Search results for: shear modulus degradation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3484

Search results for: shear modulus degradation

3214 Experimental Modal Analysis of a Suspended Composite Beam

Authors: First A. Lahmar Lahbib, Second B. Abdeldjebar Rabiâ, Third C. Moudden B, forth D. Missoum L

Abstract:

Vibration tests are used to identify the elasticity modulus in two directions. This strategy is applied to composite materials glass / polyester. Experimental results made on a specimen in free vibration showed the efficiency of this method. Obtained results were validated by a comparison to results stemming from static tests.

Keywords: beam, characterization, composite, elasticity modulus, vibration.

Procedia PDF Downloads 443
3213 Shear Capacity of Rectangular Duct Panel Experiencing Internal Pressure

Authors: K. S. Sivakumaran, T. Thanga, B. Halabieh

Abstract:

The end panels of a large rectangular industrial duct, which experience significant internal pressures, also experience considerable transverse shear due to transfer of gravity loads to the supports. The current design practice of such thin plate panels for shear load is based on methods used for the design of plate girder webs. The structural arrangements, the loadings and the resulting behavior associated with the industrial duct end panels are, however, significantly different than those of the web of a plate girder. The large aspect ratio of the end panels gives rise to multiple bands of tension fields, whereas the plate girder web design is based on one tension field. In addition to shear, the industrial end panels are subjected to internal pressure which in turn produces significant membrane action. This paper reports a study which was undertaken to review the current industrial analysis and design methods and to propose a comprehensive method of designing industrial duct end panels for shear resistance. In this investigation, a nonlinear finite element model was developed to simulate the behavior of industrial duct end panel subjected to transverse shear and internal pressures. The model considered the geometric imperfections and constitutive relations for steels. Six scale independent dimensionless parameters that govern the behavior of such end panel were identified and were then used in an extensive parametric study. It was concluded that the plate slenderness dominates the shear strength of stockier end panels, and whereas, the aspect ratio and plate slenderness influence the shear strength of slender end panels. Based on these studies, this paper proposes design aids for estimating the shear strength of rectangular duct end panels.

Keywords: thin plate, transverse shear, tension field, finite element analysis, parametric study, design

Procedia PDF Downloads 202
3212 Rule-Of-Mixtures: Predicting the Bending Modulus of Unidirectional Fiber Reinforced Dental Composites

Authors: Niloofar Bahramian, Mohammad Atai, Mohammad Reza Naimi-Jamal

Abstract:

Rule of mixtures is the simple analytical model is used to predict various properties of composites before design. The aim of this study was to demonstrate the benefits and limitations of the Rule-of-Mixtures (ROM) for predicting bending modulus of a continuous and unidirectional fiber reinforced composites using in dental applications. The Composites were fabricated from light curing resin (with and without silica nanoparticles) and modified and non-modified fibers. Composite samples were divided into eight groups with ten specimens for each group. The bending modulus (flexural modulus) of samples was determined from the slope of the initial linear region of stress-strain curve on 2mm×2mm×25mm specimens with different designs: fibers corona treatment time (0s, 5s, 7s), fibers silane treatment (0%wt, 2%wt), fibers volume fraction (41%, 33%, 25%) and nanoparticles incorporation in resin (0%wt, 10%wt, 15%wt). To study the fiber and matrix interface after fracture, single edge notch beam (SENB) method and scanning electron microscope (SEM) were used. SEM also was used to show the nanoparticles dispersion in resin. Experimental results of bending modulus for composites made of both physical (corona) and chemical (silane) treated fibers were in reasonable agreement with linear ROM estimates, but untreated fibers or non-optimized treated fibers and poor nanoparticles dispersion did not correlate as well with ROM results. This study shows that the ROM is useful to predict the mechanical behavior of unidirectional dental composites but fiber-resin interface and quality of nanoparticles dispersion play important role in ROM accurate predictions.

Keywords: bending modulus, fiber reinforced composite, fiber treatment, rule-of-mixtures

Procedia PDF Downloads 245
3211 Effect of Reynolds Number and Concentration of Biopolymer (Gum Arabic) on Drag Reduction of Turbulent Flow in Circular Pipe

Authors: Kamaljit Singh Sokhal, Gangacharyulu Dasoraju, Vijaya Kumar Bulasara

Abstract:

Biopolymers are popular in many areas, like petrochemicals, food industry and agriculture due to their favorable properties like environment-friendly, availability, and cost. In this study, a biopolymer gum Arabic was used to find its effect on the pressure drop at various concentrations (100 ppm – 300 ppm) with various Reynolds numbers (10000 – 45000). A rheological study was also done by using the same concentrations to find the effect of the shear rate on the shear viscosity. Experiments were performed to find the effect of injection of gum Arabic directly near the boundary layer and to investigate its effect on the maximum possible drag reduction. Experiments were performed on a test section having i.d of 19.50 mm and length of 3045 mm. The polymer solution was injected from the top of the test section by using a peristaltic pump. The concentration of the polymer solution and the Reynolds number were used as parameters to get maximum possible drag reduction. Water was circulated through a centrifugal pump having a maximum 3000 rpm and the flow rate was measured by using rotameter. Results were validated by using Virk's maximum drag reduction asymptote. A maximum drag reduction of 62.15% was observed with the maximum concentration of gum Arabic, 300 ppm. The solution was circulated in the closed loop to find the effect of degradation of polymers with a number of cycles on the drag reduction percentage. It was observed that the injection of the polymer solution in the boundary layer was showing better results than premixed solutions.

Keywords: drag reduction, shear viscosity, gum arabic, injection point

Procedia PDF Downloads 114
3210 Effect of Horizontal Joint Reinforcement on Shear Behaviour of RC Knee Connections

Authors: N. Zhang, J. S. Kuang, S. Mogili

Abstract:

To investigate seismic performance of beam-column knee joints, four full-scale reinforced concrete beam-column knee joints, which were fabricated to simulate those in as-built RC frame buildings designed to ACI 318-14 and ACI-ASCE 352R-02, were tested under reversed cyclic loading. In the experimental programme, particular emphasis was given to the effect of horizontal reinforcement (in format of inverted U-shape bars) on the shear strength and ductility capacity of knee joints. Test results are compared with those predicted by four seismic design codes, including ACI 318-14, EC8, NZS3101 and GB50010. It is seen that the current design codes of practice cannot accurately predict the shear strength of seismically designed knee joints.

Keywords: large-scale tests, RC beam-column knee joints, seismic performance, shear strength

Procedia PDF Downloads 231
3209 Analytical Model for Columns in Existing Reinforced Concrete Buildings

Authors: Chang Seok Lee, Sang Whan Han, Girbo Ko, Debbie Kim

Abstract:

Existing reinforced concrete structures are designed and built without considering seismic loads. The columns in such buildings generally exhibit widely spaced transverse reinforcements without using seismic hooks. Due to the insufficient reinforcement details in columns, brittle shear failure is expected in columns that may cause pre-mature building collapse mechanism during earthquakes. In order to retrofit those columns, the accurate seismic behavior of the columns needs to be predicted with proper analytical models. In this study, an analytical model is proposed for accurately simulating the cyclic behavior of shear critical columns. The parameters for pinching and cyclic deterioration in strength and stiffness are calibrated using test data of column specimens failed by shear.

Keywords: analytical model, cyclic deterioration, existing reinforced concrete columns, shear failure

Procedia PDF Downloads 240
3208 Modeling Residual Modulus of Elasticity of Self-Compacted Concrete Using Artificial Neural Networks

Authors: Ahmed M. Ashteyat

Abstract:

Artificial Neural Network (ANN) models have been widely used in material modeling, inter-correlations, as well as behavior and trend predictions when the nonlinear relationship between system parameters cannot be quantified explicitly and mathematically. In this paper, ANN was used to predict the residual modulus of elasticity (RME) of self compacted concrete (SCC) damaged by heat. The ANN model was built, trained, tested and validated using a total of 112 experimental data sets, gathered from available literature. The data used in model development included temperature, relative humidity conditions, mix proportions, filler types, and fiber type. The result of ANN training, testing, and validation indicated that the RME of SCC, exposed to different temperature and relative humidity levels, could be predicted accurately with ANN techniques. The reliability between the predicated outputs and the actual experimental data was 99%. This show that ANN has strong potential as a feasible tool for predicting residual elastic modulus of SCC damaged by heat within the range of input parameter. The ANN model could be used to estimate the RME of SCC, as a rapid inexpensive substitute for the much more complicated and time consuming direct measurement of the RME of SCC.

Keywords: residual modulus of elasticity, artificial neural networks, self compacted-concrete, material modeling

Procedia PDF Downloads 510
3207 Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen

Authors: A. Chegenizadeh, M. Keramatikerman, H. Nikraz

Abstract:

Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64ºC, 70ºC, 76ºC and 82ºC. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (δ) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70ºC. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB.

Keywords: rheological properties, DSR test, polymer mixed with bitumen (PMB), complex modulus, lime

Procedia PDF Downloads 166
3206 Investigation on the Behavior of Conventional Reinforced Coupling Beams

Authors: Akash K. Walunj, Dipendu Bhunia, Samarth Gupta, Prabhat Gupta

Abstract:

Coupled shear walls consist of two shear walls connected intermittently by beams along the height. The behavior of coupled shear walls is mainly governed by the coupling beams. The coupling beams are designed for ductile inelastic behavior in order to dissipate energy. The base of the shear walls may be designed for elastic or ductile inelastic behavior. The amount of energy dissipation depends on the yield moment capacity and plastic rotation capacity of the coupling beams. In this paper, an analytical model of coupling beam was developed to calculate the rotations and moment capacities of coupling beam with conventional reinforcement.

Keywords: design studies, computational model(s), case study/studies, modelling, coupling beam

Procedia PDF Downloads 446
3205 Ultrasonic Degradation of Acephate in Aqueous Solution: Effects of Operating Parameters

Authors: Naina S. Deshmukh, Manik P. Deosarkar

Abstract:

With the wide production, consumption, and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing. Among developing treatment technologies, ultrasonication, as an emerging and promising technology for the removal of pesticides in the aqueous environment, has attracted the attention of many researchers in recent years. The degradation of acephate in aqueous solutions was investigated under the influence of ultrasound irradiation (20 kHz) in the presence of heterogeneous catalysts titanium dioxide (TiO2) and Zinc oxide (ZnO). The influence of various factors such as amount of catalyst (0.25, 0.5, 0.75, 1.0, 1.25 g/l), initial acephate concentration (100, 200, 300, 400 mg/l), and pH (3, 5, 7, 9, 11) were studied. The optimum catalyst dose was found to be 1 g/l of TiO2 and 1.25 g/l of ZnO for acephate at 100 mg/l, respectively. The maximum percentage degradation of acephate was observed at pH 11 for catalyst TiO2 and ZnO, respectively.

Keywords: ultrasonic degradation, acephate, TiO2, ZnO, heterogeneous catalyst

Procedia PDF Downloads 75
3204 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals

Authors: Bharatendra Rai

Abstract:

Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.

Keywords: degradation signal, drill-bit breakage, random forest, multinomial logistic regression

Procedia PDF Downloads 327
3203 Soil Degradation Processes in Marginal Uplands of Samar Island, Philippines

Authors: Dernie Taganna Olguera

Abstract:

Marginal uplands are fragile ecosystems in the tropics that need to be evaluated for sustainable utilization and land degradation mitigation. Thus, this study evaluated the dominant soil degradation processes in selected marginal uplands of Samar Island, Philippines; evaluated the important factors influencing soil degradation in the selected sites and identified the indicators of soil degradation in marginal uplands of the tropical landscape of Samar Island, Philippines. Two (2) sites were selected (Sta. Rita, Samar and Salcedo, Eastern, Samar) representing the western and eastern sides of Samar Island respectively. These marginal uplands represent different agro-climatic zones suitable for the study. Soil erosion is the major soil degradation process in the marginal uplands studied. It resulted in not only considerable soil losses but nutrient losses as well. Soil erosion varied with vegetation cover and site. It was much higher in the sweetpotato, cassava, and gabi crops than under natural vegetation. In addition, soil erosion was higher in Salcedo than in Sta. Rita, which is related to climatic and soil characteristics. Bulk density, porosity, aggregate stability, soil pH, organic matter, and carbon dioxide evolution are good indicators of soil degradation. The dominance of Saccharum spontaneum Linn., Imperata cylindrica Linn, Melastoma malabathricum Linn. and Psidium guajava Linn indicated degraded soil condition. Farmer’s practices particularly clean culture and organic fertilizer application influenced the degree of soil degradation in the marginal uplands of Samar Island, Philippines.

Keywords: soil degradation, soil erosion, marginal uplands, Samar island, Philippines

Procedia PDF Downloads 382
3202 Cyclic Behaviour of Wide Beam-Column Joints with Shear Strength Ratios of 1.0 and 1.7

Authors: Roy Y. C. Huang, J. S. Kuang, Hamdolah Behnam

Abstract:

Beam-column connections play an important role in the reinforced concrete moment resisting frame (RCMRF), which is one of the most commonly used structural systems around the world. The premature failure of such connections would severely limit the seismic performance and increase the vulnerability of RCMRF. In the past decades, researchers primarily focused on investigating the structural behaviour and failure mechanisms of conventional beam-column joints, the beam width of which is either smaller than or equal to the column width, while studies in wide beam-column joints were scarce. This paper presents the preliminary experimental results of two full-scale exterior wide beam-column connections, which are mainly designed and detailed according to ACI 318-14 and ACI 352R-02, under reversed cyclic loading. The ratios of the design shear force to the nominal shear strength of these specimens are 1.0 and 1.7, respectively, so as to probe into differences of the joint shear strength between experimental results and predictions by design codes of practice. Flexural failure dominated in the specimen with ratio of 1.0 in which full-width plastic hinges were observed, while both beam hinges and post-peak joint shear failure occurred for the other specimen. No sign of premature joint shear failure was found which is inconsistent with ACI codes’ prediction. Finally, a modification of current codes of practice is provided to accurately predict the joint shear strength in wide beam-column joint.

Keywords: joint shear strength, reversed cyclic loading, seismic vulnerability, wide beam-column joints

Procedia PDF Downloads 300
3201 Surface Roughness Effects in Pure Sliding EHL Line Contacts with Carreau-Type Shear-Thinning Lubricants

Authors: Punit Kumar, Niraj Kumar

Abstract:

The influence of transverse surface roughness on EHL characteristics has been investigated numerically using an extensive set of full EHL line contact simulations for shear-thinning lubricants under pure sliding condition. The shear-thinning behavior of lubricant is modeled using Carreau viscosity equation along with Doolittle-Tait equation for lubricant compressibility. The surface roughness is assumed to be sinusoidal and it is present on the stationary surface. It is found that surface roughness causes sharp pressure peaks along with reduction in central and minimum film thickness. With increasing amplitude of surface roughness, the minimum film thickness decreases much more rapidly as compared to the central film thickness.

Keywords: EHL, Carreau, shear-thinning, surface roughness, amplitude, wavelength

Procedia PDF Downloads 702
3200 The Delaying Influence of Degradation on the Divestment of Gas Turbines for Associated Gas Utilisation: Part 1

Authors: Mafel Obhuo, Dodeye I. Igbong, Duabari S. Aziaka, Pericles Pilidis

Abstract:

An important feature of the exploitation of associated gas as fuel for gas turbine engines is a declining supply. So when exploiting this resource, the divestment of prime movers is very important as the fuel supply diminishes with time. This paper explores the influence of engine degradation on the timing of divestments. Hypothetical but realistic gas turbine engines were modelled with Turbomatch, the Cranfield University gas turbine performance simulation tool. The results were deployed in three degradation scenarios within the TERA (Techno-economic and environmental risk analysis) framework to develop economic models. An optimisation with Genetic Algorithms was carried out to maximize the economic benefit. The results show that degradation will have a significant impact. It will delay the divestment of power plants, while they are running less efficiently. Over a 20 year investment, a decrease of $0.11bn, $0.26bn and $0.45bn (billion US dollars) were observed for the three degradation scenarios as against the clean case.

Keywords: economic return, flared associated gas, net present value, optimization

Procedia PDF Downloads 105
3199 Photocatalytic Degradation of Methyl Orange by Ag Doped La₂Ti₂O₇

Authors: Hong Zhang

Abstract:

Photocatalytic degradation is an appealing process to remove organic contaminants from industrial wastewater, but usually impeded by less effective photocatalysts. Here, we successfully synthesized Ag doped La₂Ti₂O₇ via a simple sol-gel route for photocatalytic methyl orange (MO) degradation. Their crystal structures, morphology, surface area and optical absorption activity were systematically characterized by X-ray diffraction, scanning electron microscope, BET N₂ adsorption-desorption study, and UV-vis diffuse reflectance spectra. The photocatalytic activity was evaluated by MO photodegradation under a 300 W xenon lamp. The results indicate that the doping of Ag has effectively narrowed the band gap, increased the specific area of La2Ti2O7, and supressed the recombination of photogenerated carriers. Compared with the pristine La₂Ti₂O₇, La₁.₉Ag₀.₁Ti₂O₇-δ revealed a superior performance for MO degradation with a degradation rate of 97% in only 60 min. Also, the pseudo-first order kinetic constant for La₁.₉Ag₀.₁Ti₂O₇-δ is ~ 11 times higher than that of undoped sample. The outstanding performance of Ag modified La₂Ti₂O₇ is probably attributed to the integrated factors. Active species trapping experiments indicated that h+ plays a critical role in MO degradation, while •O₂− has slight effect on the photocatalytic activity and the function of •OH can almost be neglected.

Keywords: Ag doped La₂Ti₂O₇, methyl orange, photodegradation, surface plasmon resonance

Procedia PDF Downloads 74
3198 Assessment of DNA Degradation Using Comet Assay: A Versatile Technique for Forensic Application

Authors: Ritesh K. Shukla

Abstract:

Degradation of biological samples in terms of macromolecules (DNA, RNA, and protein) are the major challenges in the forensic investigation which misleads the result interpretation. Currently, there are no precise methods available to circumvent this problem. Therefore, at the preliminary level, some methods are urgently needed to solve this issue. In this order, Comet assay is one of the most versatile, rapid and sensitive molecular biology technique to assess the DNA degradation. This technique helps to assess DNA degradation even at very low amount of sample. Moreover, the expedient part of this method does not require any additional process of DNA extraction and isolation during DNA degradation assessment. Samples directly embedded on agarose pre-coated microscopic slide and electrophoresis perform on the same slide after lysis step. After electrophoresis microscopic slide stained by DNA binding dye and observed under fluorescent microscope equipped with Komet software. With the help of this technique extent of DNA degradation can be assessed which can help to screen the sample before DNA fingerprinting, whether it is appropriate for DNA analysis or not. This technique not only helps to assess degradation of DNA but many other challenges in forensic investigation such as time since deposition estimation of biological fluids, repair of genetic material from degraded biological sample and early time since death estimation could also be resolved. With the help of this study, an attempt was made to explore the application of well-known molecular biology technique that is Comet assay in the field of forensic science. This assay will open avenue in the field of forensic research and development.

Keywords: comet assay, DNA degradation, forensic, molecular biology

Procedia PDF Downloads 132
3197 Service Life Modelling of Concrete Deterioration Due to Biogenic Sulphuric Acid (BSA) Attack-State-of-an-Art-Review

Authors: Ankur Bansal, Shashank Bishnoi

Abstract:

Degradation of Sewage pipes, sewage pumping station and Sewage treatment plants(STP) is of major concern due to difficulty in their maintenance and the high cost of replacement. Most of these systems undergo degradation due to Biogenic sulphuric acid (BSA) attack. Since most of Waste water treatment system are underground, detection of this deterioration remains hidden. This paper presents a literature review, outlining the mechanism of this attack focusing on critical parameters of BSA attack, along with available models and software to predict the deterioration due to this attack. This paper critically examines the various steps and equation in various Models of BSA degradation, detail on assumptions and working of different softwares are also highlighted in this paper. The paper also focuses on the service life design technique available through various codes and method to integrate the servile life design with BSA degradation on concrete. In the end, various methods enhancing the resistance of concrete against Biogenic sulphuric acid attack are highlighted. It may be concluded that the effective modelling for degradation phenomena may bring positive economical and environmental impacts. With current computing capabilities integrated degradation models combining the various durability aspects can bring positive change for sustainable society.

Keywords: concrete degradation, modelling, service life, sulphuric acid attack

Procedia PDF Downloads 288
3196 Limited Component Evaluation of the Effect of Regular Cavities on the Sheet Metal Element of the Steel Plate Shear Wall

Authors: Seyyed Abbas Mojtabavi, Mojtaba Fatzaneh Moghadam, Masoud Mahdavi

Abstract:

Steel Metal Shear Wall is one of the most common and widely used energy dissipation systems in structures, which is used today as a damping system due to the increase in the construction of metal structures. In the present study, the shear wall of the steel plate with dimensions of 5×3 m and thickness of 0.024 m was modeled with 2 floors of total height from the base level with finite element method in Abaqus software. The loading is done as a concentrated load at the upper point of the shear wall on the second floor based on step type buckle. The mesh in the model is applied in two directions of length and width of the shear wall, equal to 0.02 and 0.033, respectively, and the mesh in the models is of sweep type. Finally, it was found that the steel plate shear wall with cavity (CSPSW) compared to the SPSW model, S (Mises), Smax (In-Plane Principal), Smax (In-Plane Principal-ABS), Smax (Min Principal) increased by 53%, 70%, 68% and 43%, respectively. The presence of cavities has led to an increase in the estimated stresses, but their presence has caused critical stresses and critical deformations created to be removed from the inner surface of the shear wall and transferred to the desired sections (regular cavities) which can be suggested as a solution in seismic design and improvement of the structure to transfer possible damage during the earthquake and storm to the desired and pre-designed location in the structure.

Keywords: steel plate shear wall, abacus software, finite element method, , boundary element, seismic structural improvement, von misses stress

Procedia PDF Downloads 72
3195 Use of Statistical Correlations for the Estimation of Shear Wave Velocity from Standard Penetration Test-N-Values: Case Study of Algiers Area

Authors: Soumia Merat, Lynda Djerbal, Ramdane Bahar, Mohammed Amin Benbouras

Abstract:

Along with shear wave, many soil parameters are associated with the standard penetration test (SPT) as a dynamic in situ experiment. Both SPT-N data and geophysical data do not often exist in the same area. Statistical analysis of correlation between these parameters is an alternate method to estimate Vₛ conveniently and without additional investigations or data acquisition. Shear wave velocity is a basic engineering tool required to define dynamic properties of soils. In many instances, engineers opt for empirical correlations between shear wave velocity (Vₛ) and reliable static field test data like standard penetration test (SPT) N value, CPT (Cone Penetration Test) values, etc., to estimate shear wave velocity or dynamic soil parameters. The relation between Vs and SPT- N values of Algiers area is predicted using the collected data, and it is also compared with the previously suggested formulas of Vₛ determination by measuring Root Mean Square Error (RMSE) of each model. Algiers area is situated in high seismic zone (Zone III [RPA 2003: réglement parasismique algerien]), therefore the study is important for this region. The principal aim of this paper is to compare the field measurements of Down-hole test and the empirical models to show which one of these proposed formulas are applicable to predict and deduce shear wave velocity values.

Keywords: empirical models, RMSE, shear wave velocity, standard penetration test

Procedia PDF Downloads 314
3194 Eco-Entrepreneurship Education in India: Exploring Online Course Structure

Authors: Vishwas Chakranarayan, Mariyam Al Salman

Abstract:

Despite the global environmental threats, previous approaches used to overcome these problems have failed to prevent environmental degradation. Scholars believe that entrepreneurs can help conserve habitats, combat climate change, increase freshwater availability, sustain biodiversity, and reduce environmental degradation and deforestation. The pandemic is creating a different ecosystem for fostering the eco-entrepreneurship opportunities. However, attending a course physically is a challenge for many willing learners. Therefore, it is an opportune time to contemplate on developing a social entrepreneurship curriculum which can be offered online.

Keywords: ecopreneurship, environmental problems, environmental degradation, entrepreneurship education

Procedia PDF Downloads 142
3193 Statistical Convergence for the Approximation of Linear Positive Operators

Authors: Neha Bhardwaj

Abstract:

In this paper, we consider positive linear operators and study the Voronovskaya type result of the operator then obtain an error estimate in terms of the higher order modulus of continuity of the function being approximated and its A-statistical convergence. Also, we compute the corresponding rate of A-statistical convergence for the linear positive operators.

Keywords: Poisson distribution, Voronovskaya, modulus of continuity, a-statistical convergence

Procedia PDF Downloads 303
3192 Assessing the Effect of the Position of the Cavities on the Inner Plate of the Steel Shear Wall under Time History Dynamic Analysis

Authors: Masoud Mahdavi, Mojtaba Farzaneh Moghadam

Abstract:

The seismic forces caused by the waves created in the depths of the earth during the earthquake hit the structure and cause the building to vibrate. Creating large seismic forces will cause low-strength sections in the structure to suffer extensive surface damage. The use of new steel shear walls in steel structures has caused the strength of the building and its main members (columns) to increase due to the reduction and depreciation of seismic forces during earthquakes. In the present study, an attempt was made to evaluate a type of steel shear wall that has regular holes in the inner sheet by modeling the finite element model with Abacus software. The shear wall of the steel plate, measuring 6000 × 3000 mm (one floor) and 3 mm thickness, was modeled with four different pores with a cross-sectional area. The shear wall was dynamically subjected to a time history of 5 seconds by three accelerators, El Centro, Imperial Valley and Kobe. The results showed that increasing the distance between the geometric center of the hole and the geometric center of the inner plate in the steel shear wall (increasing the RCS index) caused the total maximum acceleration to be transferred from the perimeter of the hole to horizontal and vertical beams. The results also show that there is no direct relationship between RCS index and total acceleration in steel shear wall and RCS index is separate from the peak ground acceleration value of earthquake.

Keywords: hollow steel plate shear wall, time history analysis, finite element method, abaqus software

Procedia PDF Downloads 86
3191 Effects of Different Fiber Orientations on the Shear Strength Performance of Composite Adhesive Joints

Authors: Ferhat Kadioglu, Hasan Puskul

Abstract:

A composite material with carbon fiber and polymer matrix has been used as adherent for manufacturing adhesive joints. In order to evaluate different fiber orientations on joint performance, the adherents with the 0°, ±15°, ±30°, ±45° fiber orientations were used in the single lap joint configuration. The joints with an overlap length of 25 mm were prepared according to the ASTM 1002 specifications and subjected to tensile loadings. The structural adhesive used was a two-part epoxy to be cured at 70°C for an hour. First, mechanical behaviors of the adherents were measured using three point bending test. In the test, considerations were given to stress to failure and elastic modulus. The results were compared with theoretical ones using rule of mixture. Then, the joints were manufactured in a specially prepared jig, after a proper surface preparation. Experimental results showed that the fiber orientations of the adherents affected the joint performance considerably; the joints with ±45° adherents experienced the worst shear strength, half of those with 0° adherents, and in general, there was a great relationship between the fiber orientations and failure mechanisms. Delamination problems were observed for many joints, which were thought to be due to peel effects at the ends of the overlap. It was proved that the surface preparation applied to the adherent surface was adequate. For further explanation of the results, a numerical work should be carried out using a possible non-linear analysis.

Keywords: composite materials, adhesive bonding, bonding strength, lap joint, tensile strength

Procedia PDF Downloads 349
3190 A Novel Cold Asphalt Concrete Mixture for Heavily Trafficked Binder Course

Authors: Anmar Dulaimi, Hassan Al Nageim, Felicite Ruddock, Linda Seton

Abstract:

Cold bituminous asphalt mixture (CBEM) provide a sustainable, cost effective and energy efficiency alternative to traditional hot mixtures. However, these mixtures have a comparatively low initial strength and as it is considered as evolutionary materials, mainly in the early life where the initial cohesion is low and builds up slowly. On the other hand, asphalt concrete is, by far, the most common mixtures in use as binder course and base in road pavement in the UK having a continuous grade offer a good aggregate interlock results in this material having very good load-spreading properties as well as a high resistance to permanent deformation. This study aims at developing a novel fast curing cold asphalt concrete binder course mixtures by using Ordinary Portland Cement (OPC) as a replacement to conventional mineral filler (0%-100%) while new by-product material (LJMU-A2) was used as a supplementary cementitious material. With this purpose, cold asphalt concrete binder course mixtures with cationic emulsions were studied by means of stiffness modulus whereas water sensitivity was approved by assessing the stiffness modulus ratio before and after sample conditioning. The results indicate that a substantial enhancement in the stiffness modulus and a considerable improvement of water sensitivity resistance by adding of LJMU-A2 to the cold asphalt mixtures as a supplementary cementitious material. Moreover, the addition of LJMU-A2 to those mixtures leads to stiffness modulus after 2- day curing comparable to those obtained with Portland cement after 7-day curing.

Keywords: cold mix asphalt, binder course, cement, stiffness modulus, water sensitivity

Procedia PDF Downloads 283
3189 The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems

Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari

Abstract:

Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.

Keywords: vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam

Procedia PDF Downloads 464
3188 Development of Boro-Tellurite Glasses Enhanced with HfO2 for Radiation Shielding: Examination of Optical and Physical Characteristics

Authors: Sleman Yahya Rasul

Abstract:

Due to their transparency, various types of glass are utilized in numerous applications where clear visibility is essential. One such application involves environments where radiography, radiotherapy, and X-ray devices are used, all of which involve exposure to radiation. As is well-known, radiation can be lethal to humans. Consequently, there is a need for glass that can absorb and block these harmful rays in such settings. Effective protection from radiation typically requires materials with high atomic numbers and densities. Currently, lead oxide-infused glasses are commonly used for this purpose, but due to the toxicity of lead oxide, there is a demand for safer alternatives. HfO2 has been selected as an additive for boro-tellurite (M1-M2-M3) glasses intended for radiation shielding because it has a high atomic number, high density, and is non-toxic. In this study, new glasses will be developed as alternatives to leaded glasses by incorporating x mol% HfO2 into the boro-tellurite glass structure. The glass compositions will be melted and quenched using the traditional method in an alumina crucible at temperatures between 900–1100°C. The resulting glasses will be evaluated for their elastic properties (including elastic modulus, shear modulus, bulk modulus, and Poisson ratio), density, hardness, and fracture toughness. X-ray diffraction (XRD) will be used to examine the amorphous nature of the glasses, while Differential Thermal Analysis (DTA) will provide thermal analysis. Optical properties will be assessed through UV-Vis and Photoluminescence Spectroscopy, and structural properties will be studied using Raman spectroscopy and FTIR spectroscopy. Additionally, the radiation shielding capabilities will be investigated by measuring parameters such as mass attenuation coefficient, half-value thickness, mean free path, effective atomic number (Z_eff), and effective electron density (N_e). The aim of this study is to develop new, lead-free glasses with excellent optical properties and high mechanical strength to replace the leaded glasses currently used for radiation shielding.

Keywords: boro-tellurite glasses, hfo2, radiation shielding, mechanical properties, elastic properties, optical properties

Procedia PDF Downloads 8
3187 Dynamic Shear Energy Absorption of Ultra-High Performance Concrete

Authors: Robert J. Thomas, Colton Bedke, Andrew Sorensen

Abstract:

The exemplary mechanical performance and durability of ultra-high performance concrete (UHPC) has led to its rapid emergence as an advanced cementitious material. The uncharacteristically high mechanical strength and ductility of UHPC makes it a promising potential material for defense structures which may be subject to highly dynamic loads like impact or blast. However, the mechanical response of UHPC under dynamic loading has not been fully characterized. In particular, there is a need to characterize the energy absorption of UHPC under high-frequency shear loading. This paper presents preliminary results from a parametric study of the dynamic shear energy absorption of UHPC using the Charpy impact test. UHPC mixtures with compressive strengths in the range of 100-150 MPa exhibited dynamic shear energy absorption in the range of 0.9-1.5 kJ/m. Energy absorption is shown to be sensitive to the water/cement ratio, silica fume content, and aggregate gradation. Energy absorption was weakly correlated to compressive strength. Results are highly sensitive to specimen preparation methods, and there is a demonstrated need for a standardized test method for high frequency shear in cementitious composites.

Keywords: Charpy impact test, dynamic shear, impact loading, ultra-high performance concrete

Procedia PDF Downloads 271
3186 Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst

Authors: M. S. Abd El-Sadek, Mahmoud A. Omar, Gharib M. Taha

Abstract:

Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light.

Keywords: SnO₂ nanoparticles, methylene blue degradation, photocatalysis, silver doped-SnO₂

Procedia PDF Downloads 113
3185 Photocatalytic Degradation of Methylene Blue Dye Using Cuprous Oxide/Graphene Nanocomposite

Authors: Bekan Bogale, Tsegaye Girma Asere, Tilahun Yai, Fekadu Melak

Abstract:

Aims: To study photocatalytic degradation of methylene blue dye on cuprous oxide/graphene nanocomposite. Background: Cuprous oxide (Cu2O) nanoparticles are among the metal oxides that demonstrated photocatalytic activity. However, the stability of Cu2O nanoparticles due to the fast recombination rate of electron/hole pairs remains a significant challenge in their photocatalytic applications. This, in turn, leads to mismatching of the effective bandgap separation, tending to reduce the photocatalytic activity of the desired organic waste (MB). To overcome these limitations, graphene has been combined with cuprous oxides, resulting in cuprous oxide/graphene nanocomposite as a promising photocatalyst. Objective: In this study, Cu2O/graphene nanocomposite was synthesized and evaluated for its photocatalytic performance of methylene blue (MB) dye degradation. Method: Cu2O/graphene nanocomposites were synthesized from graphite powder and copper nitrate using the facile sol-gel method. Batch experiments have been conducted to assess the applications of the nanocomposites for MB degradation. Parameters such as contact time, catalyst dosage, and pH of the solution were optimized for maximum MB degradation. The prepared nanocomposites were characterized by using UV-Vis, FTIR, XRD, and SEM. The photocatalytic performance of Cu2O/graphene nanocomposites was compared against Cu2O nanoparticles for cationic MB dye degradation. Results: Cu2O/graphene nanocomposite exhibits higher photocatalytic activity for MB degradation (with a degradation efficiency of 94%) than pure Cu2O nanoparticles (67%). This has been accomplished after 180 min of irradiation under visible light. The kinetics of MB degradation by Cu2O/graphene composites can be demonstrated by the second-order kinetic model. The synthesized nanocomposite can be used for more than three cycles of photocatalytic MB degradation. Conclusion: This work indicated new insights into Cu2O/graphene nanocomposite as high-performance in photocatalysis to degrade MB, playing a great role in environmental protection in relation to MB dye.

Keywords: methylene blue, photocatalysis, cuprous oxide, graphene nanocomposite

Procedia PDF Downloads 150