Search results for: network technology
8956 Transforming Public Administration in the Digital Era: Challenges and Opportunities
Authors: Catalina Oana Dumitrescu, Andreea L. Drugau-constantin
Abstract:
In the digital age, public administration is facing profound change, fueled by technological advances and the growing demands of citizens for efficient, accessible and transparent services. This paper explores how new digital technologies – including artificial intelligence, blockchain, big data and e-governance solutions – are reshaping the functioning of public administrations globally. In addition to the obvious opportunities to streamline and optimize processes, digital transformation brings with it major challenges, such as cyber security, personal data protection, resistance to change and the need to develop new skills for employees. The paper aims to provide a discussion platform for public administration experts, policy makers and technology innovators to consider how governments can balance the benefits and risks of digital transformation. Topics such as the reconfiguration of administrative processes, the creation of interoperable government systems, the involvement of citizens in public decisions through digital platforms, and solutions for reducing the digital gap between developed and developing regions will be addressed. In conclusion, the digital transformation of public administration is not only an opportunity for modernization, but also a necessity to respond to the new demands and challenges of contemporary society. This paper will provide new insights into the role of technology in improving the quality of governance and public services.Keywords: public administration, digital ERA, technology, government systems, global
Procedia PDF Downloads 288955 Cross Attention Fusion for Dual-Stream Speech Emotion Recognition
Authors: Shaode Yu, Jiajian Meng, Bing Zhu, Hang Yu, Qiurui Sun
Abstract:
Speech emotion recognition (SER) is for recognizing human subjective emotions through audio data in-depth analysis. From speech audios, how to comprehensively extract emotional information and how to effectively fuse extracted features remain challenging. This paper presents a dual-stream SER framework that embraces both full training and transfer learning of different networks for thorough feature encoding. Besides, a plug-and-play cross-attention fusion (CAF) module is implemented for the valid integration of the dual-stream encoder output. The effectiveness of the proposed CAF module is compared to the other three fusion modules (feature summation, feature concatenation, and feature-wise linear modulation) on two databases (RAVDESS and IEMO-CAP) using different dual-stream encoders (full training network, DPCNN or TextRCNN; transfer learning network, HuBERT or Wav2Vec2). Experimental results suggest that the CAF module can effectively reconcile conflicts between features from different encoders and outperform the other three feature fusion modules on the SER task. In the future, the plug-and-play CAF module can be extended for multi-branch feature fusion, and the dual-stream SER framework can be widened for multi-stream data representation to improve the recognition performance and generalization capacity.Keywords: speech emotion recognition, cross-attention fusion, dual-stream, pre-trained
Procedia PDF Downloads 848954 The Relevance of Smart Technologies in Learning
Authors: Rachael Olubukola Afolabi
Abstract:
Immersive technologies known as X Reality or Cross Reality that include virtual reality augmented reality, and mixed reality have pervaded into the education system at different levels from elementary school to adult learning. Instructors, instructional designers, and learning experience specialists continue to find new ways to engage students in the learning process using technology. While the progression of web technologies has enhanced digital learning experiences, analytics on learning outcomes continue to be explored to determine the relevance of these technologies in learning. Digital learning has evolved from web 1.0 (static) to 4.0 (dynamic and interactive), and this evolution of technologies has also advanced teaching methods and approaches. This paper explores how these technologies are being utilized in learning and the results that educators and learners have identified as effective learning opportunities and approaches.Keywords: immersive technologoes, virtual reality, augmented reality, technology in learning
Procedia PDF Downloads 1488953 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 1438952 The Review of Coiled Tubing Intelligent Sidetracking Steering Technology
Authors: Zhao Xueran, Yang Dong
Abstract:
In order to improve the problem that old wells in oilfields are shut down due to low oil recovery, sidetracking has become one of the main technical means to restore the vitality of old wells. A variety of sidetracking technologies have been researched and formed internationally. Among them, coiled tubing sidetracking horizontal wells have significant advantages over conventional sidetracking methods: underbalanced pressure operations; reducing the number of trips of tubing, while drilling and production, saving construction costs, less ground equipment and less floor space, orienter guidance to reduce drilling friction, etc. This paper mainly introduces the steering technology in coiled tubing intelligent sidetracking at home and abroad, including the orienter and the rotary steerable system.Keywords: sidetracking, coiled tubing, orienter, rotary steering system
Procedia PDF Downloads 1778951 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection
Procedia PDF Downloads 4718950 Elucidation of Dynamics of Murine Double Minute 2 Shed Light on the Anti-cancer Drug Development
Authors: Nigar Kantarci Carsibasi
Abstract:
Coarse-grained elastic network models, namely Gaussian network model (GNM) and Anisotropic network model (ANM), are utilized in order to investigate the fluctuation dynamics of Murine Double Minute 2 (MDM2), which is the native inhibitor of p53. Conformational dynamics of MDM2 are elucidated in unbound, p53 bound, and non-peptide small molecule inhibitor bound forms. With this, it is aimed to gain insights about the alterations brought to global dynamics of MDM2 by native peptide inhibitor p53, and two small molecule inhibitors (HDM201 and NVP-CGM097) that are undergoing clinical stages in cancer studies. MDM2 undergoes significant conformational changes upon inhibitor binding, carrying pieces of evidence of induced-fit mechanism. Small molecule inhibitors examined in this work exhibit similar fluctuation dynamics and characteristic mode shapes with p53 when complexed with MDM2, which would shed light on the design of novel small molecule inhibitors for cancer therapy. The results showed that residues Phe 19, Trp 23, Leu 26 reside in the minima of slowest modes of p53, pointing to the accepted three-finger binding model. Pro 27 displays the most significant hinge present in p53 and comes out to be another functionally important residue. Three distinct regions are identified in MDM2, for which significant conformational changes are observed upon binding. Regions I (residues 50-77) and III (residues 90-105) correspond to the binding interface of MDM2, including (α2, L2, and α4), which are stabilized during complex formation. Region II (residues 77-90) exhibits a large amplitude motion, being highly flexible, both in the absence and presence of p53 or other inhibitors. MDM2 exhibits a scattered profile in the fastest modes of motion, while binding of p53 and inhibitors puts restraints on MDM2 domains, clearly distinguishing the kinetically hot regions. Mode shape analysis revealed that the α4 domain controls the size of the cleft by keeping the cleft narrow in unbound MDM2; and open in the bound states for proper penetration and binding of p53 and inhibitors, which points to the induced-fit mechanism of p53 binding. P53 interacts with α2 and α4 in a synchronized manner. Collective modes are shifted upon inhibitor binding, i.e., second mode characteristic motion in MDM2-p53 complex is observed in the first mode of apo MDM2; however, apo and bound MDM2 exhibits similar features in the softest modes pointing to pre-existing modes facilitating the ligand binding. Although much higher amplitude motions are attained in the presence of non-peptide small molecule inhibitor molecules as compared to p53, they demonstrate close similarity. Hence, NVP-CGM097 and HDM201 succeed in mimicking the p53 behavior well. Elucidating how drug candidates alter the MDM2 global and conformational dynamics would shed light on the rational design of novel anticancer drugs.Keywords: cancer, drug design, elastic network model, MDM2
Procedia PDF Downloads 1338949 ID + PD: Training Instructional Designers to Foster and Facilitate Learning Communities in Digital Spaces
Authors: Belkis L. Cabrera
Abstract:
Contemporary technological innovations have reshaped possibility, interaction, communication, engagement, education, and training. Indeed, today, a high-quality technology enhanced learning experience can be transformative as much for the learner as for the educator-trainer. As innovative technologies continue to facilitate, support, foster, and enhance collaboration, problem-solving, creativity, adaptiveness, multidisciplinarity, and communication, the field of instructional design (ID) also continues to develop and expand. Shifting its focus from media to the systematic design of instruction, or rather from the gadgets and devices themselves to the theories, models, and impact of implementing educational technology, the evolution of ID marks a restructuring of the teaching, learning, and training paradigms. However, with all of its promise, this latter component of ID remains underdeveloped. The majority of ID models are crafted and guided by learning theories and, therefore, most models are constructed around student and educator roles rather than trainer roles. Thus, when these models or systems are employed for training purposes, they usually have to be re-fitted, tweaked, and stretched to meet the training needs. This paper is concerned with the training or professional development (PD) facet of instructional design and how ID models built on teacher-to-teacher interaction and dialogue can support the creation of professional learning communities (PLCs) or communities of practice (CoPs), which can augment learning and PD experiences for all. Just as technology is changing the face of education, so too can it change the face of PD within the educational realm. This paper not only provides a new ID model but using innovative technologies such as Padlet and Thinkbinder, this paper presents a concrete example of how a traditional body-to-body, brick, and mortar learning community can be transferred and transformed into the online context.Keywords: communities of practice, e-learning, educational reform, instructional design, professional development, professional learning communities, technology, training
Procedia PDF Downloads 3468948 Technological Improvements and the Challenges They Pose to Market Competition in the Philippines
Authors: Isabel L. Guidote
Abstract:
Continued advancements and innovation in the technological arena may yield both beneficial and detrimental effects to market competition in the Philippines. This paper discusses recent developments in the digital sphere which have resulted in improved access to the Philippine market for both producers and consumers. Acknowledging that these developments are likely to disrupt or alter prevailing market conditions, this paper likewise tackles competition theories of harm that may arise as a result of such technological innovations, with reference to cases decided by foreign competition authorities and the European Commission. As the Philippine moves closer to the digital frontier, it is imperative that producers, consumers, and regulators alike be well-equipped to address the risks and challenges posed by these rapid advancements in technology.Keywords: antitrust, competition law, market competition, technology
Procedia PDF Downloads 1748947 STEM Curriculum Development Using Robotics with K-12 Students in Brazil
Authors: Flavio Campos
Abstract:
This paper describes an implementation of a STEM curriculum program using robotics as a technological resource at a private school in Brazil. Emphasized the pedagogic and didactic aspects and brings a discussion about STEM curriculum and the perspective of using robotics and the relation between curriculum, science and technologies into the learning process. The results indicate that STEM curriculum integration with robotics as a technological resource in K-12 students learning process has complex aspects, such as relation between time/space, the development of educators and the relation between robotics and other subjects. Therefore, the comprehension of these aspects could indicate some steps that we should consider when integrating STEM basis and robotics into curriculum, which can improve education for science and technology significantly.Keywords: STEM curriculum, educational robotics, constructionist approach, education and technology
Procedia PDF Downloads 3448946 ABET Accreditation Process for Engineering and Technology Programs: Detailed Process Flow from Criteria 1 to Criteria 8
Authors: Amit Kumar, Rajdeep Chakrabarty, Ganesh Gupta
Abstract:
This paper illustrates the detailed accreditation process of Accreditation Board of Engineering and Technology (ABET) for accrediting engineering and Technology programs. ABET is a non-governmental agency that accredits engineering and technology, applied and natural sciences, and computing sciences programs. ABET was founded on 10th May 1932 and was founded by Institute of Electrical and Electronics Engineering. International industries accept ABET accredited institutes having the highest standards in their academic programs. In this accreditation, there are eight criteria in general; criterion 1 describes the student outcome evaluations, criteria 2 measures the program's educational objectives, criteria 3 is the student outcome calculated from the marks obtained by students, criteria 4 establishes continuous improvement, criteria 5 focus on curriculum of the institute, criteria 6 is about faculties of this institute, criteria 7 measures the facilities provided by the institute and finally, criteria 8 focus on institutional support towards staff of the institute. In this paper, we focused on the calculative part of each criterion with equations and suitable examples, the files and documentation required for each criterion, and the total workflow of the process. The references and the values used to illustrate the calculations are all taken from the samples provided at ABET's official website. In the final section, we also discuss the criterion-wise score weightage followed by evaluation with timeframe and deadlines.Keywords: Engineering Accreditation Committee, Computing Accreditation Committee, performance indicator, Program Educational Objective, ABET Criterion 1 to 7, IEEE, National Board of Accreditation, MOOCS, Board of Studies, stakeholders, course objective, program outcome, articulation, attainment, CO-PO mapping, CO-PO-SO mapping, PDCA cycle, degree certificates, course files, course catalogue
Procedia PDF Downloads 628945 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN
Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm
Abstract:
In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control
Procedia PDF Downloads 5018944 Technological Challenges for First Responders in Civil Protection; the RESPOND-A Solution
Authors: Georgios Boustras, Cleo Varianou Mikellidou, Christos Argyropoulos
Abstract:
Summer 2021 was marked by a number of prolific fires in the EU (Greece, Cyprus, France) as well as outside the EU (USA, Turkey, Israel). This series of dramatic events have stretched national civil protection systems and first responders in particular. Despite the introduction of National, Regional and International frameworks (e.g. rescEU), a number of challenges have arisen, not only related to climate change. RESPOND-A (funded by the European Commission by Horizon 2020, Contract Number 883371) introduces a unique five-tier project architectural structure for best associating modern telecommunications technology with novel practices for First Responders of saving lives, while safeguarding themselves, more effectively and efficiently. The introduced architecture includes Perception, Network, Processing, Comprehension, and User Interface layers, which can be flexibly elaborated to support multiple levels and types of customization, so, the intended technologies and practices can adapt to any European Environment Agency (EEA)-type disaster scenario. During the preparation of the RESPOND-A proposal, some of our First Responder Partners expressed the need for an information management system that could boost existing emergency response tools, while some others envisioned a complete end-to-end network management system that would offer high Situational Awareness, Early Warning and Risk Mitigation capabilities. The intuition behind these needs and visions sits on the long-term experience of these Responders, as well, their smoldering worry that the evolving threat of climate change and the consequences of industrial accidents will become more frequent and severe. Three large-scale pilot studies are planned in order to illustrate the capabilities of the RESPOND-A system. The first pilot study will focus on the deployment and operation of all available technologies for continuous communications, enhanced Situational Awareness and improved health and safety conditions for First Responders, according to a big fire scenario in a Wildland Urban Interface zone (WUI). An important issue will be examined during the second pilot study. Unobstructed communication in the form of the flow of information is severely affected during a crisis; the flow of information between the wider public, from the first responders to the public and vice versa. Call centers are flooded with requests and communication is compromised or it breaks down on many occasions, which affects in turn – the effort to build a common operations picture for all firstr esponders. At the same time the information that reaches from the public to the operational centers is scarce, especially in the aftermath of an incident. Understandably traffic if disrupted leaves no other way to observe but only via aerial means, in order to perform rapid area surveys. Results and work in progress will be presented in detail and challenges in relation to civil protection will be discussed.Keywords: first responders, safety, civil protection, new technologies
Procedia PDF Downloads 1488943 Crop Classification using Unmanned Aerial Vehicle Images
Authors: Iqra Yaseen
Abstract:
One of the well-known areas of computer science and engineering, image processing in the context of computer vision has been essential to automation. In remote sensing, medical science, and many other fields, it has made it easier to uncover previously undiscovered facts. Grading of diverse items is now possible because of neural network algorithms, categorization, and digital image processing. Its use in the classification of agricultural products, particularly in the grading of seeds or grains and their cultivars, is widely recognized. A grading and sorting system enables the preservation of time, consistency, and uniformity. Global population growth has led to an increase in demand for food staples, biofuel, and other agricultural products. To meet this demand, available resources must be used and managed more effectively. Image processing is rapidly growing in the field of agriculture. Many applications have been developed using this approach for crop identification and classification, land and disease detection and for measuring other parameters of crop. Vegetation localization is the base of performing these task. Vegetation helps to identify the area where the crop is present. The productivity of the agriculture industry can be increased via image processing that is based upon Unmanned Aerial Vehicle photography and satellite. In this paper we use the machine learning techniques like Convolutional Neural Network, deep learning, image processing, classification, You Only Live Once to UAV imaging dataset to divide the crop into distinct groups and choose the best way to use it.Keywords: image processing, UAV, YOLO, CNN, deep learning, classification
Procedia PDF Downloads 1158942 Wrapping–Decorative Movement of Time
Authors: Rudranil Das
Abstract:
Wrapping is a basic textile technique; it is having a great quality of decorative view. Since long back it has been embellishing life of people and their culture in different forms. It links cultures, beliefs, thoughts, technology, and above all, people. Through etymology we can study the movement of the word power of wrapping undoubtedly but in depth analyze it could provide many concepts of structural ability. Only in India, more than 105 different processes exist in the way of saree [a type of women attire] wrapping. Then many more other clothing we found in allover world which connects this technique and construction too. One of the main objectives of this study is to enrich wrapping explanation and come up with surfaces by this technique. The deliberate more fragile and stretchable structural framework makes it more appropriate in different users according to their necessity. Developments of design and technology could create new industry segment and generate a marginalized employment for the people too.Keywords: concept, existence, philosophical attachment, technological advancement
Procedia PDF Downloads 2338941 An Evaluation of Digital Literacy Skills among First-year Students at a Higher Education Institution in South Africa
Authors: Abdu Feroz Maluleke
Abstract:
Digital literacy skills among first-year university students has been under scrutiny in recent years. This is largely due to the pressure faced by the South African higher education sector as the battle to integrate educational technologies into the teaching curriculum. This study aims to investigate the relationship between the Technology Acceptance Model (TAM) and the digital literacy skills of first-year students at the Tshwane University of Technology in South Africa. A positivism quantitative research methodology will be employed to collect data from 468 first-year students at a higher education institution through a validated questionnaire. Descriptive analyses, T-tests, ANOVA, and Spearman's correlation will be conducted using SPSS. Anticipated findings suggest that various demographic factors, such as previous school, self-efficacy, and age, significantly influence learners' digital literacy competency. Furthermore, the projected findings highlight the importance of rural secondary schools adopting and implementing technological pedagogies in their curriculum. This research aims to make a substantial contribution to the development of ICT adoption guidelines for the secondary school curriculum, which would aid the basic educational sector in South Africa.Keywords: technology acceptance model, digital literacy skills, secondary schools, south africa
Procedia PDF Downloads 828940 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea
Authors: Jaehyung Jung, Kiman Kim, Heesang Eum
Abstract:
Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell
Procedia PDF Downloads 2268939 A Novel Approach to Design and Implement Context Aware Mobile Phone
Authors: G. S. Thyagaraju, U. P. Kulkarni
Abstract:
Context-aware computing refers to a general class of computing systems that can sense their physical environment, and adapt their behaviour accordingly. Context aware computing makes systems aware of situations of interest, enhances services to users, automates systems and personalizes applications. Context-aware services have been introduced into mobile devices, such as PDA and mobile phones. In this paper we are presenting a novel approaches used to realize the context aware mobile. The context aware mobile phone (CAMP) proposed in this paper senses the users situation automatically and provides user context required services. The proposed system is developed by using artificial intelligence techniques like Bayesian Network, fuzzy logic and rough sets theory based decision table. Bayesian Network to classify the incoming call (high priority call, low priority call and unknown calls), fuzzy linguistic variables and membership degrees to define the context situations, the decision table based rules for service recommendation. To exemplify and demonstrate the effectiveness of the proposed methods, the context aware mobile phone is tested for college campus scenario including different locations like library, class room, meeting room, administrative building and college canteen.Keywords: context aware mobile, fuzzy logic, decision table, Bayesian probability
Procedia PDF Downloads 3718938 Bacteriological Characterization of Drinking Water Distribution Network Biofilms by Gene Sequencing Using Different Pipe Materials
Authors: M. Zafar, S. Rasheed, Imran Hashmi
Abstract:
Very little is concerned about the bacterial contamination in drinking water biofilm which provide a potential source for bacteria to grow and increase rapidly. So as to understand the microbial density in DWDs, a three-month study was carried out. The aim of this study was to examine biofilm in three different pipe materials including PVC, PPR and GI. A set of all these pipe materials was installed in DWDs at nine different locations and assessed on monthly basis. Drinking water quality was evaluated by different parameters and characterization of biofilm. Among various parameters are Temperature, pH, turbidity, TDS, electrical conductivity, BOD, COD, total phosphates, total nitrates, total organic carbon (TOC) free chlorine and total chlorine, coliforms and spread plate counts (SPC) according to standard methods. Predominant species were Bacillus thuringiensis, Pseudomonas fluorescens , Staphylococcus haemolyticus, Bacillus safensis and significant increase in bacterial population was observed in PVC pipes while least in cement pipes. The quantity of DWDs bacteria was directly depended on biofilm bacteria and its increase was correlated with growth and detachment of bacteria from biofilms. Pipe material also affected the microbial community in drinking water distribution network biofilm while Similarity in bacterial species was observed between systems due to same disinfectant dose, time period and plumbing pipes.Keywords: biofilm, DWDs, pipe material, bacterial population
Procedia PDF Downloads 3498937 The Development of a Miniaturized Raman Instrument Optimized for the Detection of Biosignatures on Europa
Authors: Aria Vitkova, Hanna Sykulska-Lawrence
Abstract:
In recent years, Europa has been one of the major focus points in astrobiology due to its high potential of harbouring life in the vast ocean underneath its icy crust. However, the detection of life on Europa faces many challenges due to the harsh environmental conditions and mission constraints. Raman spectroscopy is a highly capable and versatile in-situ characterisation technique that does not require any sample preparation. It has only been used on Earth to date; however, recent advances in optical and laser technology have also allowed it to be considered for extraterrestrial exploration. So far, most efforts have been focused on the exploration of Mars, the most imminent planetary target. However, as an emerging technology with high miniaturization potential, Raman spectroscopy also represents a promising tool for the exploration of Europa. In this study, the capabilities of Raman technology in terms of life detection on Europa are explored and assessed. Spectra of biosignatures identified as high priority molecular targets for life detection on Europa were acquired at various excitation wavelengths and conditions analogous to Europa. The effects of extremely low temperatures and low concentrations in water ice were explored and evaluated in terms of the effectiveness of various configurations of Raman instruments. Based on the findings, a design of a miniaturized Raman instrument optimized for in-situ detection of life on Europa is proposed.Keywords: astrobiology, biosignatures, Europa, life detection, Raman Spectroscopy
Procedia PDF Downloads 2228936 An Optimization Tool-Based Design Strategy Applied to Divide-by-2 Circuits with Unbalanced Loads
Authors: Agord M. Pinto Jr., Yuzo Iano, Leandro T. Manera, Raphael R. N. Souza
Abstract:
This paper describes an optimization tool-based design strategy for a Current Mode Logic CML divide-by-2 circuit. Representing a building block for output frequency generation in a RFID protocol based-frequency synthesizer, the circuit was designed to minimize the power consumption for driving of multiple loads with unbalancing (at transceiver level). Implemented with XFAB XC08 180 nm technology, the circuit was optimized through MunEDA WiCkeD tool at Cadence Virtuoso Analog Design Environment ADE.Keywords: divide-by-2 circuit, CMOS technology, PLL phase locked-loop, optimization tool, CML current mode logic, RF transceiver
Procedia PDF Downloads 4668935 Prediction of Music Track Popularity: A Machine Learning Approach
Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan
Abstract:
Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.Keywords: classifier, machine learning, music tracks, popularity, prediction
Procedia PDF Downloads 6688934 Finding a Redefinition of the Relationship between Rural and Urban Knowledge
Authors: Bianca Maria Rulli, Lenny Valentino Schiaretti
Abstract:
The considerable recent urbanization has increasingly sharpened environmental and social problems all over the world. During the recent years, many answers to the alarming attitudes in modern cities have emerged: a drastic reduction in the rate of growth is becoming essential for future generations and small scale economies are considered more adaptive and sustainable. According to the concept of degrowth, cities should consider surpassing the centralization of urban living by redefining the relationship between rural and urban knowledge; growing food in cities fundamentally contributes to the increase of social and ecological resilience. Through an innovative approach, this research combines the benefits of urban agriculture (increase of biological diversity, shorter and thus more efficient supply chains, food security) and temporary land use. They stimulate collaborative practices to satisfy the changing needs of communities and stakeholders. The concept proposes a coherent strategy to create a sustainable development of urban spaces, introducing a productive green-network to link specific areas in the city. By shifting the current relationship between architecture and landscape, the former process of ground consumption is deeply revised. Temporary modules can be used as concrete tools to create temporal areas of innovation, transforming vacant or marginal spaces into potential laboratories for the development of the city. The only permanent ground traces, such as foundations, are minimized in order to allow future land re-use. The aim is to describe a new mindset regarding the quality of space in the metropolis which allows, in a completely flexible way, to bring back the green and the urban farming into the cities. The wide possibilities of the research are analyzed in two different case-studies. The first is a regeneration/connection project designated for social housing, the second concerns the use of temporary modules to answer to the potential needs of social structures. The intention of the productive green-network is to link the different vacant spaces to each other as well as to the entire urban fabric. This also generates a potential improvement of the current situation of underprivileged and disadvantaged persons.Keywords: degrowth, green network, land use, temporary building, urban farming
Procedia PDF Downloads 5058933 Air Quality Forecast Based on Principal Component Analysis-Genetic Algorithm and Back Propagation Model
Authors: Bin Mu, Site Li, Shijin Yuan
Abstract:
Under the circumstance of environment deterioration, people are increasingly concerned about the quality of the environment, especially air quality. As a result, it is of great value to give accurate and timely forecast of AQI (air quality index). In order to simplify influencing factors of air quality in a city, and forecast the city’s AQI tomorrow, this study used MATLAB software and adopted the method of constructing a mathematic model of PCA-GABP to provide a solution. To be specific, this study firstly made principal component analysis (PCA) of influencing factors of AQI tomorrow including aspects of weather, industry waste gas and IAQI data today. Then, we used the back propagation neural network model (BP), which is optimized by genetic algorithm (GA), to give forecast of AQI tomorrow. In order to verify validity and accuracy of PCA-GABP model’s forecast capability. The study uses two statistical indices to evaluate AQI forecast results (normalized mean square error and fractional bias). Eventually, this study reduces mean square error by optimizing individual gene structure in genetic algorithm and adjusting the parameters of back propagation model. To conclude, the performance of the model to forecast AQI is comparatively convincing and the model is expected to take positive effect in AQI forecast in the future.Keywords: AQI forecast, principal component analysis, genetic algorithm, back propagation neural network model
Procedia PDF Downloads 2348932 Scrum Challenges and Mitigation Practices in Global Software Development of an Integrated Learning Environment: Case Study of Science, Technology, Innovation, Mathematics, Engineering for the Young
Authors: Evgeniia Surkova, Manal Assaad, Hleb Makeyeu, Juho Makio
Abstract:
The main objective of STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project is the delivery of a hybrid learning environment that combines multi-level components such as social media concepts, robotic artefacts, and radio, among others. It is based on a well-researched pedagogical framework to attract European youths to STEM (science, technology, engineering, and mathematics) education and careers. To develop and integrate these various components, STIMEY is executed in iterative research cycles leading to progressive improvements. Scrum was the development methodology of choice in the project, as studies indicated its benefits as an agile methodology in global software development, especially of e-learning and integrated learning projects. This paper describes the project partners’ experience with the Scrum framework, discussing the challenges faced in its implementation and the mitigation practices employed. The authors conclude with exploring user experience tools and principles for future research, as a novel direction in supporting the Scrum development team.Keywords: e-learning, global software development, scrum, STEM education
Procedia PDF Downloads 1818931 An Innovation and Development System for a New Hybrid Composite Technology in Aerospace Industry
Authors: M. Fette, J. P. Wulfsberg, A. Herrmann, R. H. Ladstaetter
Abstract:
Present and future lightweight design represents an important key to successful implementation of energy-saving, fuel-efficient and environmentally friendly means of transport in the aerospace and automotive industry. In this context the use of carbon fibre reinforced plastics (CFRP) which are distinguished by their outstanding mechanical properties at relatively low weight, promise significant improvements. Due to the reduction of the total mass, with the resulting lowered fuel or energy consumption and CO2 emissions during the operational phase, commercial aircraft and future vehicles will increasingly be made of CFRP. An auspicious technology for the efficient and economic production of high performance thermoset composites and hybrid structures for future lightweight applications is the combination of carbon fibre sheet moulding compound (SMC), tailored continuous carbon fibre reinforcements and metallic components in a one-shot pressing and curing process. This paper deals with a new hybrid composite technology for aerospace industries, which was developed with the help of a universal innovation and development system. This system supports the management of idea generation, the methodical development of innovative technologies and the achievement of the industrial readiness of these technologies.Keywords: development system, hybrid composite, innovation system, prepreg, sheet moulding compound
Procedia PDF Downloads 3428930 Enhanced Solar-Driven Evaporation Process via F-Mwcnts/Pvdf Photothermal Membrane for Forward Osmosis Draw Solution Recovery
Authors: Ayat N. El-Shazly, Dina Magdy Abdo, Hamdy Maamoun Abdel-Ghafar, Xiangju Song, Heqing Jiang
Abstract:
Product water recovery and draw solution (DS) reuse is the most energy-intensive stage in forwarding osmosis (FO) technology. Sucrose solution is the most suitable DS for FO application in food and beverages. However, sucrose DS recovery by conventional pressure-driven or thermal-driven concentration techniques consumes high energy. Herein, we developed a spontaneous and sustainable solar-driven evaporation process based on a photothermal membrane for the concentration and recovery of sucrose solution. The photothermal membrane is composed of multi-walled carbon nanotubes (f-MWCNTs)photothermal layer on a hydrophilic polyvinylidene fluoride (PVDF) substrate. The f-MWCNTs photothermal layer with a rough surface and interconnected network structures not only improves the light-harvesting and light-to-heat conversion performance but also facilitates the transport of water molecules. The hydrophilic PVDF substrate can promote the rapid transport of water for adequate water supply to the photothermal layer. As a result, the optimized f-MWCNTs/PVDF photothermal membrane exhibits an excellent light absorption of 95%, and a high surface temperature of 74 °C at 1 kW m−2 . Besides, it realizes an evaporation rate of 1.17 kg m−2 h−1 for 5% (w/v) of sucrose solution, which is about 5 times higher than that of the natural evaporation. The designed photothermal evaporation process is capable of concentrating sucrose solution efficiently from 5% to 75% (w/v), which has great potential in FO process and juice concentration.Keywords: solar, pothothermal, membrane, MWCNT
Procedia PDF Downloads 1028929 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 4398928 Improvements in Double Q-Learning for Anomalous Radiation Source Searching
Authors: Bo-Bin Xiaoa, Chia-Yi Liua
Abstract:
In the task of searching for anomalous radiation sources, personnel holding radiation detectors to search for radiation sources may be exposed to unnecessary radiation risk, and automated search using machines becomes a required project. The research uses various sophisticated algorithms, which are double Q learning, dueling network, and NoisyNet, of deep reinforcement learning to search for radiation sources. The simulation environment, which is a 10*10 grid and one shielding wall setting in it, improves the development of the AI model by training 1 million episodes. In each episode of training, the radiation source position, the radiation source intensity, agent position, shielding wall position, and shielding wall length are all set randomly. The three algorithms are applied to run AI model training in four environments where the training shielding wall is a full-shielding wall, a lead wall, a concrete wall, and a lead wall or a concrete wall appearing randomly. The 12 best performance AI models are selected by observing the reward value during the training period and are evaluated by comparing these AI models with the gradient search algorithm. The results show that the performance of the AI model, no matter which one algorithm, is far better than the gradient search algorithm. In addition, the simulation environment becomes more complex, the AI model which applied Double DQN combined Dueling and NosiyNet algorithm performs better.Keywords: double Q learning, dueling network, NoisyNet, source searching
Procedia PDF Downloads 1168927 Larger Diameter 22 MM-PDC Cutter Greatly Improves Drilling Efficiency of PDC Bit
Authors: Fangyuan Shao, Wei Liu, Deli Gao
Abstract:
With the increasing speed of oil and gas exploration, development and production at home and abroad, the demand for drilling speed up technology is becoming more and more critical to reduce the development cost. Highly efficient and personalized PDC bit is important equipment in the bottom hole assembly (BHA). Therefore, improving the rock-breaking efficiency of PDC bits will help reduce drilling time and drilling cost. Advances in PDC bit technology have resulted in a leapfrogging improvement in the rate of penetration (ROP) of PDC bits over roller cone bits in soft to medium-hard formations. Recently, with the development of PDC technology, the diameter of the PDC tooth can be further expanded. The maximum diameter of the PDC cutter used in this paper is 22 mm. According to the theoretical calculation, under the same depth of cut (DOC), the 22mm-PDC cutter increases the exposure of the cutter, and the increase of PDC cutter diameter helps to increase the cutting area of the PDC cutter. In order to evaluate the cutting performance of the 22 mm-PDC cutter and the existing commonly used cutters, the 16 mm, 19 mm and 22 mm PDC cutter was selected put on a vertical turret lathe (VTL) in the laboratory for cutting tests under different DOCs. The DOCs were 0.5mm, 1.0 mm, 1.5 mm and 2.0 mm, 2.5 mm and 3 mm, respectively. The rock sample used in the experiment was limestone. Results of laboratory tests have shown the new 22 mm-PDC cutter technology greatly improved cutting efficiency. On the one hand, as the DOC increases, the mechanical specific energy (MSE) of all cutters decreases, which means that the cutting efficiency increases. On the other hand, under the same DOC condition, the larger the cutter diameter is, the larger the working area of the cutter is, which leads to higher the cutting efficiency. In view of the high performance of the 22 mm-PDC cutters, which was applied to carry out full-scale bit field experiments. The result shows that the bit with 22mm-PDC cutters achieves a breakthrough improvement of ROP than that with conventional 16mm and 19mm cutters in offset well drilling.Keywords: polycrystalline diamond compact, 22 mm-PDC cutters, cutting efficiency, mechanical specific energy
Procedia PDF Downloads 209