Search results for: self-excited induction generator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1184

Search results for: self-excited induction generator

914 Inverterless Grid Compatible Micro Turbine Generator

Authors: S. Ozeri, D. Shmilovitz

Abstract:

Micro‐Turbine Generators (MTG) are small size power plants that consist of a high speed, gas turbine driving an electrical generator. MTGs may be fueled by either natural gas or kerosene and may also use sustainable and recycled green fuels such as biomass, landfill or digester gas. The typical ratings of MTGs start from 20 kW up to 200 kW. The primary use of MTGs is for backup for sensitive load sites such as hospitals, and they are also considered a feasible power source for Distributed Generation (DG) providing on-site generation in proximity to remote loads. The MTGs have the compressor, the turbine, and the electrical generator mounted on a single shaft. For this reason, the electrical energy is generated at high frequency and is incompatible with the power grid. Therefore, MTGs must contain, in addition, a power conditioning unit to generate an AC voltage at the grid frequency. Presently, this power conditioning unit consists of a rectifier followed by a DC/AC inverter, both rated at the full MTG’s power. The losses of the power conditioning unit account to some 3-5%. Moreover, the full-power processing stage is a bulky and costly piece of equipment that also lowers the overall system reliability. In this study, we propose a new type of power conditioning stage in which only a small fraction of the power is processed. A low power converter is used only to program the rotor current (i.e. the excitation current which is substantially lower). Thus, the MTG's output voltage is shaped to the desired amplitude and frequency by proper programming of the excitation current. The control is realized by causing the rotor current to track the electrical frequency (which is related to the shaft frequency) with a difference that is exactly equal to the line frequency. Since the phasor of the rotation speed and the phasor of the rotor magnetic field are multiplied, the spectrum of the MTG generator voltage contains the sum and the difference components. The desired difference component is at the line frequency (50/60 Hz), whereas the unwanted sum component is at about twice the electrical frequency of the stator. The unwanted high frequency component can be filtered out by a low-pass filter leaving only the low-frequency output. This approach allows elimination of the large power conditioning unit incorporated in conventional MTGs. Instead, a much smaller and cheaper fractional power stage can be used. The proposed technology is also applicable to other high rotation generator sets such as aircraft power units.

Keywords: gas turbine, inverter, power multiplier, distributed generation

Procedia PDF Downloads 238
913 A Comparison of Dietary Quality and Nutritional Adequacy of Meal Plans of a Diet Prescription Generator Web App against the Australian Guidelines to Healthy Eating

Authors: Ananda Perera

Abstract:

Diet therapy has a positive impact on many diseases in General Practice. If a meal plan can be generated as easily as writing a drug prescription for dyspepsia, then the evidence and practice gap in nutrition therapy can be narrowed. Meal plans of 50 diet prescriptions were compared with the criteria for a healthy diet given by Australian authorities. The energy value of each meal plan was compared with the recommended daily energy requirements of the authorities for Diet Prescription Generator (DPG) accuracy. Meal plans generated were within the criteria laid down by the Australian authorities for a healthy diet.

Keywords: dieting, obesity, diabetes, weight loss, computerized decision support systems, dieting software, CDSS, meal plans

Procedia PDF Downloads 142
912 An Implementation Direct Torque Control Strategy of Induction Machine Using DSPACE TMS 320F2812

Authors: Hamid Chaikhy, Mouna Essaadi, Aziz El Afia

Abstract:

This paper presents an experimental implementation of a new direct torque control strategy of induction machine called twelve sectors direct torque control strategy (12_DTC) using DSPACE TMS 320F2812.The aim of this work is to give an experimental performance analysis of 12_DTC in term of torque, currents distortions and stator flux, to validate simulation results obtained in previous works.

Keywords: 12_DTC, DSPACE TMS 320F2812 torque, stator flux, currents distortions, experimental performance analysis

Procedia PDF Downloads 393
911 A Comparative Analysis of Multicarrier SPWM Strategies for Five-Level Flying Capacitor Inverter

Authors: Bachir Belmadani, Rachid Taleb, Zinelaabidine Boudjema, Adil Yahdou

Abstract:

Carrier-based methods have been used widely for switching of multilevel inverters due to their simplicity, flexibility and reduced computational requirements compared to space vector modulation (SVM). This paper focuses on Multicarrier Sinusoidal Pulse Width Modulation (MCSPWM) strategy for the three phase Five-Level Flying Capacitor Inverter (5LFCI). The inverter is simulated for Induction Motor (IM) load and Total Harmonic Distortion (THD) for output waveforms is observed for different controlling schemes.

Keywords: flying capacitor inverter, multicarrier sinusoidal pulse width modulation, space vector modulation, total harmonic distortion, induction motor

Procedia PDF Downloads 410
910 An Investigation of the Effects of Emotional Experience Induction on Mirror Neurons System Activity with Regard to Spectrum of Depressive Symptoms

Authors: Elyas Akbari, Jafar Hasani, Newsha Dehestani, Mohammad Khaleghi, Alireza Moradi

Abstract:

The aim of the present study was to assess the effect of emotional experience induction in the mirror neurons systems (MNS) activity with regard to the spectrum of depressive symptoms. For this purpose, at first stage, 449 students of Kharazmi University of Tehran were selected randomly and completed the second version of the Beck Depression Inventory (BDI-II). Then, 36 students with standard Z-score equal or above +1.5 and equal or equal or below -1.5 were selected to construct two groups of high and low spectrum of depressive symptoms. In the next stage, the basic activity of MNS was recorded (mu wave) before presenting the positive and negative emotional video clips by Electroencephalography (EEG) technique. The findings related to emotion induction (neutral, negative and positive emotion) demonstrated that the activity of recorded mirror neuron areas had a significant difference between the depressive and non-depressive groups. These findings suggest that probably processing of negative emotions in depressive individuals is due to the idea that the mirror neurons in motor cortex matched up the activity of cognitive regions with the person’s schema. Considering the results of the present study, it could be said that the MNS provides a substrate where emotional disorders can be studied and evaluated.

Keywords: emotional experiences, mirror neurons, depressive symptoms, negative and positive emotion

Procedia PDF Downloads 358
909 Autophagy Regulates Human Hepatocellular Carcinoma Tumorigenesis through Selective Degradation of Cyclin D1

Authors: Shan-Ying Wu, Sheng-Hui Lan, Xi-Zhang Lin, Ih-Jen Su, Ting-Fen Tsai, Chia-Jui Yen, Tsung-Hsueh Lu, Fu-Wen Liang, Huey-Jen Su, Chun-Li Su, Hsiao-Sheng Liu

Abstract:

In hepatocelluar carcinoma (HCC), dysregulated expression of cyclin D1 and impaired autophagy has been reported separately. However, the relationship between them has not been explored. In this study, we demonstrated that autophagy was inversely correlated with cyclin D1 expression in 147 paired HCC patient specimens. HCC specimen with highly expression of cyclin D1 shows correlation with poor overall survival rate. Furthermore, induction of autophagy by amiodarone (antiarrhythmic drug) in Hep 3B cells, cyclin D1 was recruited into autophagosomes demonstrated by immune-gold labeling of cyclin D1 after extraction of autophagosomes. We further demonstrated that autophagy suppresses Hep 3B cell proliferation, and further analysis revealed that cell cycle was arrested at G1 phase. The interaction between LC3 (maker of autophagy) and cyclin D1 was increased after autophagy induction. In addition, ubiquitinated-cyclin D1 was also increased after autophagy induction, which is selectively degraded by autophagosome through binding with SQSTM1/p62 (an adaptor protein). In vivo study showed that amiodarone induced autophagy suppresses liver tumor formation in xenograft mouse and orthotopic rat model through decreasing cyclin D1 expression and inhibition of cell proliferation. Altogether, we reveal a novel mechanism that ubiquitinated cyclin D1 degraded by autophagic pathway by p62 and amiodarone is a promising drug for targeting cyclin D1 in liver cancer therapy.

Keywords: autophagy, cyclin D1, hepatocellular carcinoma, amiodarone

Procedia PDF Downloads 295
908 Sustainable Ionized Gas Thermoelectric Generator: Comparative Theoretical Evaluation and Efficiency Estimation

Authors: Mohammad Bqoor, Mohammad Hamdan, Isam Janajreh, Sufian Abedrabbo

Abstract:

This extensive theoretical study on a novel Ionized Gas Thermoelectric Generator (IG-TEG) system has shown the ability of continuous energy extracting from the thermal energy of ambient air around standard room temperature and even below. This system does not need a temperature gradient in order to work, unlike the other TEGs that use the Seebeck effect, and therefore this new system can be utilized in sustainable energy systems, as well as in green cooling solutions, by extracting energy instead of wasting energy in compressing the gas for cooling. This novel system was designed based on Static Ratchet Potential (SRP), which is known as a spatially asymmetric electric potential produced by an array of positive and negative electrodes. The ratchet potential produces an electrical current from the random Brownian Motion of charged particles that are driven by thermal energy. The key parameter of the system is particle transportation, and it was studied under the condition of flashing ratchet potentials utilizing several methods and examined experimentally, ensuring its functionality. In this study, a different approach is pursued to estimate particle transportation by evaluating the charged particle distribution and applying the other conditions of the SRP, and showing continued energy harvesting potency from the particles’ transportation. Ultimately, power levels of 10 Watt proved to be achievable from a 1 m long system tube of 10 cm radius.

Keywords: thermoelectric generator, ratchet potential, Brownian ratchet, energy harvesting, sustainable energy, green technology

Procedia PDF Downloads 76
907 Optimal Control of Generators and Series Compensators within Multi-Space-Time Frame

Authors: Qian Chen, Lin Xu, Ping Ju, Zhuoran Li, Yiping Yu, Yuqing Jin

Abstract:

The operation of power grid is becoming more and more complex and difficult due to its rapid development towards high voltage, long distance, and large capacity. For instance, many large-scale wind farms have connected to power grid, where their fluctuation and randomness is very likely to affect the stability and safety of the grid. Fortunately, many new-type equipments based on power electronics have been applied to power grid, such as UPFC (Unified Power Flow Controller), TCSC (Thyristor Controlled Series Compensation), STATCOM (Static Synchronous Compensator) and so on, which can help to deal with the problem above. Compared with traditional equipment such as generator, new-type controllable devices, represented by the FACTS (Flexible AC Transmission System), have more accurate control ability and respond faster. But they are too expensive to use widely. Therefore, on the basis of the comparison and analysis of the controlling characteristics between traditional control equipment and new-type controllable equipment in both time and space scale, a coordinated optimizing control method within mutil-time-space frame is proposed in this paper to bring both kinds of advantages into play, which can better both control ability and economical efficiency. Firstly, the coordination of different space sizes of grid is studied focused on the fluctuation caused by large-scale wind farms connected to power grid. With generator, FSC (Fixed Series Compensation) and TCSC, the coordination method on two-layer regional power grid vs. its sub grid is studied in detail. The coordination control model is built, the corresponding scheme is promoted, and the conclusion is verified by simulation. By analysis, interface power flow can be controlled by generator and the specific line power flow between two-layer regions can be adjusted by FSC and TCSC. The smaller the interface power flow adjusted by generator, the bigger the control margin of TCSC, instead, the total consumption of generator is much higher. Secondly, the coordination of different time sizes is studied to further the amount of the total consumption of generator and the control margin of TCSC, where the minimum control cost can be acquired. The coordination method on two-layer ultra short-term correction vs. AGC (Automatic Generation Control) is studied with generator, FSC and TCSC. The optimal control model is founded, genetic algorithm is selected to solve the problem, and the conclusion is verified by simulation. Finally, the aforementioned method within multi-time-space scale is analyzed with practical cases, and simulated on PSASP (Power System Analysis Software Package) platform. The correctness and effectiveness are verified by the simulation result. Moreover, this coordinated optimizing control method can contribute to the decrease of control cost and will provide reference to the following studies in this field.

Keywords: FACTS, multi-space-time frame, optimal control, TCSC

Procedia PDF Downloads 267
906 Feasibility Study of the Binary Fluid Mixtures C3H6/C4H10 and C3H6/C5H12 Used in Diffusion-Absorption Refrigeration Cycles

Authors: N. Soli, B. Chaouachi, M. Bourouis

Abstract:

We propose in this work the thermodynamic feasibility study of the operation of a refrigerating machine with absorption-diffusion with mixtures of hydrocarbons. It is for a refrigerating machine of low power (300 W) functioning on a level of temperature of the generator lower than 150 °C (fossil energy or solar energy) and operative with non-harmful fluids for the environment. According to this study, we determined to start from the digraphs of Oldham of the different binary of hydrocarbons, the minimal and maximum temperature of operation of the generator, as well as possible enrichment. The cooling medium in the condenser and absorber is done by the ambient air with a temperature at 35 °C. Helium is used as inert gas. The total pressure in the cycle is about 17.5 bars. We used suitable software to modulate for the two binary following the system propylene /butane and propylene/pentane. Our model is validated by comparison with the literature’s resultants.

Keywords: absorption, DAR cycle, diffusion, propyléne

Procedia PDF Downloads 274
905 Effect of Aluminium Content on Bending Properties and Microstructure of AlₓCoCrFeNi Alloy Fabricated by Induction Melting

Authors: Marzena Tokarewicz, Malgorzata Gradzka-Dahlke

Abstract:

High-entropy alloys (HEAs) have gained significant attention due to their great potential as functional and structural materials. HEAs have very good mechanical properties (in particular, alloys based on CoCrNi). They also show the ability to maintain their strength at high temperatures, which is extremely important in some applications. AlCoCrFeNi alloy is one of the most studied high-entropy alloys. Scientists often study the effect of changing the aluminum content in this alloy because it causes significant changes in phase presence and microstructure and consequently affects its hardness, ductility, and other properties. Research conducted by the authors also investigates the effect of aluminium content in AlₓCoCrFeNi alloy on its microstructure and mechanical properties. AlₓCoCrFeNi alloys were prepared by vacuum induction melting. The obtained samples were examined for chemical composition, microstructure, and microhardness. The three-point bending method was carried out to determine the bending strength, bending modulus, and conventional bending yield strength. The obtained results confirm the influence of aluminum content on the properties of AlₓCoCrFeNi alloy. Most studies on AlₓCoCrFeNi alloy focus on the determination of mechanical properties in compression or tension, much less in bending. The achieved results provide valuable information on the bending properties of AlₓCoCrFeNi alloy and lead to interesting conclusions.

Keywords: bending properties, high-entropy alloys, induction melting, microstructure

Procedia PDF Downloads 149
904 Hydrogen-Fueled Micro-Thermophotovoltaic Power Generator: Flame Regimes and Flame Stability

Authors: Hosein Faramarzpour

Abstract:

This work presents the optimum operational conditions for a hydrogen-based micro-scale power source, using a verified mathematical model including fluid dynamics and reaction kinetics. Thereafter the stable operational flame regime is pursued as a key factor in optimizing the design of micro-combustors. The results show that with increasing velocities, four H2 flame regimes develop in the micro-combustor, namely: 1) periodic ignition-extinction regime, 2) steady symmetric regime, 3) pulsating asymmetric regime, and 4) steady asymmetric regime. The first regime that appears in 0.8 m/s inlet velocity is a periodic ignition-extinction regime which is characterized by counter flows and tulip-shape flames. For flow velocity above 0.2 m/s, the flame shifts downstream, and the combustion regime switches to a steady symmetric flame where temperature increases considerably due to the increased rate of incoming energy. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Further elevation in flow velocity up to 1 m/s leads to the pulsating asymmetric flame formation, which is associated with pulses in various flame properties such as temperature and species concentration. Ultimately, when the inlet velocity reached 1.2 m/s, the last regime was observed, and a steady asymmetric regime appeared.

Keywords: thermophotovoltaic generator, micro combustor, micro power generator, combustion regimes, flame dynamic

Procedia PDF Downloads 101
903 Entropy Generation Analysis of Heat Recovery Vapor Generator for Ammonia-Water Mixture

Authors: Chul Ho Han, Kyoung Hoon Kim

Abstract:

This paper carries out a performance analysis based on the first and second laws of thermodynamics for heat recovery vapor generator (HRVG) of ammonia-water mixture when the heat source is low-temperature energy in the form of sensible heat. In the analysis, effects of the ammonia mass concentration and mass flow ratio of the binary mixture are investigated on the system performance including the effectiveness of heat transfer, entropy generation, and exergy efficiency. The results show that the ammonia concentration and the mass flow ratio of the mixture have significant effects on the system performance of HRVG.

Keywords: entropy, exergy, ammonia-water mixture, heat exchanger

Procedia PDF Downloads 398
902 Modeling of CREB Pathway Induced Gene Induction: From Stimulation to Repression

Authors: K. Julia Rose Mary, Victor Arokia Doss

Abstract:

Electrical and chemical stimulations up-regulate phosphorylaion of CREB, a transcriptional factor that induces its target gene production for memory consolidation and Late Long-Term Potentiation (L-LTP) in CA1 region of the hippocampus. L-LTP requires complex interactions among second-messenger signaling cascade molecules such as cAMP, CAMKII, CAMKIV, MAPK, RSK, PKA, all of which converge to phosphorylate CREB which along with CBP induces the transcription of target genes involved in memory consolidation. A differential equation based model for L-LTP representing stimulus-mediated activation of downstream mediators which confirms the steep, supralinear stimulus-response effects of activation and inhibition was used. The same was extended to accommodate the inhibitory effect of the Inducible cAMP Early Repressor (ICER). ICER is the natural inducible CREB antagonist represses CRE-Mediated gene transcription involved in long-term plasticity for learning and memory. After verifying the sensitivity and robustness of the model, we had simulated it with various empirical levels of repressor concentration to analyse their effect on the gene induction. The model appears to predict the regulatory dynamics of repression on the L-LTP and agrees with the experimental values. The flux data obtained in the simulations demonstrate various aspects of equilibrium between the gene induction and repression.

Keywords: CREB, L-LTP, mathematical modeling, simulation

Procedia PDF Downloads 294
901 Induced Systemic Resistance in Tomato Plants against Fusarium Wilt Disease Using Biotic Inducers

Authors: Mostafa A. Amer, I. A. El-Samra, I. I. Abou-ElSeoud, S. M. El-Abd, N. K. Shawertamimi

Abstract:

Tomato Fusarium wilt disease caused by Fusarium oxysporum f. sp. Lycopercisi (FOL) is considered one of the most destructive diseases in Egypt. Effect of some biotic inducers such as Bacillus megaterium var. phosphaticum, Glomus intraradices and Glomus macrocarpum at seven different mixed treatments, was tested for their ability to induce resistance in tomato plants against the disease. According to pathogenicity tests, all the tested isolates of FOL showed wilt symptoms on both of the tested cultivars; however, they considerably varied in percentages of disease incidence (DI) and disease severity (DS). Castle Rock was more susceptible than Peto 86, which was relatively resistant. Pretreatment of both cultivars, under greenhouse conditions, with the tested biotic inducers alone or in combination with each other's, significantly increased the induction of chitinase, β-1,3-glucanase, peroxidase, and polyphenoloxidase and reduced disease incidence and severity, compared with untreated noninoculated (C1) and untreated inoculated (C2) controls. Application of a combination of BMP, with GI and GM was the most effective in increasing the induction rated of the tested enzymes, compared with the other treatments. Induction of enzymes in most of the tested bioinducers treatments gradually increased, attaining maximum values after 48 or/and 72 hrs after challenging with FOL, then gradually declined. GI was the least effective bioinducer.

Keywords: F. oxysporum f. sp. lycopersici, defense enzymes, induced systemic resistance, ISR, B. megaterium var. phosphaticum, G. macrocarpum, G. intraradices

Procedia PDF Downloads 405
900 Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field

Authors: Sergei Voychuk

Abstract:

Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment.

Keywords: Saccharomyces cerevisiae, EHF-EMF, UV light, adaptive response

Procedia PDF Downloads 320
899 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions

Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju

Abstract:

Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.

Keywords: distributed generation, electrical distribution systems, fault resistance

Procedia PDF Downloads 515
898 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator

Authors: Dilek Ozlem Esen, Mesut Kaya

Abstract:

The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.

Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration

Procedia PDF Downloads 653
897 Power Efficiency Characteristics of Magnetohydrodynamic Thermodynamic Gas Cycle

Authors: Mahmoud Huleihil

Abstract:

In this study, the performance of a thermodynamic gas cycle of magnetohydrodynamic (MHD) power generation is considered and presented in terms of power efficiency curves. The dissipation mechanisms considered include: fluid friction modeled by means of the isentropic efficiency of the compressor, heat transfer leakage directly from the hot reservoir to the cold heat reservoir, and constant velocity of the MHD generator. The study demonstrates that power and efficiency vanish at the extremes of both slow and fast operating conditions. These points are demonstrated on power efficiency curves and the locus of efficiency at maximum power and the locus of maximum efficiency. Qualitatively, the considered loss mechanisms have a similar effect on the efficiency at maximum power operation and on maximum efficiency operation, thus these efficiencies are reduced, even for small values of the loss mechanisms.

Keywords: magnetohydrodynamic generator, electrical efficiency, maximum power, maximum efficiency, heat engine

Procedia PDF Downloads 245
896 Parallel Random Number Generation for the Modern Supercomputer Architectures

Authors: Roman Snytsar

Abstract:

Pseudo-random numbers are often used in scientific computing such as the Monte Carlo Simulations or the Quantum Inspired Optimization. Requirements for a parallel random number generator running in the modern multi-core vector environment are more stringent than those for sequential random number generators. As well as passing the usual quality tests, the output of the parallel random number generator must be verifiable and reproducible throughout the concurrent execution. We propose a family of vectorized Permuted Congruential Generators. Implementations are available for multiple modern vector modern computer architectures. Besides demonstrating good single core performance, the generators scale easily across many processor cores and multiple distributed nodes. We provide performance and parallel speedup analysis and comparisons between the implementations.

Keywords: pseudo-random numbers, quantum optimization, SIMD, parallel computing

Procedia PDF Downloads 120
895 Fault Detection and Diagnosis of Broken Bar Problem in Induction Motors Base Wavelet Analysis and EMD Method: Case Study of Mobarakeh Steel Company in Iran

Authors: M. Ahmadi, M. Kafil, H. Ebrahimi

Abstract:

Nowadays, induction motors have a significant role in industries. Condition monitoring (CM) of this equipment has gained a remarkable importance during recent years due to huge production losses, substantial imposed costs and increases in vulnerability, risk, and uncertainty levels. Motor current signature analysis (MCSA) is one of the most important techniques in CM. This method can be used for rotor broken bars detection. Signal processing methods such as Fast Fourier transformation (FFT), Wavelet transformation and Empirical Mode Decomposition (EMD) are used for analyzing MCSA output data. In this study, these signal processing methods are used for broken bar problem detection of Mobarakeh steel company induction motors. Based on wavelet transformation method, an index for fault detection, CF, is introduced which is the variation of maximum to the mean of wavelet transformation coefficients. We find that, in the broken bar condition, the amount of CF factor is greater than the healthy condition. Based on EMD method, the energy of intrinsic mode functions (IMF) is calculated and finds that when motor bars become broken the energy of IMFs increases.

Keywords: broken bar, condition monitoring, diagnostics, empirical mode decomposition, fourier transform, wavelet transform

Procedia PDF Downloads 150
894 The Antioxidant and Antinociceptive Effects of Curcumin in Experimentally Induced Pain in Rats

Authors: Valeriu Mihai But, Sorana Daniela Bolboacă, Adriana Elena Bulboacă

Abstract:

The nutraceutical compound Curcumin (Curcuma longa L.) is known for its anti-inflammatory, anti-cancer, and antioxidant effects. This study aimed to evaluate the antioxidative and analgesic effects of Curcumin (CC) compared to Tramadol (T) in chemical-induced nociceptive pain in rats. Thirty-five rats were randomly divided into five groups of seven rats each and were treated as follows: C group (control group): treated with saline solution 0.9%, (1 ml, i.p. administration), ethanoic acid (EA) group: pretreated with saline solution 0.9% - 30 min before EA nociceptive pain induction, (1 ml, i.p. administration), T group: pretreated with Tramadol, 10 mg/kg body weight (bw), i.p. administration - 30 min before EA nociceptive pain induction, CC1-group: pretreated with 1 mg/100g bw Curcumin i.p. administration - 2 days before EA pain induction and CC2-group: pretreated with Curcumin 2 mg/100g bw i.p. administration - 2 days before EA nociceptive pain induction. The following oxidative stress parameters were assessed: malondialdehyde (MDA), nitric oxide (NOx), total oxidative status (TOS), total antioxidative capacity (TAC), and thiol (Th). The antalgic activity was measured by the ethanoic acid writhing test. Treatment with Curcumin, both 1 mg/100g bw, and 2 mg/100g bw, showed significant differences as compared with the control group (p<0.001) regarding malondialdehyde (MDA), nitric oxide (NOx), and total oxidative status (TOS) oxidative biomarkers. Pretreatment with 2 mg/100g bw of Curcumin presented a significant decrease in MDA values compared with Tramadol (p<0.001). The TAC significantly increased in pretreatment with Curcumin compared with group control. (p<0.001) The nociceptive response to EA was significantly reduced in Curcumin and Tramadol groups. Treatment with Curcumin at a higher concentration was more effective. In an experimental pain model, this study demonstrates an important antioxidant and antinociceptive activity of Curcumin comparable with Tramadol treatment.

Keywords: curcumin, nociception, oxidative stress, pain

Procedia PDF Downloads 108
893 Control Technique for Single Phase Bipolar H-Bridge Inverter Connected to the Grid

Authors: L. Hassaine, A. Mraoui, M. R. Bengourina

Abstract:

In photovoltaic system, connected to the grid, the main goal is to control the power that the inverter injects into the grid from the energy provided by the photovoltaic generator. This paper proposes a control technique for a photovoltaic system connected to the grid based on the digital pulse-width modulation (DSPWM) which can synchronise a sinusoidal current output with a grid voltage and generate power at unity power factor. This control is based on H-Bridge inverter controlled by bipolar PWM Switching. The electrical scheme of the system is presented. Simulations results of output voltage and current validate the impact of this method to determinate the appropriate control of the system. A digital design of a generator PWM using VHDL is proposed and implemented on a Xilinx FPGA.

Keywords: grid connected photovoltaic system, H-Bridge inverter, control, bipolar PWM

Procedia PDF Downloads 317
892 Robust Image Design Based Steganographic System

Authors: Sadiq J. Abou-Loukh, Hanan M. Habbi

Abstract:

This paper presents a steganography to hide the transmitted information without excite suspicious and also illustrates the level of secrecy that can be increased by using cryptography techniques. The proposed system has been implemented firstly by encrypted image file one time pad key and secondly encrypted message that hidden to perform encryption followed by image embedding. Then the new image file will be created from the original image by using four triangles operation, the new image is processed by one of two image processing techniques. The proposed two processing techniques are thresholding and differential predictive coding (DPC). Afterwards, encryption or decryption keys are generated by functional key generator. The generator key is used one time only. Encrypted text will be hidden in the places that are not used for image processing and key generation system has high embedding rate (0.1875 character/pixel) for true color image (24 bit depth).

Keywords: encryption, thresholding, differential predictive coding, four triangles operation

Procedia PDF Downloads 493
891 Modeling and Analysis of DFIG Based Wind Power System Using Instantaneous Power Components

Authors: Jaimala Ghambir, Tilak Thakur, Puneet Chawla

Abstract:

As per the statistical data, the Doubly-fed Induction Generator (DFIG) based wind turbine with variable speed and variable pitch control is the most common wind turbine in the growing wind market. This machine is usually used on the grid connected wind energy conversion system to satisfy grid code requirements such as grid stability, fault ride through (FRT), power quality improvement, grid synchronization and power control etc. Though the requirements are not fulfilled directly by the machine, the control strategy is used in both the stator as well as rotor side along with power electronic converters to fulfil the requirements stated above. To satisfy the grid code requirements of wind turbine, usually grid side converter is playing a major role. So in order to improve the operation capacity of wind turbine under critical situation, the intensive study of both machine side converter control and grid side converter control is necessary In this paper DFIG is modeled using power components as variables and the performance of the DFIG system is analysed under grid voltage fluctuations. The voltage fluctuations are made by lowering and raising the voltage values in the utility grid intentionally for the purpose of simulation keeping in view of different grid disturbances.

Keywords: DFIG, dynamic modeling, DPC, sag, swell, voltage fluctuations, FRT

Procedia PDF Downloads 462
890 Investigating the Experiences of Higher Education Academics on the Blended Approach Used during the Induction Course

Authors: Ann-May Marais

Abstract:

South African higher education institutions are following the global adoption of a blended approach to teaching and learning. Blended learning is viewed as a transformative teaching-learning approach, as it provides students with the optimum experience by mixing the best of face-to-face and online learning. Although academics realise the benefits of blended learning, they find it challenging and time-consuming to implement blended strategies. Professional development is a critical component of the adoption of higher education teaching-learning approaches. The Institutional course for higher education academics offered at a South African University was designed in a blended model, implemented and evaluated. This paper reports on a study that investigated the experiences of academics on the blended approach used during the induction course. A qualitative design-based research methodology was employed, and data was collected using participant feedback and document analysis. The data gathered from each of the four ICNL offerings were used to inform the design of the next course. Findings indicated that lecturers realised that blended learning could cater to student diversity, different learning styles, engagement, and innovation. Furthermore, it emerged that the course has to cater for diversity in technology proficiency and readiness of participants. Participants also require ongoing support in technology usage and discipline-specific blended learning workshops. This paper contends that the modelling of a blended approach to professional development can be an effective way to motivate academics to apply blended learning in their teaching-learning experiences.

Keywords: blended learning, professional development, induction course, integration of technology

Procedia PDF Downloads 162
889 Study of a Photovoltaic System Using MPPT Buck-Boost Converter

Authors: A. Bouchakour, L. Zaghba, M. Brahami, A. Borni

Abstract:

The work presented in this paper present the design and the simulation of a centrifugal pump coupled to a photovoltaic (PV) generator via a MPPT controller. The PV system operating is just done in sunny period by using water storage instead of electric energy storage. The process concerns the modelling, identification and simulation of a photovoltaic pumping system, the centrifugal pump is driven by an asynchronous three-phase voltage inverter sine triangle PWM motor through. Two configurations were simulated. For the first, it is about the alimentation of the motor pump group from electrical power supply. For the second, the pump unit is connected directly to the photovoltaic panels by integration of a MPPT control. A code of simulation of the solar pumping system was initiated under the Matlab-Simulink environment. Very convivial and flexible graphic interfaces allow an easy use of the code and knowledge of the effects of change of the sunning and temperature on the pumping system.

Keywords: photovoltaic generator, chopper, electrical motor, centrifugal pump

Procedia PDF Downloads 380
888 Apoptotic Induction Ability of Harmalol and Its Binding: Biochemical and Biophysical Perspectives

Authors: Kakali Bhadra

Abstract:

Harmalol administration caused remarkable reduction in proliferation of HepG2 cells with GI50 of 14.2 mM, without showing much cytotoxicity in embryonic liver cell line, WRL-68. Data from circular dichroism and differential scanning calorimetric analysis of harmalol-CT DNA complex shows conformational changes with prominent CD perturbation and stabilization of CT DNA by 8 oC. Binding constant and stoichiometry was also calculated using the above biophysical techniques. Further, dose dependent apoptotic induction ability of harmalol was studied in HepG2 cells using different biochemical assays. Generation of ROS, DNA damage, changes in cellular external and ultramorphology, alteration of membrane, formation of comet tail, decreased mitochondrial membrane potential and a significant increase in Sub Go/G1 population made the cancer cell, HepG2, prone to apoptosis. Up regulation of p53 and caspase 3 further indicated the apoptotic role of harmalol.

Keywords: apoptosis, beta carboline alkaloid, comet assay, cytotoxicity, ROS

Procedia PDF Downloads 209
887 Assessing the Effect of Grid Connection of Large-Scale Wind Farms on Power System Small-Signal Angular Stability

Authors: Wenjuan Du, Jingtian Bi, Tong Wang, Haifeng Wang

Abstract:

Grid connection of a large-scale wind farm affects power system small-signal angular stability in two aspects. Firstly, connection of the wind farm brings about the change of load flow and configuration of a power system. Secondly, the dynamic interaction is introduced by the wind farm with the synchronous generators (SGs) in the power system. This paper proposes a method to assess the two aspects of the effect of the wind farm on power system small-signal angular stability. The effect of the change of load flow/system configuration brought about by the wind farm can be examined separately by displacing wind farms with constant power sources, then the effect of the dynamic interaction of the wind farm with the SGs can be also computed individually. Thus, a clearer picture and better understanding on the power system small-signal angular stability as affected by grid connection of the large-scale wind farm are provided. In the paper, an example power system with grid connection of a wind farm is presented to demonstrate the proposed approach.

Keywords: power system small-signal angular stability, power system low-frequency oscillations, electromechanical oscillation modes, wind farms, double fed induction generator (DFIG)

Procedia PDF Downloads 483
886 Integration of Virtual Learning of Induction Machines for Undergraduates

Authors: Rajesh Kumar, Puneet Aggarwal

Abstract:

In context of understanding problems faced by undergraduate students while carrying out laboratory experiments dealing with high voltages, it was found that most of the students are hesitant to work directly on machine. The reason is that error in the circuitry might lead to deterioration of machine and laboratory instruments. So, it has become inevitable to include modern pedagogic techniques for undergraduate students, which would help them to first carry out experiment in virtual system and then to work on live circuit. Further advantages include that students can try out their intuitive ideas and perform in virtual environment, hence leading to new research and innovations. In this paper, virtual environment used is of MATLAB/Simulink for three-phase induction machines. The performance analysis of three-phase induction machine is carried out using virtual environment which includes Direct Current (DC) Test, No-Load Test, and Block Rotor Test along with speed torque characteristics for different rotor resistances and input voltage, respectively. Further, this paper carries out computer aided teaching of basic Voltage Source Inverter (VSI) drive circuitry. Hence, this paper gave undergraduates a clearer view of experiments performed on virtual machine (No-Load test, Block Rotor test and DC test, respectively). After successful implementation of basic tests, VSI circuitry is implemented, and related harmonic distortion (THD) and Fast Fourier Transform (FFT) of current and voltage waveform are studied.

Keywords: block rotor test, DC test, no load test, virtual environment, voltage source inverter

Procedia PDF Downloads 354
885 Parameters Influencing the Output Precision of a Lens-Lens Beam Generator Solar Concentrator

Authors: M. Tawfik, X. Tonnellier, C. Sansom

Abstract:

The Lens-Lens Beam Generator (LLBG) is a Fresnel-based optical concentrating technique which provides flexibility in selecting the solar receiver location compared to conventional techniques through generating a powerful concentrated collimated solar beam. In order to achieve that, two successive lenses are used and followed by a flat mirror. Hence the generated beam emerging from the LLBG has a high power flux which impinges on the target receiver, it is important to determine the precision of the system output. In this present work, mathematical investigation of different parameters affecting the precision of the output beam is carried out. These parameters include: Deflection in sun-facing lens and its holding arm, delay in updating the solar tracking system, and the flat mirror surface flatness. Moreover, relationships that describe the power lost due to the effect of each parameter are derived in this study.

Keywords: Fresnel lens, LLBG, solar concentrator, solar tracking

Procedia PDF Downloads 216