Search results for: inclusive business models
7136 Decision Framework for Cross-Border Railway Infrastructure Projects
Authors: Dimitrios J. Dimitriou, Maria F. Sartzetaki
Abstract:
Transport infrastructure assets are key components of the national asset portfolio. The decision to invest in a new infrastructure in transports could take from a few years to some decades. This is mainly because of the need to reserve and spent many capitals, the long payback period, the number of the stakeholders involved in decision process and –many times- the investment and business risks are high. Therefore, the decision assessment framework is an essential challenge linked with the key decision factors meet the stakeholder expectations highlighting project trade-offs, financial risks, business uncertainties and market limitations. This paper examines the decision process for new transport infrastructure projects in cross border regions, where a wide range of stakeholders with different expectation is involved. According to a consequences analysis systemic approach, the relationship of transport infrastructure development, economic system development and stakeholder expectation is analyzed. Adopting the on system of system methodological approach, the decision making framework, variables, inputs and outputs are defined, highlighting the key shareholder’s role and expectations. The application provides the methodology outputs presenting the proposed decision framework for a strategic railway project in north Greece deals with the upgrade of the existing railway corridor connecting Greece, Turkey and Bulgaria.Keywords: decision making, system of system, cross-border, infrastructure project
Procedia PDF Downloads 3147135 Modeling of Cf-252 and PuBe Neutron Sources by Monte Carlo Method in Order to Develop Innovative BNCT Therapy
Authors: Marta Błażkiewicz, Adam Konefał
Abstract:
Currently, boron-neutron therapy is carried out mainly with the use of a neutron beam generated in research nuclear reactors. This fact limits the possibility of realization of a BNCT in centers distant from the above-mentioned reactors. Moreover, the number of active nuclear reactors in operation in the world is decreasing due to the limited lifetime of their operation and the lack of new installations. Therefore, the possibilities of carrying out boron-neutron therapy based on the neutron beam from the experimental reactor are shrinking. However, the use of nuclear power reactors for BNCT purposes is impossible due to the infrastructure not intended for radiotherapy. Therefore, a serious challenge is to find ways to perform boron-neutron therapy based on neutrons generated outside the research nuclear reactor. This work meets this challenge. Its goal is to develop a BNCT technique based on commonly available neutron sources such as Cf-252 and PuBe, which will enable the above-mentioned therapy in medical centers unrelated to nuclear research reactors. Advances in the field of neutron source fabrication make it possible to achieve strong neutron fluxes. The current stage of research focuses on the development of virtual models of the above-mentioned sources using the Monte Carlo simulation method. In this study, the GEANT4 tool was used, including the model for simulating neutron-matter interactions - High Precision Neutron. Models of neutron sources were developed on the basis of experimental verification based on the activation detectors method with the use of indium foil and the cadmium differentiation method allowing to separate the indium activation contribution from thermal and resonance neutrons. Due to the large number of factors affecting the result of the verification experiment, the 10% discrepancy between the simulation and experiment results was accepted.Keywords: BNCT, virtual models, neutron sources, monte carlo, GEANT4, neutron activation detectors, gamma spectroscopy
Procedia PDF Downloads 1837134 System Identification and Quantitative Feedback Theory Design of a Lathe Spindle
Authors: M. Khairudin
Abstract:
This paper investigates the system identification and design quantitative feedback theory (QFT) for the robust control of a lathe spindle. The dynamic of the lathe spindle is uncertain and time variation due to the deepness variation on cutting process. System identification was used to obtain the dynamics model of the lathe spindle. In this work, real time system identification is used to construct a linear model of the system from the nonlinear system. These linear models and its uncertainty bound can then be used for controller synthesis. The real time nonlinear system identification process to obtain a set of linear models of the lathe spindle that represents the operating ranges of the dynamic system. With a selected input signal, the data of output and response is acquired and nonlinear system identification is performed using Matlab to obtain a linear model of the system. Practical design steps are presented in which the QFT-based conditions are formulated to obtain a compensator and pre-filter to control the lathe spindle. The performances of the proposed controller are evaluated in terms of velocity responses of the the lathe machine spindle in corporating deepness on cutting process.Keywords: lathe spindle, QFT, robust control, system identification
Procedia PDF Downloads 5437133 An Event Relationship Extraction Method Incorporating Deep Feedback Recurrent Neural Network and Bidirectional Long Short-Term Memory
Authors: Yin Yuanling
Abstract:
A Deep Feedback Recurrent Neural Network (DFRNN) and Bidirectional Long Short-Term Memory (BiLSTM) are designed to address the problem of low accuracy of traditional relationship extraction models. This method combines a deep feedback-based recurrent neural network (DFRNN) with a bi-directional long short-term memory (BiLSTM) approach. The method combines DFRNN, which extracts local features of text based on deep feedback recurrent mechanism, BiLSTM, which better extracts global features of text, and Self-Attention, which extracts semantic information. Experiments show that the method achieves an F1 value of 76.69% on the CEC dataset, which is 0.0652 better than the BiLSTM+Self-ATT model, thus optimizing the performance of the deep learning method in the event relationship extraction task.Keywords: event relations, deep learning, DFRNN models, bi-directional long and short-term memory networks
Procedia PDF Downloads 1447132 Micro Celebrities in Social Media Instagram and Their Personal Influence in Business Perspective
Authors: Yoga Maulana Putra, Herry Hudrasyah
Abstract:
The Internet has now become an important part of human life; it can be accessed through a computer or even a smartphone almost anywhere and anytime. The Internet has created many social media such as Facebook, Twitter, and Instagram. Instagram has been acquired by Facebook in 2012. Since then, Instagram is growing fast. And now, Instagram is transforming from photo-sharing social media into business tools. As the result, some new behavior has been discovered. Some of Instagram user is becoming popular. These people also being called minor celebrity and they are also being used as marketing tools by many companies to influencing or promoting their product or service. This minor celebrity is existing because of their behavior in using Instagram. The company is using the personal influence of the minor celebrity to promoting and influencing their product or service, and the minor celebrity gets paid as much as their rate card. And their rate card based on their followers and insight. This research is using a qualitative method. An interview is being done to 6 minor celebrities from many different categories such as photographer, travel blogger, lifestyle, food blogger, fashion, and healthcare. Theory of reasoned behavior is being used as the grounded theory to discover the reason for their behavior and personal influence to describe their way to influencing people. The result of the interview is most of the minor celebrities is influenced by their friend’s circle in the process of using Instagram. They also had a different way to use their personal influence to affect their followers when the company employs them.Keywords: humanities and social sciences, Instagram, minor celebrity, social media
Procedia PDF Downloads 1667131 Modeling of Surge Corona Using Type94 in Overhead Power Lines
Authors: Zahira Anane, Abdelhafid Bayadi
Abstract:
Corona in the HV overhead transmission lines is an important source of attenuation and distortion of overvoltage surges. This phenomenon of distortion, which is superimposed on the distortion by skin effect, is due to the dissipation of energy by injection of space charges around the conductor, this process with place as soon as the instantaneous voltage exceeds the threshold voltage of the corona effect conductors. This paper presents a mathematical model to determine the corona inception voltage, the critical electric field and the corona radius, to predict the capacitive changes at conductor of transmission line due to corona. This model has been incorporated into the Alternative Transients Program version of the Electromagnetic Transients Program (ATP/EMTP) as a user defined component, using the MODELS interface with NORTON TYPE94 of this program and using the foreign subroutine. For obtained the displacement of corona charge hell, dichotomy mathematical method is used for this computation. The present corona model can be used for computing of distortion and attenuation of transient overvoltage waves being propagated in a transmission line of the very high voltage electric power.Keywords: high voltage, corona, Type94 NORTON, dichotomy, ATP/EMTP, MODELS, distortion, foreign model
Procedia PDF Downloads 6257130 Rheological Properties and Thermal Performance of Suspensions of Microcapsules Containing Phase Change Materials
Authors: Vinh Duy Cao, Carlos Salas-Bringas, Anna M. Szczotok, Marianne Hiorth, Anna-Lena Kjøniksen
Abstract:
The increasing cost of energy supply for the purposes of heating and cooling creates a demand for more energy efficient buildings. Improved construction techniques and enhanced material technology can greatly reduce the energy consumption needed for the buildings. Microencapsulated phase change materials (MPCM) suspensions utilized as heat transfer fluids for energy storage and heat transfer applications provide promising potential solutions. A full understanding of the flow and thermal characteristics of microcapsule suspensions is needed to optimize the design of energy storage systems, in order to reduce the capital cost, system size, and energy consumption. The MPCM suspensions exhibited pseudoplastic and thixotropic behaviour, and significantly improved the thermal performance of the suspensions. Three different models were used to characterize the thixotropic behaviour of the MPCM suspensions: the second-order structural, kinetic model was found to give a better fit to the experimental data than the Weltman and Figoni-Shoemaker models. For all samples, the initial shear stress increased, and the breakdown rate accelerated significantly with increasing concentration. The thermal performance and rheological properties, especially the selection of rheological models, will be useful for developing the applications of microcapsules as heat transfer fluids in thermal energy storage system such as calculation of an optimum MPCM concentration, pumping power requirement, and specific power consumption. The effect of temperature on the shear thinning properties of the samples suggests that some of the phase change material is located outside the capsules, and contributes to agglomeration of the samples.Keywords: latent heat, microencapsulated phase change materials, pseudoplastic, suspension, thixotropic behaviour
Procedia PDF Downloads 2667129 Pavement Management for a Metropolitan Area: A Case Study of Montreal
Authors: Luis Amador Jimenez, Md. Shohel Amin
Abstract:
Pavement performance models are based on projections of observed traffic loads, which makes uncertain to study funding strategies in the long run if history does not repeat. Neural networks can be used to estimate deterioration rates but the learning rate and momentum have not been properly investigated, in addition, economic evolvement could change traffic flows. This study addresses both issues through a case study for roads of Montreal that simulates traffic for a period of 50 years and deals with the measurement error of the pavement deterioration model. Travel demand models are applied to simulate annual average daily traffic (AADT) every 5 years. Accumulated equivalent single axle loads (ESALs) are calculated from the predicted AADT and locally observed truck distributions combined with truck factors. A back propagation Neural Network (BPN) method with a Generalized Delta Rule (GDR) learning algorithm is applied to estimate pavement deterioration models capable of overcoming measurement errors. Linear programming of lifecycle optimization is applied to identify M&R strategies that ensure good pavement condition while minimizing the budget. It was found that CAD 150 million is the minimum annual budget to good condition for arterial and local roads in Montreal. Montreal drivers prefer the use of public transportation for work and education purposes. Vehicle traffic is expected to double within 50 years, ESALS are expected to double the number of ESALs every 15 years. Roads in the island of Montreal need to undergo a stabilization period for about 25 years, a steady state seems to be reached after.Keywords: pavement management system, traffic simulation, backpropagation neural network, performance modeling, measurement errors, linear programming, lifecycle optimization
Procedia PDF Downloads 4607128 Banana Peels as an Eco-Sorbent for Manganese Ions
Authors: M. S. Mahmoud
Abstract:
This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4 % is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2 °C, stirring rate 200 rpm and contact time 2 h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4 % and 97.1 %, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7 % and 82.4 %, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.Keywords: biosorption, banana peels, isothermal models, manganese
Procedia PDF Downloads 3697127 A Computational Analysis of Flow and Acoustics around a Car Wing Mirror
Authors: Aidan J. Bowes, Reaz Hasan
Abstract:
The automotive industry is continually aiming to develop the aerodynamics of car body design. This may be for a variety of beneficial reasons such as to increase speed or fuel efficiency by reducing drag. However recently there has been a greater amount of focus on wind noise produced while driving. Designers in this industry seek a combination of both simplicity of approach and overall effectiveness. This combined with the growing availability of commercial CFD (Computational Fluid Dynamics) packages is likely to lead to an increase in the use of RANS (Reynolds Averaged Navier-Stokes) based CFD methods. This is due to these methods often being simpler than other CFD methods, having a lower demand on time and computing power. In this investigation the effectiveness of turbulent flow and acoustic noise prediction using RANS based methods has been assessed for different wing mirror geometries. Three different RANS based models were used, standard k-ε, realizable k-ε and k-ω SST. The merits and limitations of these methods are then discussed, by comparing with both experimental and numerical results found in literature. In general, flow prediction is fairly comparable to more complex LES (Large Eddy Simulation) based methods; in particular for the k-ω SST model. However acoustic noise prediction still leaves opportunities for more improvement using RANS based methods.Keywords: acoustics, aerodynamics, RANS models, turbulent flow
Procedia PDF Downloads 4467126 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 2417125 The Concepts of Urban Sustainable Development and Smart Cities: In the Understanding of Academia and the European Union
Authors: Wolfgang Haupt
Abstract:
When considering the future city one repeatedly comes across two sometimes sparsely differentiated terms: Sustainable and smart. ‘A European Strategy for Smart, Sustainable, and Inclusive Growth’, this is how the European Commission named its current growth strategy. Thus, Europe should become smarter and more sustainable. Both, the smart and the sustainable city represent a positive vision of urban development as well as a subject area for contemporary and future urban policies. However, more clarity on what is actually behind these terminologies is required. The paper analyses how the terms are defined academically and how this academic understanding is represented in the funding mechanisms of European urban policies. The theoretical framework is mainly based on sources such as journal articles and policy reports. It became clear that despite some similarities, such as the broad field of work or the tendency to operationalize the terms by defining sub-categories, both ideas are distinctly different in terms of the development history, the main driving forces behind and the theoretical scope. Moreover, the significantly more comprehensively defined term sustainability has found its way into the centre of European regional funding policies. On the contrary, the smart city vision still lacks terminological and content-related clarity and as a consequence, the corresponding European funding landscape is more small-scaled and less customized.Keywords: European spatial policy, European union, smart city, urban sustainable development
Procedia PDF Downloads 3657124 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 1267123 Grain Size Characteristics and Sediments Distribution in the Eastern Part of Lekki Lagoon
Authors: Mayowa Philips Ibitola, Abe Oluwaseun Banji, Olorunfemi Akinade-Solomon
Abstract:
A total of 20 bottom sediment samples were collected from the Lekki Lagoon during the wet and dry season. The study was carried out to determine the textural characteristics, sediment distribution pattern and energy of transportation within the lagoon system. The sediment grain sizes and depth profiling was analyzed using dry sieving method and MATLAB algorithm for processing. The granulometric reveals fine grained sand both for the wet and dry season with an average mean value of 2.03 ϕ and -2.88 ϕ, respectively. Sediments were moderately sorted with an average inclusive standard deviation of 0.77 ϕ and -0.82 ϕ. Skewness varied from strongly coarse and near symmetrical 0.34- ϕ and 0.09 ϕ. The kurtosis average value was 0.87 ϕ and -1.4 ϕ (platykurtic and leptokurtic). Entirely, the bathymetry shows an average depth of 4.0 m. The deepest and shallowest area has a depth of 11.2 m and 0.5 m, respectively. High concentration of fine sand was observed at deep areas compared to the shallow areas during wet and dry season. Statistical parameter results show that the overall sediments are sorted, and deposited under low energy condition over a long distance. However, sediment distribution and sediment transport pattern of Lekki Lagoon is controlled by a low energy current and the down slope configuration of the bathymetry enhances the sorting and the deposition rate in the Lekki Lagoon.Keywords: Lekki Lagoon, Marine sediment, bathymetry, grain size distribution
Procedia PDF Downloads 2317122 Data-Driven Surrogate Models for Damage Prediction of Steel Liquid Storage Tanks under Seismic Hazard
Authors: Laura Micheli, Majd Hijazi, Mahmoud Faytarouni
Abstract:
The damage reported by oil and gas industrial facilities revealed the utmost vulnerability of steel liquid storage tanks to seismic events. The failure of steel storage tanks may yield devastating and long-lasting consequences on built and natural environments, including the release of hazardous substances, uncontrolled fires, and soil contamination with hazardous materials. It is, therefore, fundamental to reliably predict the damage that steel liquid storage tanks will likely experience under future seismic hazard events. The seismic performance of steel liquid storage tanks is usually assessed using vulnerability curves obtained from the numerical simulation of a tank under different hazard scenarios. However, the computational demand of high-fidelity numerical simulation models, such as finite element models, makes the vulnerability assessment of liquid storage tanks time-consuming and often impractical. As a solution, this paper presents a surrogate model-based strategy for predicting seismic-induced damage in steel liquid storage tanks. In the proposed strategy, the surrogate model is leveraged to reduce the computational demand of time-consuming numerical simulations. To create the data set for training the surrogate model, field damage data from past earthquakes reconnaissance surveys and reports are collected. Features representative of steel liquid storage tank characteristics (e.g., diameter, height, liquid level, yielding stress) and seismic excitation parameters (e.g., peak ground acceleration, magnitude) are extracted from the field damage data. The collected data are then utilized to train a surrogate model that maps the relationship between tank characteristics, seismic hazard parameters, and seismic-induced damage via a data-driven surrogate model. Different types of surrogate algorithms, including naïve Bayes, k-nearest neighbors, decision tree, and random forest, are investigated, and results in terms of accuracy are reported. The model that yields the most accurate predictions is employed to predict future damage as a function of tank characteristics and seismic hazard intensity level. Results show that the proposed approach can be used to estimate the extent of damage in steel liquid storage tanks, where the use of data-driven surrogates represents a viable alternative to computationally expensive numerical simulation models.Keywords: damage prediction , data-driven model, seismic performance, steel liquid storage tanks, surrogate model
Procedia PDF Downloads 1437121 In Search of Innovation: Exploring the Dynamics of Innovation
Authors: Michal Lysek, Mike Danilovic, Jasmine Lihua Liu
Abstract:
HMS Industrial Networks AB has been recognized as one of the most innovative companies in the industrial communication industry worldwide. The creation of their Anybus innovation during the 1990s contributed considerably to the company’s success. From inception, HMS’ employees were innovating for the purpose of creating new business (the creation phase). After the Anybus innovation, they began the process of internationalization (the commercialization phase), which in turn led them to concentrate on cost reduction, product quality, delivery precision, operational efficiency, and increasing growth (the growth phase). As a result of this transformation, performing new radical innovations have become more complicated. The purpose of our research was to explore the dynamics of innovation at HMS from the aspect of key actors, activities, and events, over the three phases, in order to understand what led to the creation of their Anybus innovation, and why it has become increasingly challenging for HMS to create new radical innovations for the future. Our research methodology was based on a longitudinal, retrospective study from the inception of HMS in 1988 to 2014, a single case study inspired by the grounded theory approach. We conducted 47 interviews and collected 1 024 historical documents for our research. Our analysis has revealed that HMS’ success in creating the Anybus, and developing a successful business around the innovation, was based on three main capabilities – cultivating customer relations on different managerial and organizational levels, inspiring business relations, and balancing complementary human assets for the purpose of business creation. The success of HMS has turned the management’s attention away from past activities of key actors, of their behavior, and how they influenced and stimulated the creation of radical innovations. Nowadays, they are rhetorically focusing on creativity and innovation. All the while, their real actions put emphasis on growth, cost reduction, product quality, delivery precision, operational efficiency, and moneymaking. In the process of becoming an international company, HMS gradually refocused. In so doing they became profitable and successful, but they also forgot what made them innovative in the first place. Fortunately, HMS’ management has come to realize that this is the case and they are now in search of recapturing innovation once again. Our analysis indicates that HMS’ management is facing several barriers to innovation related path dependency and other lock-in phenomena. HMS’ management has been captured, trapped in their mindset and actions, by the success of the past. But now their future has to be secured, and they have come to realize that moneymaking is not everything. In recent years, HMS’ management have begun to search for innovation once more, in order to recapture their past capabilities for creating radical innovations. In order to unlock their managerial perceptions of customer needs and their counter-innovation driven activities and events, to utilize the full potential of their employees and capture the innovation opportunity for the future.Keywords: barriers to innovation, dynamics of innovation, in search of excellence and innovation, radical innovation
Procedia PDF Downloads 3797120 3D Vision Transformer for Cervical Spine Fracture Detection and Classification
Authors: Obulesh Avuku, Satwik Sunnam, Sri Charan Mohan Janthuka, Keerthi Yalamaddi
Abstract:
In the United States alone, there are over 1.5 million spine fractures per year, resulting in about 17,730 spinal cord injuries. The cervical spine is where fractures in the spine most frequently occur. The prevalence of spinal fractures in the elderly has increased, and in this population, fractures may be harder to see on imaging because of coexisting degenerative illness and osteoporosis. Nowadays, computed tomography (CT) is almost completely used instead of radiography for the imaging diagnosis of adult spine fractures (x-rays). To stop neurologic degeneration and paralysis following trauma, it is vital to trace any vertebral fractures at the earliest. Many approaches have been proposed for the classification of the cervical spine [2d models]. We are here in this paper trying to break the bounds and use the vision transformers, a State-Of-The-Art- Model in image classification, by making minimal changes possible to the architecture of ViT and making it 3D-enabled architecture and this is evaluated using a weighted multi-label logarithmic loss. We have taken this problem statement from a previously held Kaggle competition, i.e., RSNA 2022 Cervical Spine Fracture Detection.Keywords: cervical spine, spinal fractures, osteoporosis, computed tomography, 2d-models, ViT, multi-label logarithmic loss, Kaggle, public score, private score
Procedia PDF Downloads 1147119 Nonstationary Modeling of Extreme Precipitation in the Wei River Basin, China
Authors: Yiyuan Tao
Abstract:
Under the impact of global warming together with the intensification of human activities, the hydrological regimes may be altered, and the traditional stationary assumption was no longer satisfied. However, most of the current design standards of water infrastructures were still based on the hypothesis of stationarity, which may inevitably result in severe biases. Many critical impacts of climate on ecosystems, society, and the economy are controlled by extreme events rather than mean values. Therefore, it is of great significance to identify the non-stationarity of precipitation extremes and model the precipitation extremes in a nonstationary framework. The Wei River Basin (WRB), located in a continental monsoon climate zone in China, is selected as a case study in this study. Six extreme precipitation indices were employed to investigate the changing patterns and stationarity of precipitation extremes in the WRB. To identify if precipitation extremes are stationary, the Mann-Kendall trend test and the Pettitt test, which is used to examine the occurrence of abrupt changes are adopted in this study. Extreme precipitation indices series are fitted with non-stationary distributions that selected from six widely used distribution functions: Gumbel, lognormal, Weibull, gamma, generalized gamma and exponential distributions by means of the time-varying moments model generalized additive models for location, scale and shape (GAMLSS), where the distribution parameters are defined as a function of time. The results indicate that: (1) the trends were not significant for the whole WRB, but significant positive/negative trends were still observed in some stations, abrupt changes for consecutive wet days (CWD) mainly occurred in 1985, and the assumption of stationarity is invalid for some stations; (2) for these nonstationary extreme precipitation indices series with significant positive/negative trends, the GAMLSS models are able to capture well the temporal variations of the indices, and perform better than the stationary model. Finally, the differences between the quantiles of nonstationary and stationary models are analyzed, which highlight the importance of nonstationary modeling of precipitation extremes in the WRB.Keywords: extreme precipitation, GAMLSSS, non-stationary, Wei River Basin
Procedia PDF Downloads 1247118 Centering Critical Sociology for Social Justice and Inclusive Education
Authors: Al Karim Datoo
Abstract:
Abstract— The presentation argues for an urgent case to center and integrate critical sociology in enriching potency of educational thought and practice to counteract inequalities and social injustices. COVID phenomenon has starkly exposed burgeoning of social-economic inequalities and widening marginalities which have been historically and politically constructed through deep-seated social and power imbalances and injustices in the world. What potent role could education possibly play to combat these issues? A point of departure for this paper highlights increasing reductionist and exclusionary ‘mind-set’ of education that has been developed through trends in education such as: the commodification of knowledge, standardisation, homogenization, and reification which are products of the positivist ideology of knowledge coopted to serve capitalist interests. To redress these issues of de-contextualization and de-humanization of education, it is emphasized that there is an urgent need to center the role of interpretive and critical epistemologies and pedagogies of social sciences. In this regard, notions of problem-posing versus problem-solving, generative themes, instrumental versus emancipatory reasoning will be discussed. The presentation will conclude by illustrating the pedagogic utility of these critically oriented notions to counteract the social reproduction of exclusionary and inequality in and through education.Keywords: Critical pedagogy, social justice, inclusion , education
Procedia PDF Downloads 1137117 The Studies of Client Requirements in Home Stay: A Case Study of Thailand
Authors: Kanamon Suwantada
Abstract:
The purpose of this research is to understand customer’s expectations towards homestays and to establish the precise strategies to increase numbers of tourists for homestay business in Amphawa district, Samutsongkram, Thailand. The researcher aims to ensure that each host provides experiences to travelers who are looking for and determining new targets for homestay business in Amphawa as well as creating sustainable homestay using marketing strategies to increase customers. The methods allow interview and questionnaire to gain both overview data from the tourists and qualitative data from the homestay owner’s perspective to create a GAP analysis. The data was collected from 200 tourists, during 15th May - 30th July, 2011 from homestay in Amphawa Community. The questionnaires were divided into three sections: the demographic profile, customer information and influencing on purchasing position, and customer expectation towards homestay. The analysis, in fact, will be divided into two methods which are percentage and correlation analyses. The result of this research revealed that homestay had already provided customers with reasonable prices in good locations. Antithetically, activities that they offered still could not have met the customer’s requirements. Homestay providers should prepare additional activities such as village tour, local attraction tour, village daily life experiences, local ceremony participation, and interactive conversation with local people. Moreover, the results indicated that a price was the most important factor for choosing homestay.Keywords: ecotourism, homestay, marketing, sufficiency economic philosophy
Procedia PDF Downloads 3107116 Application of Principal Component Analysis and Ordered Logit Model in Diabetic Kidney Disease Progression in People with Type 2 Diabetes
Authors: Mequanent Wale Mekonen, Edoardo Otranto, Angela Alibrandi
Abstract:
Diabetic kidney disease is one of the main microvascular complications caused by diabetes. Several clinical and biochemical variables are reported to be associated with diabetic kidney disease in people with type 2 diabetes. However, their interrelations could distort the effect estimation of these variables for the disease's progression. The objective of the study is to determine how the biochemical and clinical variables in people with type 2 diabetes are interrelated with each other and their effects on kidney disease progression through advanced statistical methods. First, principal component analysis was used to explore how the biochemical and clinical variables intercorrelate with each other, which helped us reduce a set of correlated biochemical variables to a smaller number of uncorrelated variables. Then, ordered logit regression models (cumulative, stage, and adjacent) were employed to assess the effect of biochemical and clinical variables on the order-level response variable (progression of kidney function) by considering the proportionality assumption for more robust effect estimation. This retrospective cross-sectional study retrieved data from a type 2 diabetic cohort in a polyclinic hospital at the University of Messina, Italy. The principal component analysis yielded three uncorrelated components. These are principal component 1, with negative loading of glycosylated haemoglobin, glycemia, and creatinine; principal component 2, with negative loading of total cholesterol and low-density lipoprotein; and principal component 3, with negative loading of high-density lipoprotein and a positive load of triglycerides. The ordered logit models (cumulative, stage, and adjacent) showed that the first component (glycosylated haemoglobin, glycemia, and creatinine) had a significant effect on the progression of kidney disease. For instance, the cumulative odds model indicated that the first principal component (linear combination of glycosylated haemoglobin, glycemia, and creatinine) had a strong and significant effect on the progression of kidney disease, with an effect or odds ratio of 0.423 (P value = 0.000). However, this effect was inconsistent across levels of kidney disease because the first principal component did not meet the proportionality assumption. To address the proportionality problem and provide robust effect estimates, alternative ordered logit models, such as the partial cumulative odds model, the partial adjacent category model, and the partial continuation ratio model, were used. These models suggested that clinical variables such as age, sex, body mass index, medication (metformin), and biochemical variables such as glycosylated haemoglobin, glycemia, and creatinine have a significant effect on the progression of kidney disease.Keywords: diabetic kidney disease, ordered logit model, principal component analysis, type 2 diabetes
Procedia PDF Downloads 397115 Free Vibration Characteristics of Nanoplates with Various Edge Supports Incorporating Surface Free Energy Effects
Authors: Saeid Sahmani
Abstract:
Due to size-dependent behavior of nanostrustures, the classical continuum models are not applicable for the analyses at this submicrion size. Surface stress effect is one of the most important matters which make the nanoscale structures to have different properties compared to the conventional structures due to high surface to volume ratio. In the present study, free vibration characteristics of nanoplates are investigated including surface stress effects. To this end, non-classical plate model based on Gurtin-Murdoch elasticity theory is proposed to evaluate the surface stress effects on the vibrational behavior of nanoplates subjected to different boundary conditions. Generalized differential quadrature (GDQ) method is employed to discretize the governing non-classical differential equations along with various edge supports. Selected numerical results are given to demonstrate the distinction between the behavior of nanoplates predicted by the classical and present non-classical plate models that leads to illustrate the great influence of surface stress effect. It is observed that this influence quite depends on the magnitude of the surface elastic constants which are relevant to the selected material.Keywords: nanomechanics, surface stress, free vibration, GDQ method, small scale effect
Procedia PDF Downloads 3567114 Recommender System Based on Mining Graph Databases for Data-Intensive Applications
Authors: Mostafa Gamal, Hoda K. Mohamed, Islam El-Maddah, Ali Hamdi
Abstract:
In recent years, many digital documents on the web have been created due to the rapid growth of ’social applications’ communities or ’Data-intensive applications’. The evolution of online-based multimedia data poses new challenges in storing and querying large amounts of data for online recommender systems. Graph data models have been shown to be more efficient than relational data models for processing complex data. This paper will explain the key differences between graph and relational databases, their strengths and weaknesses, and why using graph databases is the best technology for building a realtime recommendation system. Also, The paper will discuss several similarity metrics algorithms that can be used to compute a similarity score of pairs of nodes based on their neighbourhoods or their properties. Finally, the paper will discover how NLP strategies offer the premise to improve the accuracy and coverage of realtime recommendations by extracting the information from the stored unstructured knowledge, which makes up the bulk of the world’s data to enrich the graph database with this information. As the size and number of data items are increasing rapidly, the proposed system should meet current and future needs.Keywords: graph databases, NLP, recommendation systems, similarity metrics
Procedia PDF Downloads 1047113 Hydro-Gravimetric Ann Model for Prediction of Groundwater Level
Authors: Jayanta Kumar Ghosh, Swastik Sunil Goriwale, Himangshu Sarkar
Abstract:
Groundwater is one of the most valuable natural resources that society consumes for its domestic, industrial, and agricultural water supply. Its bulk and indiscriminate consumption affects the groundwater resource. Often, it has been found that the groundwater recharge rate is much lower than its demand. Thus, to maintain water and food security, it is necessary to monitor and management of groundwater storage. However, it is challenging to estimate groundwater storage (GWS) by making use of existing hydrological models. To overcome the difficulties, machine learning (ML) models are being introduced for the evaluation of groundwater level (GWL). Thus, the objective of this research work is to develop an ML-based model for the prediction of GWL. This objective has been realized through the development of an artificial neural network (ANN) model based on hydro-gravimetry. The model has been developed using training samples from field observations spread over 8 months. The developed model has been tested for the prediction of GWL in an observation well. The root means square error (RMSE) for the test samples has been found to be 0.390 meters. Thus, it can be concluded that the hydro-gravimetric-based ANN model can be used for the prediction of GWL. However, to improve the accuracy, more hydro-gravimetric parameter/s may be considered and tested in future.Keywords: machine learning, hydro-gravimetry, ground water level, predictive model
Procedia PDF Downloads 1277112 Framework for Aligning Supply Chain Strategies and Organizational Strategies in an SOE Environment
Authors: R. Setino, I. M. Ambe, J. A Badenhorst-Weiss
Abstract:
The South African government supply chain management system is not adequately implemented in State Owned Enterprises (SOEs). There are weaknesses in the SOEs SCM enablers, strategies and policies. In addition, top management of SOEs still do not see SCM as strategic enough to deserve their attention, and therefore, there is very little support from top management, thus making it even difficult for SCM practitioners to execute their day to day functions, let alone delivering the letter and spirit of the relevant legislations. Supply chain strategies lack buy in from the top, and as a result senior SCM practitioners has not been involved in the corporate strategy. This has resulted in supply chain and corporate strategies being misaligned. Due to service delivery backlog, high level of corruption and continuous strikes across the country for better services it is inevitable that government leaders be more strategic about how South Africa can use SCM as a tool to improve service delivery. Consequently, there is a need to close the gap between the strategic level dealt by top management and the application of operational SCM concepts: the use of SCM concepts and, therefore, supply chain strategies – should be aligned with the corporate and business strategies in order to ensure the achievement of top level business objectives. This paper aims to explore supply chain practices in State Owned Enterprises (SOEs). The paper based on a conceptual review provides the status, trends and development and suggests a framework for aligning supply chain strategies and organizational strategies in an SOE environment.Keywords: alignment, strategies, state owned enterprises, supply chain management, South Africa
Procedia PDF Downloads 4207111 Corporate Governance and Disclosure Practices of Listed Companies in the ASEAN: A Conceptual Overview
Authors: Chen Shuwen, Nunthapin Chantachaimongkol
Abstract:
Since the world has moved into a transitional period, known as globalization; the business environment is now more complicated than ever before. Corporate information has become a matter of great importance for stakeholders, in order to understand the current situation. As a result of this, the concept of corporate governance has been broadly introduced to manage and control the affairs of corporations while businesses are required to disclose both financial and non-financial information to public via various communication channels such as the annual report, the financial report, the company’s website, etc. However, currently there are several other issues related to asymmetric information such as moral hazard or adverse selection that still occur intensively in workplaces. To prevent such problems in the business, it is required to have an understanding of what factors strengthen their transparency, accountability, fairness, and responsibility. Under aforementioned arguments, this paper aims to propose a conceptual framework that enables an investigation on how corporate governance mechanism influences disclosure efficiency of listed companies in the Association of Southeast Asia Nations (ASEAN) and the factors that should be considered for further development of good behaviors, particularly in regards to voluntary disclosure practices. To achieve its purpose, extensive reviews of literature are applied as a research methodology. It is divided into three main steps. Firstly, the theories involved with both corporate governance and disclosure practices such as agency theory, contract theory, signaling theory, moral hazard theory, and information asymmetry theory are examined to provide theoretical backgrounds. Secondly, the relevant literatures based on multi- perspectives of corporate governance, its attributions and their roles on business processes, the influences of corporate governance mechanisms on business performance, and the factors determining corporate governance characteristics as well as capability are reviewed to outline the parameters that should be included in the proposed model. Thirdly, the well-known regulatory document OECD principles and previous empirical studies on the corporate disclosure procedures are evaluated to identify the similarities and differentiations with the disclosure patterns in the ASEAN. Following the processes and consequences of the literature review, abundant factors and variables are found. Further to the methodology, additional critical factors that also have an impact on the disclosure behaviors are addressed in two groups. In the first group, the factors which are linked to the national characteristics - the quality of national code, legal origin, culture, the level of economic development, and so forth. Whereas in the second group, the discoveries which refer to the firm’s characteristics - ownership concentration, ownership’s rights, controlling group, and so on. However, because of research limitations, only some literature are chosen and summarized to form part of the conceptual framework that explores the relationship between corporate governance and the disclosure practices of listed companies in ASEAN.Keywords: corporate governance, disclosure practice, ASEAN, listed company
Procedia PDF Downloads 1927110 Rethinking Nigeria's Foreign Policy in the Age of Global Terrorism
Authors: Shuaibu Umar Abdul
Abstract:
This paper examines Nigeria’s foreign policy in the age of global terrorism. It worth saying that the threat of ‘terrorism’ is not peculiar to Western and Middle Eastern countries alone, its tentacles are now spreading all over, Africa inclusive. The issue of domestic terrorism in Nigeria has become pervasive since the return of democratic rule in 1999. This development has never been a witness in any form throughout the year of statehood in Nigeria, the issues of banditry, armed robbery, ritual killing, and criminal activities like kidnapping and pipeline vandalization, the breakdown of law and order, poorly managed infrastructural facilities and corruption remain synonymous to Nigeria. These acts of terrorism no doubt have constituted a challenge that necessitates the paradigm shift in Nigeria’s foreign policy. The study employed the conceptual framework of analysis to lead interrogation; secondary sources were used to generate data while descriptive and content analysis were considered for data presentation and interpretation. In view of the interrogation and discussion on the subject matter, the paper revealed that Nigerian government underrated and underestimated the strength of terrorism within and outside her policy hence, it becomes difficult to address. As a response to the findings and conclusion of the study, the paper recommends among others that Nigeria’s foreign policy has to be rethought, reshaped and remodeled in cognizance to the rising global terrorism for peace, growth and development in the country.Keywords: foreign policy, globe, Nigeria, rethinking, terrorism
Procedia PDF Downloads 3587109 Women Trainees' Perception on Non-Formal Educational Workshops in Improving Their Socio-Economic Status in Algeria and Costa Rica
Authors: Bahia Braktia, S. Anna Marcela Montenegro, Imene Abdessemed
Abstract:
Adult education is still considered a crucial area of education. In a developing framework, it is regarded as a practical approach for social inclusion and poverty reduction. They are also perceived as a way to serve adults who did not have the chance to education in their early ages by providing them knowledge, skills and values. Non-formal adult education and trainings are critical means in a society to break poverty and unemployment, and to decrease the social inequality. This paper investigates the perception of women trainees about a series of workshops in natural beauty products, held in Algeria and Costa Rica and organized by a non-profit educational organization, to improve their socio-economic status. This research seeks to explore ways of empowering women by assessing their needs and providing them with skills to start their own business. A questionnaire is administered before the workshops and focus groups are held at the end. A qualitative research method is employed to analyze the data. Preliminary results show that the trainees aspire to create their businesses with the objectives of poverty reduction and social inclusion. The findings also reveal the need for small business funding programs and entrepreneurial training programs.Keywords: adult education, non-formal education, socio-economic status, women empowerment
Procedia PDF Downloads 2087108 Unveiling Karst Features in Miocene Carbonate Reservoirs of Central Luconia-Malaysia: Case Study of F23 Field's Karstification
Authors: Abd Al-Salam Al-Masgari, Haylay Tsegab, Ismailalwali Babikir, Monera A. Shoieb
Abstract:
We present a study of Malaysia's Central Luconia region, which is an essential deposit of Miocene carbonate reservoirs. This study aims to identify and map areas of selected carbonate platforms, develop high-resolution statistical karst models, and generate comprehensive karst geobody models for selected carbonate fields. This study uses seismic characterization and advanced geophysical surveys to identify karst signatures in Miocene carbonate reservoirs. The results highlight the use of variance, RMS, RGB colour blending, and 3D visualization Prop seismic sequence stratigraphy seismic attributes to visualize the karstified areas across the F23 field of Central Luconia. The offshore karst model serves as a powerful visualization tool to reveal the karstization of carbonate sediments of interest. The results of this study contribute to a better understanding of the karst distribution of Miocene carbonate reservoirs in Central Luconia, which are essential for hydrocarbon exploration and production. This is because these features significantly impact the reservoir geometry, flow path and characteristics.Keywords: karst, central Luconia, seismic attributes, Miocene carbonate build-ups
Procedia PDF Downloads 707107 Empowered Women Entrepreneurs and Sustainable Rural Tourism: A Study into the Voices and Experiences of Local Women in the Sundarbans Area of Bangladesh
Authors: Jakia Rajoana
Abstract:
The aim of this paper is to examine the role of women entrepreneurs in bringing about sustainable rural tourism (SRT) development in Sundarbans area of Bangladesh. Theoretically, it draws upon empowerment and entrepreneurial marketing concepts. Women entrepreneurship development and lack of empowered women as role models is an important issue for developing economies in South Asia. Despite the substantial role women play in rural economy of Sundarbans, their contribution remains overlooked as enterprises led by them are run on an informal basis and their business acumen is not taken seriously both by their families and society at large. Studies on SRT fail to engage in sufficient depth with the term applied in this paper as ‘invisible women on the margins’ who run their enterprises with no formal training or societal/familial support. Moreover, the link between their (non) tourism enterprise and their empowerment remains under-theorized. Thus empirically, this research seeks to fill a significant gap by focusing on a considerably under-researched Sundarbans region. Methodologically, this study follows a qualitative research design using visual ethnographic approach. Participant observation, semi-structured interviews, and documentation are the primary data collection instruments in three coastal communities – Munshigonj, Burigoalini and Gabura – in the Sundarbans area. By focusing on the narratives of these under-investigated women, this work aims to provide in-depth and nuanced insights into salient issues on marginal communities experience from rural women’s perspectives. Initial findings illustrate that the Sundarbans women have low income due to no or little education. In addition, socio-cultural and religious factors also restrict the scope of their extensive contribution to workplace. In addition, physical and social violence which is a common occurrence for these women inhibits their agency and contributes to their disempowerment.Keywords: gender, empowerment, entrepreneurial marketing, sustainable rural tourism, Sundarbans
Procedia PDF Downloads 287