Search results for: price homogeneity
1057 Time and Cost Efficiency Analysis of Quick Die Change System on Metal Stamping Industry
Authors: Rudi Kurniawan Arief
Abstract:
Manufacturing cost and setup time are the hot topics to improve in Metal Stamping industry because material and components price are always rising up while costumer requires to cut down the component price year by year. The Single Minute Exchange of Die (SMED) is one of many methods to reduce waste in stamping industry. The Japanese Quick Die Change (QDC) dies system is one of SMED systems that could reduce both of setup time and manufacturing cost. However, this system is rarely used in stamping industries. This paper will analyze how deep the QDC dies system could reduce setup time and the manufacturing cost. The research is conducted by direct observation, simulating and comparing of QDC dies system with conventional dies system. In this research, we found that the QDC dies system could save up to 35% of manufacturing cost and reduce 70% of setup times. This simulation proved that the QDC die system is effective for cost reduction but must be applied in several parallel production processes.Keywords: press die, metal stamping, QDC system, single minute exchange die, manufacturing cost saving, SMED
Procedia PDF Downloads 1701056 Is More Inclusive More Effective? The 'New Style' Public Distribution System in India
Authors: Avinash Kishore, Suman Chakrabarti
Abstract:
In September 2013, the parliament of India enacted the National Food Security Act (NFSA) which entitles two-thirds of India’s population to five kilograms of rice, wheat or coarse cereals per person per month at one to three rupees per kilogram. Five states in India—Andhra Pradesh, Chhattisgarh, Tamil Nadu, Odisha and West Bengal—had already implemented somewhat similar changes in the TPDS a few years earlier using their own budgetary resources. They made rice—coincidentally, all five states are predominantly rice-eating—available in fair price shops to a majority of their population at very low prices (less than Rs.3/kg). This paper tries to account for the changes in household consumption patterns associated with the change in TPDS policy in these states using data from household consumption surveys by the National Sample Survey Organization (NSSO). NSS data show improvement in the coverage of TPDS and average off-take of grains from fair price shops between 2004-05 and 2009-10 across all states of India. However, the increase in coverage and off-take was significantly higher in four out of these five states than in the rest of India. An average household in these states purchased three kilos more rice per month from fair price shops than its counterpart in non-treated states as a result of more generous TPDS policies backed by administrative reforms. The increase in consumption of PDS rice was the highest in Chhattisgarh, the poster state of PDS reforms. Households in Chhattisgarh used money saved on rice to spend more on pulses, edible oil, vegetables and sugar and other non-food items. We also find evidence that making TPDS more inclusive and more generous is not enough unless it is supported by administrative reforms to improve grain delivery and control diversion to open markets.Keywords: public distribution system, social safety-net, national food security act, diet quality, Chhattisgarh
Procedia PDF Downloads 3731055 Impact of Ethnomedicinal Plants on Toothpaste Improvement
Authors: Muna Jalal Ali, Essam A. Makky, Mashitah M. Yusoff
Abstract:
Objectives: The aim of this study to evaluate the antimicrobial susceptibility of combined toothpaste with medicinal plants and the relations between the commercial toothpaste to its price and the patient age as well. Materials and Methods: Oral isolates of different patients aged 3 to 60 years were obtained, purified, and tested against four different ethnomedicinal plant extracts for antimicrobial activity. A total of 10 different commercial toothpastes (different brands and prices) were collected from the market, and the combined action of the medicinal plants and toothpaste was studied. Results: We found a higher bacterial population in the age group of 3–40 years than the group of 40–60 years, with approximately 44% and 32%, respectively. The combined action of ethanolic extract (alone) against oral isolates showed a synergistic effect, with 32.20, 30.50, and 25.42% for combinations A (Ci/Ca), B (Ci/Ca/P), and C (Ci/Ca/P/N), respectively. By contrast, the combined action of ethnomedicinal plants with 10 different toothpastes improved the antimicrobial sensitivity by 60, 100, and 0% for combinations A, B, and C respectively. Clinical relevance: The ethanolic extract of only combinations A and B with commercial toothpaste showed high antibacterial activity against oral isolates and the effectiveness of toothpaste is not related to the price.Keywords: microbial evolution, oral isolates, ethnomedicinal plants, antimicrobial activity, toothpaste
Procedia PDF Downloads 3141054 A Linear Autoregressive and Non-Linear Regime Switching Approach in Identifying the Structural Breaks Caused by Anti-Speculation Measures: The Case of Hong Kong
Authors: Mengna Hu
Abstract:
This paper examines the impact of an anti-speculation tax policy on the trading activities and home price movements in the housing market in Hong Kong. The study focuses on the secondary residential property market where transactions dominate. The policy intervention substantially raised the transaction cost to speculators as well as genuine homeowners who dispose their homes within a certain period. Through the demonstration of structural breaks, our empirical results show that the rise in transaction cost effectively reduced speculative trading activities. However, it accelerated price increase in the small-sized segment by vastly demotivating existing homeowners from trading up to better homes, causing congestion in the lower-end market where the demand from first-time buyers is still strong. Apart from that, by employing regime switching approach, we further show that the unintended consequences are likely to be persistent due to this policy together with other strengthened cooling measures.Keywords: transaction costs, housing market, structural breaks, regime switching
Procedia PDF Downloads 2611053 A Data Science Pipeline for Algorithmic Trading: A Comparative Study in Applications to Finance and Cryptoeconomics
Authors: Luyao Zhang, Tianyu Wu, Jiayi Li, Carlos-Gustavo Salas-Flores, Saad Lahrichi
Abstract:
Recent advances in AI have made algorithmic trading a central role in finance. However, current research and applications are disconnected information islands. We propose a generally applicable pipeline for designing, programming, and evaluating algorithmic trading of stock and crypto tokens. Moreover, we provide comparative case studies for four conventional algorithms, including moving average crossover, volume-weighted average price, sentiment analysis, and statistical arbitrage. Our study offers a systematic way to program and compare different trading strategies. Moreover, we implement our algorithms by object-oriented programming in Python3, which serves as open-source software for future academic research and applications.Keywords: algorithmic trading, AI for finance, fintech, machine learning, moving average crossover, volume weighted average price, sentiment analysis, statistical arbitrage, pair trading, object-oriented programming, python3
Procedia PDF Downloads 1441052 The Antecedents of Brand Loyalty on Female Cosmetics Buying Behavior
Authors: Velly Anatasia
Abstract:
The worldwide annual expenditure for cosmetics is estimated at U.S. $18 billion and many players in the field are competing aggressively to capture more and more markets. Players in the cosmetics industry strive to be the foremost by establish customer loyalty. Furthermore, customer loyalty is portrayed by brand loyalty. Therefore, brand loyalty is the key determine of winning the competition in tight market. This study examines the influence of brand loyalty on cosmetics buying behavior of female consumers in Jakarta as capital of Indonesia. The seven factors of brand loyalty are brand name, Product quality, price, design, promotion, servicesquality and store environment. The paper adopted descriptive analysis, factor loading and multiple regression approach to test the hypotheses. The data has been collected by using questionnaires which were distributed and self-administered to 125female respondents accustomed using cosmetics. The findings of this study indicated that promotion has shown strong correlation with brand loyalty. The research results showed that there is positive and significant relationship between factors of brand loyalty (brand name, product quality, price, design, promotion, services quality and store environment) with cosmetics brand loyalty.Keywords: brand loyalty, brand name, product quality, service quality, promotion
Procedia PDF Downloads 4031051 Marketing Mix for Tourism in the Chonburi Province
Authors: Pisit Potjanajaruwit
Abstract:
The objectives of the study were to determine the marketing mix factors that influencing tourist’s destination decision making for cultural tourism in the Chonburi province. Both quantitative and qualitative data were applied in this study. The samples of 400 cases for quantitative analysis were tourists (both Thai and foreign) who were interested in cultural tourism in the Chonburi province, and traveled to cultural sites in Chonburi and 14 representatives from provincial tourism committee of Chonburi and local tourism experts. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. The study found that Thai and foreign tourists are influenced by different important marketing mix factors. The important factors for Thai respondents were physical evidence, price, people, and place at high importance level. For foreign respondents, physical evidence, price, people, and process were high importance level, whereas, product, place, and promotion were moderate importance level.Keywords: Chonburi Province, decision making, cultural tourism, marketing mixed
Procedia PDF Downloads 3911050 Investigating the UAE Residential Valuation System: A Framework for Analysis
Authors: Simon Huston, Ebraheim Lahbash, Ali Parsa
Abstract:
The development of the United Arab Emirates (UAE) into a regional trade, tourism, finance and logistics hub has transformed its real estate markets. However, speculative activity and price volatility remain concerns. UAE residential market values (MV) are exposed to fluctuations in capital flows and migration which in turn are affected by geopolitical uncertainty, oil price volatility, and global investment market sentiment. Internally, a complex interplay between administrative boundaries, land tenure, building quality and evolving location characteristics fragments UAE residential property markets. In short, the UAE Residential Valuation System (UAE-RVS) confronts multiple challenges to collect, filter and analyze relevant information in complex and dynamic spatial and capital markets. A robust (RVS) can mitigate the risk of unhelpful volatility, speculative excess or investment mistakes. The research outlines the institutional, ontological, dynamic, and epistemological issues at play. We highlight the importance of system capabilities, valuation standard salience and stakeholders trust.Keywords: valuation, property rights, information, institutions, trust, salience
Procedia PDF Downloads 3791049 Time Variance and Spillover Effects between International Crude Oil Price and Ten Emerging Equity Markets
Authors: Murad A. Bein
Abstract:
This paper empirically examines the time-varying relationship and spillover effects between the international crude oil price and ten emerging equity markets, namely three oil-exporting countries (Brazil, Mexico, and Russia) and seven Central and Eastern European (CEE) countries (Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, and Slovakia). The results revealed that there are spillover effects from oil markets into almost all emerging equity markets save Slovakia. Besides, the oil supply glut had a homogenous effect on the emerging markets, both net oil-exporting, and oil-importing countries (CEE). Further, the time variance drastically increased during financial turmoil. Indeed, the time variance remained high from 2009 to 2012 in response to aggregate demand shocks (global financial crisis and Eurozone debt crisis) and quantitative easing measures. Interestingly, the time variance was slightly higher for the oil-exporting countries than for some of the CEE countries. Decision-makers in emerging economies should therefore seek policy coordination when dealing with financial turmoil.Keywords: crude oil, spillover effects, emerging equity, time-varying, aggregate demand shock
Procedia PDF Downloads 1241048 Customer Focus in Digital Economy: Case of Russian Companies
Authors: Maria Evnevich
Abstract:
In modern conditions, in most markets, price competition is becoming less effective. On the one hand, there is a gradual decrease in the level of marginality in main traditional sectors of the economy, so further price reduction becomes too ‘expensive’ for the company. On the other hand, the effect of price reduction is leveled, and the reason for this phenomenon is likely to be informational. As a result, it turns out that even if the company reduces prices, making its products more accessible to the buyer, there is a high probability that this will not lead to increase in sales unless additional large-scale advertising and information campaigns are conducted. Similarly, a large-scale information and advertising campaign have a much greater effect itself than price reductions. At the same time, the cost of mass informing is growing every year, especially when using the main information channels. The article presents generalization, systematization and development of theoretical approaches and best practices in the field of customer focus approach to business management and in the field of relationship marketing in the modern digital economy. The research methodology is based on the synthesis and content-analysis of sociological and marketing research and on the study of the systems of working with consumer appeals and loyalty programs in the 50 largest client-oriented companies in Russia. Also, the analysis of internal documentation on customers’ purchases in one of the largest retail companies in Russia allowed to identify if buyers prefer to buy goods for complex purchases in one retail store with the best price image for them. The cost of attracting a new client is now quite high and continues to grow, so it becomes more important to keep him and increase the involvement through marketing tools. A huge role is played by modern digital technologies used both in advertising (e-mailing, SEO, contextual advertising, banner advertising, SMM, etc.) and in service. To implement the above-described client-oriented omnichannel service, it is necessary to identify the client and work with personal data provided when filling in the loyalty program application form. The analysis of loyalty programs of 50 companies identified the following types of cards: discount cards, bonus cards, mixed cards, coalition loyalty cards, bank loyalty programs, aviation loyalty programs, hybrid loyalty cards, situational loyalty cards. The use of loyalty cards allows not only to stimulate the customer to purchase ‘untargeted’, but also to provide individualized offers, as well as to produce more targeted information. The development of digital technologies and modern means of communication has significantly changed not only the sphere of marketing and promotion, but also the economic landscape as a whole. Factors of competitiveness are the digital opportunities of companies in the field of customer orientation: personalization of service, customization of advertising offers, optimization of marketing activity and improvement of logistics.Keywords: customer focus, digital economy, loyalty program, relationship marketing
Procedia PDF Downloads 1631047 Willingness to Purchase and Pay a Price Premium for an Apartment with Exterior Green Walls
Authors: Tamar Trop, Michal Roffeh
Abstract:
One of the emerging trends in construction is installing an exterior “green wall” (GW). GW is an overarching and most common term for various techniques of incorporating greenery into buildings’ vertical elements, mainly facades. This green infrastructure yields numerous benefits for the urban environment, the public, and the buildings’ tenants and users, such as enhancing air quality and biodiversity, managing stormwater runoff, mitigating urban heat island and climate change, improving urban aesthetics and mental wellbeing, improving indoor comfort conditions, and saving energy. Yet, the penetration rate of GWs into the construction market, especially into the housing sector, is still very slow. Furthermore, the research regarding prospective homebuyers’ willingness to purchase and pay a price premium for GW apartments is scarce and does not refer to newly built buildings and specific GW types. This research aims to narrow these knowledge gaps by exploring the willingness of prospective homebuyers in Israel to purchase a newly built apartment with a hydroponic living wall, the size of the PP that they would be willing to pay for it, and the various factors ̶ knowledge-related, concern, economic, and personal ̶ that influence these motivations. A nationwide online survey was conducted among a sample of 514 adults using a structured questionnaire. Findings show that despite low familiarity with GWs and strong concerns about various kinds of nuisance, technical issues, and maintenance costs, potential homebuyers express a relatively high willingness to purchase and pay a significant price premium for such an apartment. The main motivations behind this willingness were found to be potential energy savings and governmental incentives. Study findings can contribute to a better understanding of the maturity of the housing market in Israel to adopt GWs and to better tailor intervention tools for increasing GWs’ uptake among potential homebuyers.Keywords: green façade, green wall, living wall, willingness to pay
Procedia PDF Downloads 301046 The Revealed Preference Methods in Economic Valuation of Environmental Goods: A Review
Authors: Sara Sousa
Abstract:
The environmental goods and services have often been neglected in crucial decisions affecting the environment mainly because the difficulty in estimating their economic value, since we are dealing with non-market goods and, thus, without a price associated. Nevertheless, the inexistence of prices does not necessarily mean these goods have no value. The environment is a key element in today's society that seeks to be as sustainable as possible, where the environmental assets have both use and non-use values. To estimate the use value, researchers may apply the revealed preference methods. This paper provides a theoretical review of the main concepts and methodologies on the economic valuation of the environment, with particular emphasis on the revealed preference techniques. Based on a detailed literature review, this study concludes that, despite some inherent limitations, the revealed preference methodologies – travel cost, hedonic price, and averting behaviour – represent essential tools for the researchers who accept the challenge to estimate the use value of environmental goods and services based on the actual individuals` behaviour. The main purpose of this study is to contribute to an increased theoretical information on the economic valuation of environmental assets, allowing researchers and policymakers to improve future decisions regarding the environment.Keywords: economic valuation, environmental goods, revealed preference methods, total economic value
Procedia PDF Downloads 1301045 Critical Success Factor of Exporting Thailand’s Ginger to Japan
Authors: Phutthiwat Waiyawuththanapoom, Pimploi Tirastittam, Manop Tirastittam
Abstract:
Thailand is the agriculture country which mainly exports the agriculture product to the other countries in so many ways which are fresh vegetable, chilled vegetable or frozen vegetable. The gross export for Thailand’s vegetable is 30-40 billion baht per year, and the growth rate is about 15-20 percent per year. Ginger is one of the main vegetable product that Thailand export to Japan because Thailand’s Ginger has a good quality and be able to supply Japan’s demand with a reasonable price. This research paper is aimed to study the factors which affect the efficiency of the supply chain process of Thailand’s ginger to Japan. There are 5 factors which related to the exporting Thailand’s ginger to Japan which are quality, price, equipment and supply standard, custom process and distribution pattern. The result of the research showed that the factor which reached the 'very good' significant level is quality of Thailand’s ginger with the score of 4.86. The other 5 factors are in the 'good' significant level. So the most important factor for Thai ginger farmer to concern is the quality of the product.Keywords: critical success factor, export, ginger, supply chain
Procedia PDF Downloads 3681044 First Report of Asiatic Black Bear: Evidence of Illegal Hunting and Trading from Manglawar Mountain, Swat, Pakistan
Authors: Waheed Akhtar
Abstract:
Bears in Asia facing multiple threats and challenges such as hunting, illegal trading, habitat loss, and human conflicts. According to IUCN Red List, the Asiatic black bear (Ursus thibetanus) is listed as Vulnerable since 1990, population declining by 49% during the last 30 years. The present study was conducted in Manglawar (DwaSaro Mountain) from April-August 2021, to collect all the information on Asiatic black bear observation, illegal hunting, and cub poaching. According to the response of the local community, very intensive illegal hunting and cub poaching were observed. Hunters usually installed many traps in the routes of black bears and when they move in the winter season the cubs get trapped and they collect them and kept in a specialized wooden box that is mainly helpful for further transportation. These cubs are then brought to the concerned Market where they sell them to many dealers. One of the potential observers of the illegal trading responds towards the Market price of the cubs, “The average price of the black bear cub is ranging from 45000-50000 Pakistani Rupees”. Apart from cubs' poaching, the black bear is also hunted for its skin, claws, and teeth.Keywords: first report, illegal hunting, cub poaching, parts trading, Ursus thibetanus
Procedia PDF Downloads 631043 Factors Relating to Travel Behavior at the Floating Market of Thai Tourists
Authors: Siri-orn Champatong
Abstract:
The purpose of this research was to study factors that were related with travel behaviors of Thai tourists at the Ayothaya Floating Market, Phra Nakhon Sri Ayutthaya. The quantitative research was conducted with 400 samples of Thai tourists traveling to the Ayothaya Floating Market. The Questionnaire was a tool used to collect data, and the statistics used for data analysis were mean and Pearson product moment correlation coefficient. The results found that Thai tourists focused on attraction, easy access and facilities of the tourist spot at a high level. In addition, they gave priority to the marketing mix in the dimension of products, price, and distribution channels at a high level as well. For marketing promotion, it was at the moderate level. The results of hypothesis testing revealed that factors related to the attractions of the tourist destination, easy access to the tourist destination, the facilities of the tourist spot, and product and price of the marketing mix were associated with travel behaviors in the aspect of the number of visits used and the budget on tourism.Keywords: floating market, marketing mix, tourism attractions, travelling behavior
Procedia PDF Downloads 2861042 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive
Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst
Abstract:
Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates
Procedia PDF Downloads 1551041 Real Estate Trend Prediction with Artificial Intelligence Techniques
Authors: Sophia Liang Zhou
Abstract:
For investors, businesses, consumers, and governments, an accurate assessment of future housing prices is crucial to critical decisions in resource allocation, policy formation, and investment strategies. Previous studies are contradictory about macroeconomic determinants of housing price and largely focused on one or two areas using point prediction. This study aims to develop data-driven models to accurately predict future housing market trends in different markets. This work studied five different metropolitan areas representing different market trends and compared three-time lagging situations: no lag, 6-month lag, and 12-month lag. Linear regression (LR), random forest (RF), and artificial neural network (ANN) were employed to model the real estate price using datasets with S&P/Case-Shiller home price index and 12 demographic and macroeconomic features, such as gross domestic product (GDP), resident population, personal income, etc. in five metropolitan areas: Boston, Dallas, New York, Chicago, and San Francisco. The data from March 2005 to December 2018 were collected from the Federal Reserve Bank, FBI, and Freddie Mac. In the original data, some factors are monthly, some quarterly, and some yearly. Thus, two methods to compensate missing values, backfill or interpolation, were compared. The models were evaluated by accuracy, mean absolute error, and root mean square error. The LR and ANN models outperformed the RF model due to RF’s inherent limitations. Both ANN and LR methods generated predictive models with high accuracy ( > 95%). It was found that personal income, GDP, population, and measures of debt consistently appeared as the most important factors. It also showed that technique to compensate missing values in the dataset and implementation of time lag can have a significant influence on the model performance and require further investigation. The best performing models varied for each area, but the backfilled 12-month lag LR models and the interpolated no lag ANN models showed the best stable performance overall, with accuracies > 95% for each city. This study reveals the influence of input variables in different markets. It also provides evidence to support future studies to identify the optimal time lag and data imputing methods for establishing accurate predictive models.Keywords: linear regression, random forest, artificial neural network, real estate price prediction
Procedia PDF Downloads 1031040 Market Illiquidity and Pricing Errors in the Term Structure of CDS
Authors: Lidia Sanchis-Marco, Antonio Rubia, Pedro Serrano
Abstract:
This paper studies the informational content of pricing errors in the term structure of sovereign CDS spreads. The residuals from a non-arbitrage model are employed to construct a Price discrepancy estimate, or noise measure. The noise estimate is understood as an indicator of market distress and reflects frictions such as illiquidity. Empirically, the noise measure is computed for an extensive panel of CDS spreads. Our results reveal an important fraction of systematic risk is not priced in default swap contracts. When projecting the noise measure onto a set of financial variables, the panel-data estimates show that greater price discrepancies are systematically related to a higher level of offsetting transactions of CDS contracts. This evidence suggests that arbitrage capital flows exit the marketplace during time of distress, and this consistent with a market segmentation among investors and arbitrageurs where professional arbitrageurs are particularly ineffective at bringing prices to their fundamental values during turbulent periods. Our empirical findings are robust for the most common CDS pricing models employed in the industry.Keywords: credit default swaps, noise measure, illiquidity, capital arbitrage
Procedia PDF Downloads 5691039 On the Effectiveness of Electricity Market Development Strategies: A Target Model for a Developing Country
Authors: Ezgi Avci-Surucu, Doganbey Akgul
Abstract:
Turkey’s energy reforms has achieved energy security through a variety of interlinked measures including electricity, gas, renewable energy and energy efficiency legislation; the establishment of an energy sector regulatory authority; energy price reform; the creation of a functional electricity market; restructuring of state-owned energy enterprises; and private sector participation through privatization and new investment. However, current strategies, namely; “Electricity Sector Reform and Privatization Strategy” and “Electricity Market and Supply Security Strategy” has been criticized for various aspects. The present paper analyzes the implementation of the aforementioned strategies in the framework of generation scheduling, transmission constraints, bidding structure and general aspects; and argues the deficiencies of current strategies which decelerates power investments and creates uncertainties. We conclude by policy suggestions to eliminate these deficiencies in terms of price and risk management, infrastructure, customer focused regulations and systematic market development.Keywords: electricity markets, risk management, regulations, balancing and settlement, bilateral trading, generation scheduling, bidding structure
Procedia PDF Downloads 5531038 Evaluating Forecasting Strategies for Day-Ahead Electricity Prices: Insights From the Russia-Ukraine Crisis
Authors: Alexandra Papagianni, George Filis, Panagiotis Papadopoulos
Abstract:
The liberalization of the energy market and the increasing penetration of fluctuating renewables (e.g., wind and solar power) have heightened the importance of the spot market for ensuring efficient electricity supply. This is further emphasized by the EU’s goal of achieving net-zero emissions by 2050. The day-ahead market (DAM) plays a key role in European energy trading, accounting for 80-90% of spot transactions and providing critical insights for next-day pricing. Therefore, short-term electricity price forecasting (EPF) within the DAM is crucial for market participants to make informed decisions and improve their market positioning. Existing literature highlights out-of-sample performance as a key factor in assessing EPF accuracy, with influencing factors such as predictors, forecast horizon, model selection, and strategy. Several studies indicate that electricity demand is a primary price determinant, while renewable energy sources (RES) like wind and solar significantly impact price dynamics, often lowering prices. Additionally, incorporating data from neighboring countries, due to market coupling, further improves forecast accuracy. Most studies predict up to 24 steps ahead using hourly data, while some extend forecasts using higher-frequency data (e.g., half-hourly or quarter-hourly). Short-term EPF methods fall into two main categories: statistical and computational intelligence (CI) methods, with hybrid models combining both. While many studies use advanced statistical methods, particularly through different versions of traditional AR-type models, others apply computational techniques such as artificial neural networks (ANNs) and support vector machines (SVMs). Recent research combines multiple methods to enhance forecasting performance. Despite extensive research on EPF accuracy, a gap remains in understanding how forecasting strategy affects prediction outcomes. While iterated strategies are commonly used, they are often chosen without justification. This paper contributes by examining whether the choice of forecasting strategy impacts the quality of day-ahead price predictions, especially for multi-step forecasts. We evaluate both iterated and direct methods, exploring alternative ways of conducting iterated forecasts on benchmark and state-of-the-art forecasting frameworks. The goal is to assess whether these factors should be considered by end-users to improve forecast quality. We focus on the Greek DAM using data from July 1, 2021, to March 31, 2022. This period is chosen due to significant price volatility in Greece, driven by its dependence on natural gas and limited interconnection capacity with larger European grids. The analysis covers two phases: pre-conflict (January 1, 2022, to February 23, 2022) and post-conflict (February 24, 2022, to March 31, 2022), following the Russian-Ukraine conflict that initiated an energy crisis. We use the mean absolute percentage error (MAPE) and symmetric mean absolute percentage error (sMAPE) for evaluation, as well as the Direction of Change (DoC) measure to assess the accuracy of price movement predictions. Our findings suggest that forecasters need to apply all strategies across different horizons and models. Different strategies may be required for different horizons to optimize both accuracy and directional predictions, ensuring more reliable forecasts.Keywords: short-term electricity price forecast, forecast strategies, forecast horizons, recursive strategy, direct strategy
Procedia PDF Downloads 71037 Factors Related to Behaviors of Thai Travelers Traveling to Koh Kred Island, Nonthaburi Province
Authors: Bundit Pungnirund, Boonyada Pahasing
Abstract:
The objective of this research is to study factors related to behaviors of Thai travelers traveling to Koh Kret Island, Nonthaburi Province. The subjects of this study included 400 Thai travelers coming to Koh Kred. Questionnaires were used to collect data which were analyzed by computer program to find mean and correlation coefficient by Pearson. The results showed that Thai travelers reported their opinions and attitudes in high level on the marketing service mix, product, price, place, promotion, personal, physical evidence, and process. They reported on travelling motivation factor, tourist attraction, and facility at high level. Moreover, marketing service mix, product, price, place, promotion, personal, physical, and process including travelling motivation factor, tourist attraction, and facility had positive relationship with the frequency in travelling at statistically significant level (0.01), though in a low relationship but in the same direction.Keywords: factors, behaviors, Thai travelers, Koh Kled, Nonthaburi Province
Procedia PDF Downloads 2261036 An Analysis of the Relation between Need for Psychological Help and Psychological Symptoms
Authors: İsmail Ay
Abstract:
In this study, it was aimed to determine the relations between need for psychological help and psychological symptoms. The sample of the study consists of 530 university students getting educated in University of Atatürk in 2015-2016 academic years. Need for Psychological Help Scale and Brief Symptom Inventory were used to collect data in the study. In data analysis, correlation analysis and structural equation model with latent variables were used. Normality and homogeneity analyses were used to analyze the basic conditions of parametric tests. The findings obtained from the study show that as the psychological symptoms increase, need for psychological help also increases. The findings obtained through the study were approached according to the literature.Keywords: psychological symptoms, need for psychological help, structural equation model, correlation
Procedia PDF Downloads 3681035 Financial Assessment of the Hard Coal Mining in the Chosen Region in the Czech Republic: Real Options Methodology Application
Authors: Miroslav Čulík, Petr Gurný
Abstract:
This paper is aimed at the financial assessment of the hard coal mining in a given region by real option methodology application. Hard coal mining in this mine makes net loss for the owner during the last years due to the long-term unfavourable mining conditions and significant drop in the coal prices during the last years. Management is going to shut down the operation and abandon the project to reduce the loss of the company. The goal is to assess whether the shutting down the operation is the only and correct solution of the problem. Due to the uncertainty in the future hard coal price evolution, the production might be again restarted if the price raises enough to cover the cost of the production. For the assessment, real option methodology is applied, which captures two important aspect of the financial decision-making: risk and flexibility. The paper is structured as follows: first, current state is described and problem is analysed. Next, methodology of real options is described. At last, project is evaluated by applying real option methodology. The results are commented and recommendations are provided.Keywords: real option, investment, option to abandon, option to shut down and restart, risk, flexibility
Procedia PDF Downloads 5481034 Artificial Intelligence Methods for Returns Expectations in Financial Markets
Authors: Yosra Mefteh Rekik, Younes Boujelbene
Abstract:
We introduce in this paper a new conceptual model representing the stock market dynamics. This model is essentially based on cognitive behavior of the intelligence investors. In order to validate our model, we build an artificial stock market simulation based on agent-oriented methodologies. The proposed simulator is composed of market supervisor agent essentially responsible for executing transactions via an order book and various kinds of investor agents depending to their profile. The purpose of this simulation is to understand the influence of psychological character of an investor and its neighborhood on its decision-making and their impact on the market in terms of price fluctuations. Therefore, the difficulty of the prediction is due to several features: the complexity, the non-linearity and the dynamism of the financial market system, as well as the investor psychology. The Artificial Neural Networks learning mechanism take on the role of traders, who from their futures return expectations and place orders based on their expectations. The results of intensive analysis indicate that the existence of agents having heterogeneous beliefs and preferences has provided a better understanding of price dynamics in the financial market.Keywords: artificial intelligence methods, artificial stock market, behavioral modeling, multi-agent based simulation
Procedia PDF Downloads 4451033 Construct the Fur Input Mixed Model with Activity-Based Benefit Assessment Approach of Leather Industry
Authors: M. F. Wu, F. T. Cheng
Abstract:
Leather industry is the most important traditional industry to provide the leather products in the world for thousand years. The fierce global competitive environment and common awareness of global carbon reduction make livestock supply quantities falling, salt and wet blue leather material reduces and the price skyrockets significantly. Exchange rate fluctuation led sales revenue decreasing which due to the differences of export exchanges and compresses the overall profitability of leather industry. This paper applies activity-based benefit assessment approach to build up fitness fur input mixed model, fur is Wet Blue, which concerned with four key factors: the output rate of wet blue, unit cost of wet blue, yield rate and grade level of Wet Blue to achieve the low cost strategy under given unit price of leather product condition of the company. The research findings indicate that applying this model may improve the input cost structure, decrease numbers of leather product inventories and to raise the competitive advantages of the enterprise in the future.Keywords: activity-based benefit assessment approach, input mixed, output rate, wet blue
Procedia PDF Downloads 3751032 Intellectual Property Rights and Health Rights: A Feasible Reform Proposal to Facilitate Access to Drugs in Developing Countries
Authors: M. G. Cattaneo
Abstract:
The non-effectiveness of certain codified human rights is particularly apparent with reference to the lack of access to essential drugs in developing countries, which represents a breach of the human right to receive adequate health assistance. This paper underlines the conflict and the legal contradictions between human rights, namely health rights, international Intellectual Property Rights, in particular patent law, as well as international trade law. The paper discusses the crucial links between R&D costs for innovation, patents and new medical drugs, with the goal of reformulating the hierarchies of priorities and of interests at stake in the international intellectual property (IP) law system. Different from what happens today, International patent law should be a legal instrument apt at rebalancing an axiological asymmetry between the (conflicting) needs at stake The core argument in the paper is the proposal of an alternative pathway, namely a feasible proposal for a patent law reform. IP laws tend to balance the benefits deriving from innovation with the costs of the provided monopoly, but since developing countries and industrialized countries are in completely different political and economic situations, it is necessary to (re)modulate such exchange according to the different needs. Based on this critical analysis, the paper puts forward a proposal, called Trading Time for Space (TTS), whereby a longer time for patent exclusive life in western countries (Time) is offered to the patent holder company, in exchange for the latter selling the medical drug at cost price in developing countries (Space). Accordingly, pharmaceutical companies should sell drugs in developing countries at the cost price, or alternatively grant a free license for the sale in such countries, without any royalties or fees. However, such social service shall be duly compensated. Therefore, the consideration for such a service shall be an extension of the temporal duration of the patent’s exclusive in the country of origin that will compensate the reduced profits caused by the supply at the price cost in developing countries.Keywords: global health, global justice, patent law reform, access to drugs
Procedia PDF Downloads 2461031 Masked Candlestick Model: A Pre-Trained Model for Trading Prediction
Authors: Ling Qi, Matloob Khushi, Josiah Poon
Abstract:
This paper introduces a pre-trained Masked Candlestick Model (MCM) for trading time-series data. The pre-trained model is based on three core designs. First, we convert trading price data at each data point as a set of normalized elements and produce embeddings of each element. Second, we generate a masked sequence of such embedded elements as inputs for self-supervised learning. Third, we use the encoder mechanism from the transformer to train the inputs. The masked model learns the contextual relations among the sequence of embedded elements, which can aid downstream classification tasks. To evaluate the performance of the pre-trained model, we fine-tune MCM for three different downstream classification tasks to predict future price trends. The fine-tuned models achieved better accuracy rates for all three tasks than the baseline models. To better analyze the effectiveness of MCM, we test the same architecture for three currency pairs, namely EUR/GBP, AUD/USD, and EUR/JPY. The experimentation results demonstrate MCM’s effectiveness on all three currency pairs and indicate the MCM’s capability for signal extraction from trading data.Keywords: masked language model, transformer, time series prediction, trading prediction, embedding, transfer learning, self-supervised learning
Procedia PDF Downloads 1271030 Determinants of Budget Performance in an Oil-Based Economy
Authors: Adeola Adenikinju, Olusanya E. Olubusoye, Lateef O. Akinpelu, Dilinna L. Nwobi
Abstract:
Since the enactment of the Fiscal Responsibility Act (2007), the Federal Government of Nigeria (FGN) has made public its fiscal budget and the subsequent implementation report. A critical review of these documents shows significant variations in the five macroeconomic variables which are inputs in each Presidential budget; oil Production target (mbpd), oil price ($), Foreign exchange rate(N/$), and Gross Domestic Product growth rate (%) and inflation rate (%). This results in underperformance of the Federal budget expected output in terms of non-oil and oil revenue aggregates. This paper evaluates first the existing variance between budgeted and actuals, then the relationship and causality between the determinants of Federal fiscal budget assumptions, and finally the determinants of FGN’s Gross Oil Revenue. The paper employed the use of descriptive statistics, the Autoregressive distributed lag (ARDL) model, and a Profit oil probabilistic model to achieve these objectives. This model permits for both the static and dynamic effect(s) of the independent variable(s) on the dependent variable, unlike a static model that accounts for static or fixed effect(s) only. It offers a technique for checking the existence of a long-run relationship between variables, unlike other tests of cointegration, such as the Engle-Granger and Johansen tests, which consider only non-stationary series that are integrated of the same order. Finally, even with small sample size, the ARDL model is known to generate a valid result, for it is the dependent variable and is the explanatory variable. The results showed that there is a long-run relationship between oil revenue as a proxy for budget performance and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a short-run relationship between oil revenue and its determinants; oil price, produced oil quantity, and foreign exchange rate. There is a long-run relationship between non-oil revenue and its determinants; inflation rate, GDP growth rate, and foreign exchange rate. The grangers’ causality test results show that there is a mono-directional causality between oil revenue and its determinants. The Federal budget assumptions only explain 68% of oil revenue and 62% of non-oil revenue. There is a mono-directional causality between non-oil revenue and its determinants. The Profit oil Model describes production sharing contracts, joint ventures, and modified carrying arrangements as the greatest contributors to FGN’s gross oil revenue. This provides empirical justification for the selected macroeconomic variables used in the Federal budget design and performance evaluation. The research recommends other variables, debt and money supply, be included in the Federal budget design to explain the Federal budget revenue performance further.Keywords: ARDL, budget performance, oil price, oil quantity, oil revenue
Procedia PDF Downloads 1721029 A Probabilistic Theory of the Buy-Low and Sell-High for Algorithmic Trading
Authors: Peter Shi
Abstract:
Algorithmic trading is a rapidly expanding domain within quantitative finance, constituting a substantial portion of trading volumes in the US financial market. The demand for rigorous and robust mathematical theories underpinning these trading algorithms is ever-growing. In this study, the author establishes a new stock market model that integrates the Efficient Market Hypothesis and the statistical arbitrage. The model, for the first time, finds probabilistic relations between the rational price and the market price in terms of the conditional expectation. The theory consequently leads to a mathematical justification of the old market adage: buy-low and sell-high. The thresholds for “low” and “high” are precisely derived using a max-min operation on Bayes’s error. This explicit connection harmonizes the Efficient Market Hypothesis and Statistical Arbitrage, demonstrating their compatibility in explaining market dynamics. The amalgamation represents a pioneering contribution to quantitative finance. The study culminates in comprehensive numerical tests using historical market data, affirming that the “buy-low” and “sell-high” algorithm derived from this theory significantly outperforms the general market over the long term in four out of six distinct market environments.Keywords: efficient market hypothesis, behavioral finance, Bayes' decision, algorithmic trading, risk control, stock market
Procedia PDF Downloads 721028 The Effect of Behavioral and Risk Factors of Investment Growth on Stock Returns
Authors: Majid Lotfi Ghahroud, Seyed Jalal Tabatabaei, Ebrahim Karami, AmirArsalan Ghergherechi, Amir Ali Saeidi
Abstract:
In this study, the relationship between investment growth and stock returns of companies listed in Tehran Stock Exchange and whether their relationship -behavioral or risk factors- are discussed. Generally, there are two perspectives; risk-based approach and behavioral approach. According to the risk-based approach due to increase investment, systemic risk and consequently the stock returns are reduced. But due to the second approach, an excessive optimism or pessimism leads to assuming stock price with high investment growth in the past, higher than its intrinsic value and the price of stocks with lower investment growth, less than its intrinsic value. The investigation period is eight years from 2007 to 2014. The sample consisted of all companies listed on the Tehran Stock Exchange. The method is a portfolio test, and the analysis is based on the t-student test (t-test). The results indicate that there is a negative relationship between investment growth and stock returns of companies and this negative correlation is stronger for firms with higher cash flow. Also, the negative relationship between asset growth and stock returns is due to behavioral factors.Keywords: behavioral theory, investment growth, risk-based theory, stock returns
Procedia PDF Downloads 156