Search results for: wealth status prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5713

Search results for: wealth status prediction

5443 Effect of Genuine Missing Data Imputation on Prediction of Urinary Incontinence

Authors: Suzan Arslanturk, Mohammad-Reza Siadat, Theophilus Ogunyemi, Ananias Diokno

Abstract:

Missing data is a common challenge in statistical analyses of most clinical survey datasets. A variety of methods have been developed to enable analysis of survey data to deal with missing values. Imputation is the most commonly used among the above methods. However, in order to minimize the bias introduced due to imputation, one must choose the right imputation technique and apply it to the correct type of missing data. In this paper, we have identified different types of missing values: missing data due to skip pattern (SPMD), undetermined missing data (UMD), and genuine missing data (GMD) and applied rough set imputation on only the GMD portion of the missing data. We have used rough set imputation to evaluate the effect of such imputation on prediction by generating several simulation datasets based on an existing epidemiological dataset (MESA). To measure how well each dataset lends itself to the prediction model (logistic regression), we have used p-values from the Wald test. To evaluate the accuracy of the prediction, we have considered the width of 95% confidence interval for the probability of incontinence. Both imputed and non-imputed simulation datasets were fit to the prediction model, and they both turned out to be significant (p-value < 0.05). However, the Wald score shows a better fit for the imputed compared to non-imputed datasets (28.7 vs. 23.4). The average confidence interval width was decreased by 10.4% when the imputed dataset was used, meaning higher precision. The results show that using the rough set method for missing data imputation on GMD data improve the predictive capability of the logistic regression. Further studies are required to generalize this conclusion to other clinical survey datasets.

Keywords: rough set, imputation, clinical survey data simulation, genuine missing data, predictive index

Procedia PDF Downloads 168
5442 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 49
5441 A Deep Learning Based Integrated Model For Spatial Flood Prediction

Authors: Vinayaka Gude Divya Sampath

Abstract:

The research introduces an integrated prediction model to assess the susceptibility of roads in a future flooding event. The model consists of deep learning algorithm for forecasting gauge height data and Flood Inundation Mapper (FIM) for spatial flooding. An optimal architecture for Long short-term memory network (LSTM) was identified for the gauge located on Tangipahoa River at Robert, LA. Dropout was applied to the model to evaluate the uncertainty associated with the predictions. The estimates are then used along with FIM to identify the spatial flooding. Further geoprocessing in ArcGIS provides the susceptibility values for different roads. The model was validated based on the devastating flood of August 2016. The paper discusses the challenges for generalization the methodology for other locations and also for various types of flooding. The developed model can be used by the transportation department and other emergency response organizations for effective disaster management.

Keywords: deep learning, disaster management, flood prediction, urban flooding

Procedia PDF Downloads 147
5440 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry

Authors: Harneet Walia, Morteza Zihayat

Abstract:

Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.

Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis

Procedia PDF Downloads 124
5439 Cricket Shot Recognition using Conditional Directed Spatial-Temporal Graph Networks

Authors: Tanu Aneja, Harsha Malaviya

Abstract:

Capturing pose information in cricket shots poses several challenges, such as low-resolution videos, noisy data, and joint occlusions caused by the nature of the shots. In response to these challenges, we propose a CondDGConv-based framework specifically for cricket shot prediction. By analyzing the spatial-temporal relationships in batsman shot sequences from an annotated 2D cricket dataset, our model achieves a 97% accuracy in predicting shot types. This performance is made possible by conditioning the graph network on batsman 2D poses, allowing for precise prediction of shot outcomes based on pose dynamics. Our approach highlights the potential for enhancing shot prediction in cricket analytics, offering a robust solution for overcoming pose-related challenges in sports analysis.

Keywords: action recognition, cricket. sports video analytics, computer vision, graph convolutional networks

Procedia PDF Downloads 18
5438 The Conservatoire Crisis: An Exploration into the Lived Experiences of Conservatoire Graduates

Authors: Scott Caizley

Abstract:

Widening participation amongst state schooled and British and Minority Ethnic (BME) students in UK conservatoires throughout the past years has persisted to remain at an all time low despite major efforts to increase access for those from underrepresented backgrounds. In the academic year of 2017/18, two of the UK’s leading music conservatoires recruited less state school students than Oxbridge. Whilst conservatories face further public stigmatisation and heavy financial penalties for failing to meet government benchmarks; there appears to be a more costly outcome to this crisis. This of course, is the lack of sociocultural diversity, which is perpetuated both within the conservatoire sector and the classical music industry. This research investigates the lived experiences of former state-schooled students who attended a UK music conservatoire. Given the participant’s underrepresented status, the research seeks to answer whether or not the students are fitting in or standing out within the conservatoire environment. The research will explore the findings through a Bourdieusian contextual framework with hope of generating a wealth of new practises to the field of Higher Music Education. It is through illuminating the underrepresented voices within these elite spaces, which could aid future research and policy to help tackle the diversity dilemma and give classical music the social and cultural renewal it so desperately needs.

Keywords: classical music, lived experiences, higher music education, Bourdieusian

Procedia PDF Downloads 134
5437 Uplift Segmentation Approach for Targeting Customers in a Churn Prediction Model

Authors: Shivahari Revathi Venkateswaran

Abstract:

Segmenting customers plays a significant role in churn prediction. It helps the marketing team with proactive and reactive customer retention. For the reactive retention, the retention team reaches out to customers who already showed intent to disconnect by giving some special offers. When coming to proactive retention, the marketing team uses churn prediction model, which ranks each customer from rank 1 to 100, where 1 being more risk to churn/disconnect (high ranks have high propensity to churn). The churn prediction model is built by using XGBoost model. However, with the churn rank, the marketing team can only reach out to the customers based on their individual ranks. To profile different groups of customers and to frame different marketing strategies for targeted groups of customers are not possible with the churn ranks. For this, the customers must be grouped in different segments based on their profiles, like demographics and other non-controllable attributes. This helps the marketing team to frame different offer groups for the targeted audience and prevent them from disconnecting (proactive retention). For segmentation, machine learning approaches like k-mean clustering will not form unique customer segments that have customers with same attributes. This paper finds an alternate approach to find all the combination of unique segments that can be formed from the user attributes and then finds the segments who have uplift (churn rate higher than the baseline churn rate). For this, search algorithms like fast search and recursive search are used. Further, for each segment, all customers can be targeted using individual churn ranks from the churn prediction model. Finally, a UI (User Interface) is developed for the marketing team to interactively search for the meaningful segments that are formed and target the right set of audience for future marketing campaigns and prevent them from disconnecting.

Keywords: churn prediction modeling, XGBoost model, uplift segments, proactive marketing, search algorithms, retention, k-mean clustering

Procedia PDF Downloads 71
5436 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
5435 The Link between Migration Status and Occupational Health and Safety of Filipino Migrant Workers in South Korea

Authors: Lito M. Amit, Venecio U. Ultra, Young Woong Song

Abstract:

The purpose of this study was to document the prevalence and types of work-related health and safety problems among Filipino migrant workers and the link between their migration status and occupational health and safety (OHS) problems. We conducted a survey among 116 Filipino migrant workers who were both legal and undocumented. To assess the various forms of occupational health problems, we utilized the Korean occupational stress scale (KOSS), Nordic musculoskeletal questionnaire (NMQ) and a validated health and safety questionnaire. A focus group discussion (FGD) was also conducted to record relevant information that was limited by the questionnaires. Descriptive data were presented in frequency with percentages, mean, and standard deviation. Chi-square tests and logistic regression analyses were performed to estimate the degree of association between variables (p < 0.05). Among the eight subscales of KOSS, inadequate social support (2.48), organizational injustice (2.57), and lack of reward (2.52) were experienced by workers. There was a 44.83% prevalence of musculoskeletal disorders with arm/elbow having the highest rate, followed by shoulder and low back regions. Inadequate social support and discomfort in organizational climate and overall MSDs prevalence showed significant relationships with migration status (p < 0.05). There was a positive association between migration status and seven items under language and communication. A positive association was seen between migration status and some of the OHS problems of Filipino migrant workers in Korea. Undocumented workers in this study were seen to be more vulnerable to those stressors compared to those employed legally.

Keywords: Filipino workers, migration status, occupational health and safety, undocumented workers

Procedia PDF Downloads 132
5434 The Effect of Family SES (Income) On Children’s Socio-Emotional Development

Authors: Xiao Hu

Abstract:

Children’s social and emotional development is critical for developing their future relationships and behaviors, and poor social skills may result in serious emotional externalizations such as anxiety, distress and aggression. Recent research has emphasized the role of family socio-economic status on children’s emotional development, and this study contributes to this academic discussion by reviewing how socio-economic status affects children at three critical development stages: infancy (0-3months), pre-school (4 months-5 years) and school aged (6-10 years). Results show a consensus in the research literature on a positive relationship between family socio-economic status and children’s emotional development. Socialization, a crucial development milestone, is highly affected by a family’s socio-economic status, as families with higher incomes have access to improved social environments, healthier parenting styles and greater access to social capital and peer support. In contrast, families with lower income and SES (socio-economic status) have lower access to these benefits and are frequently ignored within social environments. This review concludes with a critical discussion on how family income affects children’s social environment, highlighting the important role that “permanent” income plays in children’s development. Consequently, the review suggests that future governments should provide temporary economic support for lower-income families, allowing children to be raised in a healthy social environment with limited economic fluctuation.

Keywords: family socio-economic status, parenting style, children’s emotional development, family permanent income

Procedia PDF Downloads 141
5433 Revisionist Powers Seeking for Status within the System by Adopting a Compresence of Cooperative and Competitive Strategies

Authors: Mirele Plenishti

Abstract:

Revisionist powers are sometimes associated to revolutionary and status quo powers, this because along the line representing the level of satisfaction–dissatisfaction with the system, revisionist powers are located in between status quo and revolutionary powers. In particular, the case of revisionist powers seeking for social status adjustments (while having status quo intentions) can, in the first option, be refuted due to the disbelief that dissatisfaction could coexist with status quo intentions – this entailing the possibility to trigger a spiral effect by over-counter-reacting. In the second option, revisionist powers can be underestimated as a real threat, this entailing a potential inadequate reaction. The necessity to well manage international change entails the need to understand better how revisionist powers seek for changes in status, within the system. The complexity of this case is heightened by the propensity of both IR scholars and practitioners to infer states' aims and intentions – towards the system – by looking at their behaviours. This has resulted in the tendency to consider cooperative international behaviours as symptomatic of status quo intentions, and vice versa: status quo intentions as manifested through positive/cooperative behaviours. Similarly, assertive/competitive international behaviours are considered as symptomatic (and vice versa, as manifestations) of revolutionary intentions. Therefore, within complex and composite foreign policies, scholars who disbelieve the existence of revisionist powers with status quo intentions, tend to highlight the negative/competitive elements; while more optimist scholars tend to focus on conforming/cooperative behaviours. Both perspectives, while understanding relevant components of the complex international interaction, still miss a composite overview. In order to closely investigate the strategies adopted by (status quo aiming) revisionist states, and by drawing on sociological studies on peer relations, focused on children's behaviour, one could expect that the compresence of both positive (compliant/cooperative) and negative (competitive/assertive) behaviours, is deliberate, and functional to seeking social status adjustments. Indeed, at the end of 90s, peer relation studies focused on children's behaviour, discerned between the concept of social acceptance (that refers to the degree of social preference assigned to the child– how much is s/he liked) and popularity (which refers to the social status assigned to the child within the group). By building on this distinction, it was possible to identify a link relating social acceptance to prosocial (compliant/cooperative) behaviours and strategies, and popularity to both prosocial and antisocial (aggressive/assertive) behaviours and strategies. Since then, antisocial behaviours ceased to be considered as a proof of social maladjustment and were finally identified as socially recognized strategies adopted in function of the achievement of popularity. Drawing on these results, one can hypothesize that also international status seekers perform both positive (conforming/compliant/cooperative) and negative (assertive/aggressive/competitive) behaviours. Therefore, the link between aims and behaviours loses its strength, since cooperative and competitive behaviours are both means for status seeking strategies that aim at status quo intentions. By carrying out a historical investigation of Italy's foreign policy during fascism, the intent is to closely look at this compresence of behaviours, in order to better qualify its components and their relations.

Keywords: compresence of cooperative and competitive behaviours and strategies, revisionist powers, status quo intentions, status seeking

Procedia PDF Downloads 320
5432 Training Can Increase Knowledge and Skill of Teacher's on Measurement and Assessment Nutritional Status Children

Authors: Herawati Tri Siswati, Nurhidayat Ana Sıdık Fatimah

Abstract:

The Indonesia Basic Health Research, 2013 showed that prevalence of stunting of 6–12 children years old was 35,6%, wasting was 12,2% and obesiy was 9,2%. The Indonesian Goverment have School Health Program, held in coordination, plans, directing and responsible, developing and implement health student. However, it's implementation still under expected, while Indonesian Ministry of Health has initiated the School Health Program acceleration. This aimed is to know the influencing of training to knowledge and skill of elementary school teacher about measurement and assesment nutrirional status children. The research is quasy experimental with pre-post design, in Sleman disctrict, Yogyakarta province, Indonesia, 2015. Subject was all of elementary school teacher’s who responsible in School Health Program in Gamping sub-district, Sleman, Yogyakarta, i.e. 32 persons. The independent variable is training, while the dependent variable are teacher’s klowledge and skill on measurement and assesment nutrirional status children. The data was analized by t-test. The result showed that the knowledge score before training is 31,6±9,7 and after 56,4±12,6, with an increase 24,8±15,7, and p=0.00. The skill score before training is 46,6±11,1 and after 61,7±13, with an increase 15,2±14,2, p = 0.00. Training can increase the teacher’s klowledge and skill on measurement and assesment nutrirional status.

Keywords: training, school health program, nutritional status, children.

Procedia PDF Downloads 392
5431 Bioengineering System for Prediction and Early Prenosological Diagnostics of Stomach Diseases Based on Energy Characteristics of Bioactive Points with Fuzzy Logic

Authors: Mahdi Alshamasin, Riad Al-Kasasbeh, Nikolay Korenevskiy

Abstract:

We apply mathematical models for the interaction of the internal and biologically active points of meridian structures. Amongst the diseases for which reflex diagnostics are effective are those of the stomach disease. It is shown that use of fuzzy logic decision-making yields good results for the prediction and early diagnosis of gastrointestinal tract diseases, depending on the reaction energy of biologically active points (acupuncture points). It is shown that good results for the prediction and early diagnosis of diseases from the reaction energy of biologically active points (acupuncture points) are obtained by using fuzzy logic decision-making.

Keywords: acupuncture points, fuzzy logic, diagnostically important points (DIP), confidence factors, membership functions, stomach diseases

Procedia PDF Downloads 467
5430 Social Ties and the Prevalence of Single Chronic Morbidity and Multimorbidity among the Elderly Population in Selected States of India

Authors: Sree Sanyal

Abstract:

Research in ageing often highlights the age-related health dimension more than the psycho-social characteristics of the elderly, which also influences and challenges the health outcomes. Multimorbidity is defined as the person having more than one chronic non-communicable diseases and their prevalence increases with ageing. The study aims to evaluate the influence of social ties on self-reported prevalence of multimorbidity (selected chronic non-communicable diseases) among the selected states of elderly population in India. The data is accessed from Building Knowledge Base on Population Ageing in India (BKPAI), collected in 2011 covering the self-reported chronic non-communicable diseases like arthritis, heart disease, diabetes, lung disease with asthma, hypertension, cataract, depression, dementia, Alzheimer’s disease, and cancer. The data of the above diseases were taken together and categorized as: ‘no disease’, ‘one disease’ and ‘multimorbidity’. The predicted variables were demographic, socio-economic, residential types, and the variable of social ties includes social support, social engagement, perceived support, connectedness, and importance of the elderly. Predicted probability for multiple logistic regression was used to determine the background characteristics of the old in association with chronic morbidities showing multimorbidity. The finding suggests that 24.35% of the elderly are suffering from multimorbidity. Research shows that with reference to ‘no disease’, according to the socio-economic characteristics of the old, the female oldest old (80+) from others in caste and religion, widowed, never had any formal education, ever worked in their life, coming from the second wealth quintile standard, from rural Maharashtra are more prone with ‘one disease’. From the social ties background, the elderly who perceives they are important to the family, after getting older their decision-making status has been changed, prefer to stay with son and spouse only, satisfied with the communication from their children are more likely to have less single morbidity and the results are significant. Again, with respect to ‘no disease’, the female oldest old (80+), who are others in caste, Christian in religion, widowed, having less than 5 years of education completed, ever worked, from highest wealth quintile, residing in urban Kerala are more associated with multimorbidity. The elderly population who are more socially connected through family visits, public gatherings, gets support in decision making, who prefers to spend their later years with son and spouse only but stays alone shows lesser prevalence of multimorbidity. In conclusion, received and perceived social integration and support from associated neighborhood in the older days, knowing about their own needs in life facilitates better health and wellbeing of the elderly population in selected states of India.

Keywords: morbidity, multi-morbidity, prevalence, social ties

Procedia PDF Downloads 121
5429 Towards the Prediction of Aesthetic Requirements for Women’s Apparel Product

Authors: Yu Zhao, Min Zhang, Yuanqian Wang, Qiuyu Yu

Abstract:

The prediction of aesthetics of apparel is helpful for the development of a new type of apparel. This study is to build the quantitative relationship between the aesthetics and its design parameters. In particular, women’s pants have been preliminarily studied. This aforementioned relationship has been carried out by statistical analysis. The contributions of this study include the development of a more personalized apparel design mechanism and the provision of some empirical knowledge for the development of other products in the aspect of aesthetics.

Keywords: aesthetics, crease line, cropped straight leg pants, knee width

Procedia PDF Downloads 186
5428 The Impact of Nutrition Education Intervention in Improving the Nutritional Status of Sickle Cell Patients

Authors: Lindy Adoma Dampare, Marina Aferiba Tandoh

Abstract:

Sickle cell disease (SCD) is an inherited blood disorder that mostly affects individuals in sub-Saharan Africa. Nutritional deficiencies have been well established in SCD patients. In Ghana, studies have revealed the prevalence of malnutrition, especially amongst children with SCD and hence the need to develop an evidence-based comprehensive nutritional therapy for SCD to improve their nutritional status. The aim of the study was to develop and assess the effect of a nutrition education material on the nutritional status of SCD patients in Ghana. This was a pre-post interventional study. Patients between the ages of 2 to 60 years were recruited from the Tema General Hospital. Following a baseline nutrition knowledge (NK), beliefs, sanitary practice and dietary consumption pattern assessment, a twice-monthly nutrition education was carried out for 3 months, followed by a post-intervention assessment. Nutritional status of SCD patients was assessed using a 3-days dietary recall and anthropometric measurements. Nutrition education (NE) was given to SCD adults and caregivers of SCD children. Majority of the caregivers (69%) and SCD adult (82%) at baseline had low NK. The level of NK improved significantly in SCD adults (4.18±1.83 vs. 10.00±1.00, p<0.001) and caregivers (5.58 ± 2.25 vs.10.44± 0.846, p<0.001) after NE. Increase in NK improved dietary intake and dietary consumption pattern of SCD patients. Significant increase in weight (23.2±11.6 vs. 25.9±12.1, p=0.036) and height (118.5±21.9 vs. 123.5±22.2, p=0.011) was observed in SCD children at post intervention. Stunting (10.5% vs. 8.6%, p=0.62) and wasting (22.1% vs. 14.4%, p=0.30) reduced in SCD children after NE although not statistically significant. Reduction (18.2% vs. 9.1%) in underweight and an increase (18.2% vs. 27.3%) in overweight SCD adults was recorded at post intervention. Fat mass remained the same while high muscle mass increased (18.2% vs. 27.3%) at post intervention in SCD adult. Anaemic status of SCD patients improved at post intervention and the improvement was statistically significant amongst SCD children. Nutrition education improved the NK of SCD caregivers and adults hence, improving the dietary consumption pattern and nutrient intake of SCD patients. Overall, NE improved the nutritional status of SCD patients. This study shows the potential of nutrition education in improving the nutritional knowledge, dietary consumption pattern, dietary intake and nutritional status of SCD patients, and should be further explored.

Keywords: sickle cell disease, nutrition education, dietary intake, nutritional status

Procedia PDF Downloads 103
5427 Enhancing Patch Time Series Transformer with Wavelet Transform for Improved Stock Prediction

Authors: Cheng-yu Hsieh, Bo Zhang, Ahmed Hambaba

Abstract:

Stock market prediction has long been an area of interest for both expert analysts and investors, driven by its complexity and the noisy, volatile conditions it operates under. This research examines the efficacy of combining the Patch Time Series Transformer (PatchTST) with wavelet transforms, specifically focusing on Haar and Daubechies wavelets, in forecasting the adjusted closing price of the S&P 500 index for the following day. By comparing the performance of the augmented PatchTST models with traditional predictive models such as Recurrent Neural Networks (RNNs), Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM) networks, and Transformers, this study highlights significant enhancements in prediction accuracy. The integration of the Daubechies wavelet with PatchTST notably excels, surpassing other configurations and conventional models in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE). The success of the PatchTST model paired with Daubechies wavelet is attributed to its superior capability in extracting detailed signal information and eliminating irrelevant noise, thus proving to be an effective approach for financial time series forecasting.

Keywords: deep learning, financial forecasting, stock market prediction, patch time series transformer, wavelet transform

Procedia PDF Downloads 50
5426 Network Analysis and Sex Prediction based on a full Human Brain Connectome

Authors: Oleg Vlasovets, Fabian Schaipp, Christian L. Mueller

Abstract:

we conduct a network analysis and predict the sex of 1000 participants based on ”connectome” - pairwise Pearson’s correlation across 436 brain parcels. We solve the non-smooth convex optimization problem, known under the name of Graphical Lasso, where the solution includes a low-rank component. With this solution and machine learning model for a sex prediction, we explain the brain parcels-sex connectivity patterns.

Keywords: network analysis, neuroscience, machine learning, optimization

Procedia PDF Downloads 147
5425 Vaccination Coverage and Its Associated Factors in India: An ML Approach to Understand the Hierarchy and Inter-Connections

Authors: Anandita Mitro, Archana Srivastava, Bidisha Banerjee

Abstract:

The present paper attempts to analyze the hierarchy and interconnection of factors responsible for the uptake of BCG vaccination in India. The study uses National Family Health Survey (NFHS-5) data which was conducted during 2019-21. The univariate logistic regression method is used to understand the univariate effects while the interconnection effects have been studied using the Categorical Inference Tree (CIT) which is a non-parametric Machine Learning (ML) model. The hierarchy of the factors is further established using Conditional Inference Forest which is an extension of the CIT approach. The results suggest that BCG vaccination coverage was influenced more by system-level factors and awareness than education or socio-economic status. Factors such as place of delivery, antenatal care, and postnatal care were crucial, with variations based on delivery location. Region-specific differences were also observed which could be explained by the factors. Awareness of the disease was less impactful along with the factor of wealth and urban or rural residence, although awareness did appear to substitute for inadequate ANC. Thus, from the policy point of view, it is revealed that certain subpopulations have less prevalence of vaccination which implies that there is a need for population-specific policy action to achieve a hundred percent coverage.

Keywords: vaccination, NFHS, machine learning, public health

Procedia PDF Downloads 59
5424 Current Status and Influencing Factors of Transition Status of Newly Graduated Nurses in China: A Multi-center Cross-sectional Study

Authors: Jia Wang, Wanting Zhang, Yutong Xv, Zihan Guo, Weiguang Ma

Abstract:

Background: Before becoming qualified nurses, newly graduated nurses(NGNs) must experience a painful transition period, even transition shocks. Transition shocks are public health issues. To address the transition issue of NGNs, many programs or interventions have been developed and implemented. However, there are no studies to understand and assess the transition state of newly graduated nurses from work to life, from external abilities to internal emotions. Aims: Assess the transition status of newly graduated nurses in China. Identify the factors influencing the transition status of newly graduated nurses. Methods: The multi-center cross-sectional study design was adopted. From May 2022 to June 2023, 1261 newly graduated nurse in hospitals were surveyed online with the the Demographic Questionnaire and Transition Status Scale for Newly Graduated Nurses. SPSS 26.0 were used for data input and statistical analysis. Statistic description were adopted to evaluate the demographic characteristics and transition status of NGNs. Independent-samples T-test, Analysis of Variance and Multiple regression analysis was used to explore the influencing factors of transition status. Results: The total average score of Transition Status Scale for Newly Graduated Nurses was 4.00(SD = 0.61). Among the various dimensions of Transition Status, the highest dimension was competence for nursing work, while the lowest dimension was balance between work and life. The results showed factors influencing the transition status of NGNs include taught by senior nurses, night shift status, internship department, attribute of working hospital, province of work and residence, educational background, reasons for choosing nursing, types of hospital, and monthly income. Conclusion: At present, the transition status score of new nurses in China is relatively high, and NGNs are more likely to agree with their own transition status, especially the dimension of competence for nursing work. However, they have a poor level of excess in terms of life-work balance. Nursing managers should reasonably arrange the working hours of NGNs, promote their work-life balance, increase the salary and reward mechanism of NGNs, arrange experienced nursing mentors to teach, optimize the level of hospitals, provide suitable positions for NGNs with different educational backgrounds, pay attention to the culture shock of NGNs from other provinces, etc. Optimize human resource management by intervening in these factors that affect the transition of new nurses and promote a better transition of new nurses.

Keywords: newly graduated nurse, transition, humanistic car, nursing management, nursing practice education

Procedia PDF Downloads 86
5423 Gender, Climate Change, and Resilience in Kenyan Pastoralist Communities

Authors: Anne Waithira Dormal

Abstract:

Climate change is threatening pastoral livelihoods in Kajiado County, Kenya, through water shortages, livestock deaths, and increasing poverty. This study examines how these impacts differ for men and women within these communities. Limited access to resources, limited land and livestock rights, and limited decision-making power increase women's vulnerability, which is further burdened by traditional gender roles in water procurement. The research recognizes the complexity of climate change and emphasizes that factors such as wealth, family dynamics, and socioeconomic status also influence resilience. Effective adaptation strategies must address all genders. While livestock farming provides a safety net, socioeconomic empowerment through access to credit, healthcare, and education strengthens entire communities. An intersectional perspective that takes ethnicity, social status, and other factors into account is also crucial. This research, therefore, aims to examine how gender-specific adaptation strategies interact with gender and socioeconomic factors to determine the resilience of these Kenyan pastoralist communities. Such strategies, which address the specific needs and vulnerabilities of men and women, are expected to lead to increased resilience to climate change. The aim of the study is to identify effective, gender-specific adaptation strategies that can be integrated into climate change planning and implementation. Additionally, research awaits a deeper understanding of how socioeconomic factors interact with gender to influence vulnerability and resilience within these communities. The study uses a gender-sensitive qualitative approach with focus group discussions in four different pastoral and agropastoral communities. Both qualitative and demographic data are used to capture sources of income, education level, and household size of focus group respondents to increase the power of the analysis. While the research acknowledges the limitations of specific focus sites and potential biases in self-reporting, it offers valuable insights into gender and climate change in pastoral contexts. This study contributes to understanding gender-based vulnerabilities and building resilience in these communities.

Keywords: climate adaptation strategies, climate change, climate resilience, gendered vulnerability, pastoralism

Procedia PDF Downloads 46
5422 Stacking Ensemble Approach for Combining Different Methods in Real Estate Prediction

Authors: Sol Girouard, Zona Kostic

Abstract:

A home is often the largest and most expensive purchase a person makes. Whether the decision leads to a successful outcome will be determined by a combination of critical factors. In this paper, we propose a method that efficiently handles all the factors in residential real estate and performs predictions given a feature space with high dimensionality while controlling for overfitting. The proposed method was built on gradient descent and boosting algorithms and uses a mixed optimizing technique to improve the prediction power. Usually, a single model cannot handle all the cases thus our approach builds multiple models based on different subsets of the predictors. The algorithm was tested on 3 million homes across the U.S., and the experimental results demonstrate the efficiency of this approach by outperforming techniques currently used in forecasting prices. With everyday changes on the real estate market, our proposed algorithm capitalizes from new events allowing more efficient predictions.

Keywords: real estate prediction, gradient descent, boosting, ensemble methods, active learning, training

Procedia PDF Downloads 277
5421 An Improved Heat Transfer Prediction Model for Film Condensation inside a Tube with Interphacial Shear Effect

Authors: V. G. Rifert, V. V. Gorin, V. V. Sereda, V. V. Treputnev

Abstract:

The analysis of heat transfer design methods in condensing inside plain tubes under existing influence of shear stress is presented in this paper. The existing discrepancy in more than 30-50% between rating heat transfer coefficients and experimental data has been noted. The analysis of existing theoretical and semi-empirical methods of heat transfer prediction is given. The influence of a precise definition concerning boundaries of phase flow (it is especially important in condensing inside horizontal tubes), shear stress (friction coefficient) and heat flux on design of heat transfer is shown. The substantiation of boundary conditions of the values of parameters, influencing accuracy of rated relationships, is given. More correct relationships for heat transfer prediction, which showed good convergence with experiments made by different authors, are substantiated in this work.

Keywords: film condensation, heat transfer, plain tube, shear stress

Procedia PDF Downloads 245
5420 Family Planning Use among Women Living with HIV in Malawi: Analysis from Malawi DHS-2010 Data

Authors: Dereje Habte, Jane Namasasu

Abstract:

Background: The aim of the analysis was to assess the practice of family planning (FP) among HIV-infected women and the influence of women’s awareness of HIV-positive status in the practice of FP. Methods: The analysis was made among 489 non-pregnant, sexually active, fecund women living with HIV. Result: Of the 489 confirmed HIV positive women, 184 (37.6%) reported that they knew they are HIV positive. The number of women with current use and unmet need of any family planning method were found to be 251 (51.2%) and 107 (21.9%) respectively. Women’s knowledge of HIV-positive status (AOR: 2.32(1.54,3.50)), secondary and above education (AOR: 2.36(1.16,4.78)), presence of 3-4 (AOR: 2.60(1.08,6.28)) and more than four alive children (AOR: 3.03(1.18,7.82)) were significantly associated with current use of family planning. Conclusion: Women’s awareness of HIV-positive status was found to significantly predict family planning practice among women living with HIV.

Keywords: family planning, HIV, Malawi, women

Procedia PDF Downloads 601
5419 The Influence of Physical Activity and Health Literacy on Depression Level of First and Second Turkish Generation Living in Germany

Authors: Ceren Akyüz, Ingo Froboese

Abstract:

Health literacy has gained importance with the further spread of the coronavirus disease (COVID-19) worldwide and has been associated with health status in various chronic diseases. Many studies indicate that mental health can be improved by low- or moderate-intensity activity, and several studies have been proposed to explain the relationship between physical activity and mental health. The aim of the present study is to investigate the levels of physical activity, health literacy, and depression in first- and- second generation Turkish people in Germany. The research consists of 434 participants (255 females, 179 males; age 38.09 ± 13.73). 40.8 % of participants are married, and 59.2 % of participants are single. Education levels are mostly at university level (54.8 %), and graduate level is 18.9 %. While 24.9 % of the participants are second generation, 75.1 % of participants are first generation. All analyses were stratified on gender, marital status, education, generation and income status, and five age categories: 18–30, 31–40, 41–50, 51–60, and 61–79, which were defined to account for age-specific trends while maintaining sufficient cell size for statistical analysis. A correlation of depression with physical activity and health literacy levels between first- and- second generation Turks in Germany was evaluated in order to find out whether there are significant differences between the two populations and demographic variables (gender, marital status, education, generation, income status) with carrying out questionnaires which are European Health Literacy Survey Questionnaire (HLS-EU-Q47), International Physical Activity Questionnaire ( IPAQ) and the Patient Health Questionnaire-9 (PHQ-9).

Keywords: health literacy, turks in germany, migrants, depression, physical activity

Procedia PDF Downloads 83
5418 A Hybrid Model Tree and Logistic Regression Model for Prediction of Soil Shear Strength in Clay

Authors: Ehsan Mehryaar, Seyed Armin Motahari Tabari

Abstract:

Without a doubt, soil shear strength is the most important property of the soil. The majority of fatal and catastrophic geological accidents are related to shear strength failure of the soil. Therefore, its prediction is a matter of high importance. However, acquiring the shear strength is usually a cumbersome task that might need complicated laboratory testing. Therefore, prediction of it based on common and easy to get soil properties can simplify the projects substantially. In this paper, A hybrid model based on the classification and regression tree algorithm and logistic regression is proposed where each leaf of the tree is an independent regression model. A database of 189 points for clay soil, including Moisture content, liquid limit, plastic limit, clay content, and shear strength, is collected. The performance of the developed model compared to the existing models and equations using root mean squared error and coefficient of correlation.

Keywords: model tree, CART, logistic regression, soil shear strength

Procedia PDF Downloads 197
5417 Ultimate Strength Prediction of Shear Walls with an Aspect Ratio between One and Two

Authors: Said Boukais, Ali Kezmane, Kahil Amar, Mohand Hamizi, Hannachi Neceur Eddine

Abstract:

This paper presents an analytical study on the behavior of rectangular reinforced concrete walls with an aspect ratio between one and tow. Several experiments on such walls have been selected to be studied. Database from various experiments were collected and nominal wall strengths have been calculated using formulas, such as those of the ACI (American), NZS (New Zealand), Mexican (NTCC), and Wood equation for shear and strain compatibility analysis for flexure. Subsequently, nominal ultimate wall strengths from the formulas were compared with the ultimate wall strengths from the database. These formulas vary substantially in functional form and do not account for all variables that affect the response of walls. There is substantial scatter in the predicted values of ultimate strength. New semi empirical equation are developed using data from tests of 46 walls with the objective of improving the prediction of ultimate strength of walls with the most possible accuracy and for all failure modes.

Keywords: prediction, ultimate strength, reinforced concrete walls, walls, rectangular walls

Procedia PDF Downloads 337
5416 Corporate Law and Its View Point of Locking in Capital

Authors: Saad Saeed Althiabi

Abstract:

This paper discusses the corporate positioning and how it became popular as a way to systematize production because of the unique manner in which incorporation legalized organizers to secure financial capital through locking it in. The power to lock in capital comes from the fact that a corporate exists as a separate legal entity, whose survival and governance are separated from any of its participants. The law essentially creates a different legal person when a corporation is created. Although this idea has been played down in the legal learning of the last decades in favor of the view that a corporation is purely something through which natural persons interrelate, recent legal research has begun to reassess the importance of entity status. Entity status, under the law and the related separation of governance from input of financial capital through the configuration of a corporation, sanctioned corporate participants to do somewhat more than connect in a series of business transactions.

Keywords: corporate law, entity status, locking in capital, financial capital

Procedia PDF Downloads 555
5415 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram

Authors: Mona Hejazi, Ali Motie Nasrabadi

Abstract:

Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.

Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG

Procedia PDF Downloads 469
5414 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning

Authors: Sagir M. Yusuf, Chris Baber

Abstract:

In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.

Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence

Procedia PDF Downloads 144