Procedural Protocol for Dual Energy Computed Tomography (DECT) Inversion

Authors: Rezvan Ravanfar Haghighi, S. Chatterjee, Pratik Kumar, V. C. Vani, Priya Jagia, Sanjiv Sharma, Susama Rani Mandal, R. Lakshmy

Abstract:

The dual energy computed tomography (DECT) aims at noting the HU(V) values for the sample at two different voltages V=V1, V2 and thus obtain the electron densities (ρe) and effective atomic number (Zeff) of the substance. In the present paper, we aim to obtain a numerical algorithm by which (ρe, Zeff) can be obtained from the HU(100) and HU(140) data, where V=100, 140 kVp. The idea is to use this inversion method to characterize and distinguish between the lipid and fibrous coronary artery plaques.With the idea to develop the inversion algorithm for low Zeff materials, as is the case with non calcified coronary artery plaque, we prepare aqueous samples whose calculated values of (ρe, Zeff) lie in the range (2.65×1023≤ ρe≤ 3.64×1023 per cc ) and (6.80≤ Zeff ≤ 8.90). We fill the phantom with these known samples and experimentally determine HU(100) and HU(140) for the same pixels. Knowing that the HU(V) values are related to the attenuation coefficient of the system, we present an algorithm by which the (ρe, Zeff) is calibrated with respect to (HU(100), HU(140)). The calibration is done with a known set of 20 samples; its accuracy is checked with a different set of 23 known samples. We find that the calibration gives the ρe with an accuracy of ± 4% while Zeff is found within ±1% of the actual value, the confidence being 95%.In this inversion method (ρe, Zeff) of the scanned sample can be found by eliminating the effects of the CT machine and also by ensuring that the determination of the two unknowns (ρe, Zeff) does not interfere with each other. It is found that this algorithm can be used for prediction of chemical characteristic (ρe, Zeff) of unknown scanned materials with 95% confidence level, by inversion of the DECT data.

Keywords: chemical composition, dual-energy computed tomography, inversion algorithm

Procedia PDF Downloads 438
1157 Estimation of the Length and Location of Ground Surface Deformation Caused by the Reverse Faulting

Authors: Nader Khalafian, Mohsen Ghaderi

Abstract:

Field observations have revealed many examples of structures which were damaged due to ground surface deformation caused by the faulting phenomena. In this paper some efforts were made in order to estimate the length and location of the ground surface where large displacements were created due to the reverse faulting. This research has conducted in two steps; (1) in the first step, a 2D explicit finite element model were developed using ABAQUS software. A subroutine for Mohr-Coulomb failure criterion with strain softening model was developed by the authors in order to properly model the stress strain behavior of the soil in the fault rapture zone. The results of the numerical analysis were verified with the results of available centrifuge experiments. Reasonable coincidence was found between the numerical and experimental data. (2) In the second step, the effects of the fault dip angle (δ), depth of soil layer (H), dilation and friction angle of sand (ψ and φ) and the amount of fault offset (d) on the soil surface displacement and fault rupture path were investigated. An artificial neural network-based model (ANN), as a powerful prediction tool, was developed to generate a general model for predicting faulting characteristics. A properly sized database was created to train and test network. It was found that the length and location of the zone of displaced ground surface can be accurately estimated using the proposed model.

Keywords: reverse faulting, surface deformation, numerical, neural network

Procedia PDF Downloads 421
1156 Determination of Direct Solar Radiation Using Atmospheric Physics Models

Authors: Pattra Pukdeekiat, Siriluk Ruangrungrote

Abstract:

This work was originated to precisely determine direct solar radiation by using atmospheric physics models since the accurate prediction of solar radiation is necessary and useful for solar energy applications including atmospheric research. The possible models and techniques for a calculation of regional direct solar radiation were challenging and compulsory for the case of unavailable instrumental measurement. The investigation was mathematically governed by six astronomical parameters i.e. declination (δ), hour angle (ω), solar time, solar zenith angle (θz), extraterrestrial radiation (Iso) and eccentricity (E0) along with two atmospheric parameters i.e. air mass (mr) and dew point temperature at Bangna meteorological station (13.67° N, 100.61° E) in Bangkok, Thailand. Analyses of five models of solar radiation determination with the assumption of clear sky were applied accompanied by three statistical tests: Mean Bias Difference (MBD), Root Mean Square Difference (RMSD) and Coefficient of determination (R2) in order to validate the accuracy of obtainable results. The calculated direct solar radiation was in a range of 491-505 Watt/m2 with relative percentage error 8.41% for winter and 532-540 Watt/m2 with relative percentage error 4.89% for summer 2014. Additionally, dataset of seven continuous days, representing both seasons were considered with the MBD, RMSD and R2 of -0.08, 0.25, 0.86 and -0.14, 0.35, 3.29, respectively, which belong to Kumar model for winter and CSR model for summer. In summary, the determination of direct solar radiation based on atmospheric models and empirical equations could advantageously provide immediate and reliable values of the solar components for any site in the region without a constraint of actual measurement.

Keywords: atmospheric physics models, astronomical parameters, atmospheric parameters, clear sky condition

Procedia PDF Downloads 410
1155 Emotional, Behavioral and Social Problems in Children with Fecal Incontinence by Child Behavior Checklist (CBCL): A Cross-sectional Study

Authors: Roshanak Farjad, Amirhossein Hosseini

Abstract:

Fecal incontinence (FI) is a stressful condition for children and their parents that may affect the patient’s psychological well-being. Evaluating the patients’ psychological status may help physicians manage the disease effectively. This study aimed to assess the emotional and behavioral disturbances in children with FI who were referred to the pediatric gastroenterology clinic in Mofid Children’s Hospital from April 2021 to 2022. This cross-sectional study included children (over four years old) with chronic constipation and fecal incontinence. The diagnosis of chronic constipation and FI were made according to Rome-IV criteria. The Child Behavior Checklist (CBCL) evaluated patients’ emotional, behavioral, and social problems. One hundred one patients with a mean age of 7.96 years were enrolled in the study; 67.32% were males. According to CBCL, 12% (12 patients) indicated emotional and behavioral problems, with CBCL scores in the clinical or at-risk range. We detected anxious/depressed problems in five (4.95%), withdrawn/depressed problems in eight (7.92%), somatic complaints in seven (6.93%), social problems in eight (7.92%), thought problems in nine (8.91%), attention problems in seven (6.93%), rule-breaking behavior in two (1.98%), and aggressive behavior in nine (8.91%) patients. The risk of internalizing and externalizing disorders was reported in four (3.96%) and five (4.95%) patients. Also, eight (7.92%) and seven (6.93%) patients had clinical symptoms of internalizing and externalizing disorders, respectively. There was no significant relationship between patients’ age and gender with the CBCL scores in any subscales. However, there was a significant difference in the total score among the age groups (P = 0.04). The relatively high prevalence of emotional, behavioral, and social problems in our study corroborates the importance of psychological screening of children with FI during the treatment process.

Keywords: chronic constipation, child behavior checklist (CBCL), fecal incontinence, rome-IV criteria

Procedia PDF Downloads 76
1154 Proposal Method of Prediction of the Early Stages of Dementia Using IoT and Magnet Sensors

Authors: João Filipe Papel, Tatsuji Munaka

Abstract:

With society's aging and the number of elderly with dementia rising, researchers have been actively studying how to support the elderly in the early stages of dementia with the objective of allowing them to have a better life quality and as much as possible independence. To make this possible, most researchers in this field are using the Internet Of Things to monitor the elderly activities and assist them in performing them. The most common sensor used to monitor the elderly activities is the Camera sensor due to its easy installation and configuration. The other commonly used sensor is the sound sensor. However, we need to consider privacy when using these sensors. This research aims to develop a system capable of predicting the early stages of dementia based on monitoring and controlling the elderly activities of daily living. To make this system possible, some issues need to be addressed. First, the issue related to elderly privacy when trying to detect their Activities of Daily Living. Privacy when performing detection and monitoring Activities of Daily Living it's a serious concern. One of the purposes of this research is to achieve this detection and monitoring without putting the privacy of the elderly at risk. To make this possible, the study focuses on using an approach based on using Magnet Sensors to collect binary data. The second is to use the data collected by monitoring Activities of Daily Living to predict the early stages of Dementia. To make this possible, the research team suggests developing a proprietary ontology combined with both data-driven and knowledge-driven.

Keywords: dementia, activity recognition, magnet sensors, ontology, data driven and knowledge driven, IoT, activities of daily living

Procedia PDF Downloads 105
1153 Enhancing Rupture Pressure Prediction for Corroded Pipes Through Finite Element Optimization

Authors: Benkouiten Imene, Chabli Ouerdia, Boutoutaou Hamid, Kadri Nesrine, Bouledroua Omar

Abstract:

Algeria is actively enhancing gas productivity by augmenting the supply flow. However, this effort has led to increased internal pressure, posing a potential risk to the pipeline's integrity, particularly in the presence of corrosion defects. Sonatrach relies on a vast network of pipelines spanning 24,000 kilometers for the transportation of gas and oil. The aging of these pipelines raises the likelihood of corrosion both internally and externally, heightening the risk of ruptures. To address this issue, a comprehensive inspection is imperative, utilizing specialized scraping tools. These advanced tools furnish a detailed assessment of all pipeline defects. It is essential to recalculate the pressure parameters to safeguard the corroded pipeline's integrity while ensuring the continuity of production. In this context, Sonatrach employs symbolic pressure limit calculations, such as ASME B31G (2009) and the modified ASME B31G (2012). The aim of this study is to perform a comparative analysis of various limit pressure calculation methods documented in the literature, namely DNV RP F-101, SHELL, P-CORRC, NETTO, and CSA Z662. This comparative assessment will be based on a dataset comprising 329 burst tests published in the literature. Ultimately, we intend to introduce a novel approach grounded in the finite element method, employing ANSYS software.

Keywords: pipeline burst pressure, burst test, corrosion defect, corroded pipeline, finite element method

Procedia PDF Downloads 58