Search results for: polymeric surfactant
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 667

Search results for: polymeric surfactant

397 Investigating The Effects of Utilizing Different Curing Agents on High-Performance Concrete

Authors: Mostafa M. Ahmed, Kotaro Nose, Takashi Fujii, Toshiki Ayano

Abstract:

The Study shed the light on the effects of employing varied curing agents (No.1-No.6): bleeding water, and sprinkling water, aqueous basic silica compound, modified acrylic resin, the emulsion of solid wax and nonionic surfactant, and water-based paraffin wax, on the properties of high-performance concrete (HPC) in comparison with the cured specimens according to the standard curing at 20 ± 3°C (JIS A 0203:2019). The specimens cured in accordance with standard curing exhibit a better compressive strength and higher freeze-thaw resistance compared to most non-standard-cured samples.

Keywords: curing agents, high-performance concrete, compressive strength, cumulative scaling, freeze-thaw resistance

Procedia PDF Downloads 49
396 Material Response Characterisation of a PolyJet 3D Printed Human Infant Skull

Authors: G. A. Khalid, R. Prabhu, W. Whittington, M. D. Jones

Abstract:

To establish a causal relationship of infant head injury consequences, this present study addresses the necessary challenges of cranial geometry and the physical response complexities of the paediatric head tissues. Herein, we describe a new approach to characterising and understanding infant head impact mechanics by developing printed head models, using high resolution clinical postmortem imaging, to provide the most complete anatomical representation currently available, and biological material response data-matched polypropylene polymers, to replicate the relative mechanical response properties of immature cranial bone, sutures and fontanelles. Additive manufacturing technology was applied to creating a physical polymeric model of a newborn infant skull, using PolyJet printed materials. Infant skull materials responses, were matched by a response characterisation study, utilising uniaxial tensile testing (1 mm min-1 loading rate), to determine: the stiffness, ultimate tensile strength and maximum strain of rigid and rubber additively manufactured acrylates. The results from the mechanical experiments confirm that the polymeric materials RGD835 Vero White Plus (White), representing the frontal and parietal bones; RGD8510- DM Rigid Light Grey25 (Grey), representing the occipital bone; and FLX9870-DM (Black) representing the suture and fontanelles, were found to show a close stiffness -correlation (E) at ambient temperatures. A 3D physical model of infant head was subsequently printed from the matched materials and subsequently validated against results obtained from a series of Post Mortem Human Surrogate (PMHS) tests. A close correlation was demonstrated between the model impact tests and the PMHS. This study, therefore, represents a key step towards applying printed physical models to understanding head injury biomechanics and is useful in the efforts to predict and mitigate head injury consequences in infants, whether accidental or by abuse.

Keywords: infant head trauma, infant skull, material response, post mortem human subjects, polyJet printing

Procedia PDF Downloads 119
395 Application of Liquid Emulsion Membrane Technique for the Removal of Cadmium(II) from Aqueous Solutions Using Aliquat 336 as a Carrier

Authors: B. Medjahed, M. A. Didi, B. Guezzen

Abstract:

In the present work, emulsion liquid membrane (ELM) technique was applied for the extraction of cadmium(II) present in aqueous samples. Aliquat 336 (Chloride tri-N-octylmethylammonium) was used as carrier to extract cadmium(II). The main objective of this work is to investigate the influence of various parameters affected the ELM formation and its stability and testing the performance of the prepared ELM on removal of cadmium by using synthetic solution with different concentrations. Experiments were conducted to optimize pH of the feed solution and it was found that cadmium(II) can be extracted at pH 6.5. The influence of the carrier concentration and treat ratio on the extraction process was investigated. The obtained results showed that the optimal values are respectively 3% (Aliquat 336) and a ratio (feed: emulsion) equal to 1:1.

Keywords: cadmium, carrier, emulsion liquid membrane, surfactant

Procedia PDF Downloads 380
394 To Corelate Thyroid Dysfunction in Pregnancy with Preterm Labor

Authors: Pushp Lata Sankhwar

Abstract:

INTRODUCTION: Maternal Hypothyroidism is the most frequent endocrine disorder in pregnancy and varies from 2.5% in the west to 11.0% in India. Maternal Hypothyroidism can have detrimental maternal effects like increased risk of preterm labor, PPROM leading to increased maternal morbidity and also on the neonate in the form of prematurity and its complications, prolonged hospital stay, neurological developmental problems, delayed milestones and mental retardation etc. Henceforth, the study was planned to evaluate the role of Hypothyroidism in preterm labor and its effect on neonates. AIMS AND OBJECTIVES: To Correlate Overt Hypothyroidism, Subclinical Hypothyroidism and Isolated Hypothyroxinemia With Preterm Labor and the neonatal outcome. Material and Methods: A case-control study of singleton pregnancy was performed over a year, in which a total of 500 patients presenting in the emergency with preterm labor were enrolled. The thyroid profile of these patients was sent at the time of admission, on the basis of which they were divided into Cases – Hypothyroidic mothers and Controls – Euthyroid mothers. The cases were further divided into subclinical, overt Hypothyroidism and isolated hypothyroxinemia. The neonatal outcome of these groups was also compared on the basis of the incidence and severity of neonatal morbidity, neonatal respiratory distress, the incidence of neonatal Hypothyroidism and early complications. The feto-maternal data was collected and analysed. RESULTS: In the study, a total of 500 antenatal patients with a history of preterm labor were enrolled, out of which 67 (13.8%) patients were found to be hypothyroid. The majority of the mothers had Subclinical Hypothyroidism (12.2%), followed by Overt Hypothyroidism seen in 1% of the mothers and isolated hypothyroxinemia in 0.6% of cases. The neonates of hypothyroid mothers had higher levels of cord blood TSH, and the mean cord blood TSH levels were highest in the case of neonates of mothers with Overt Hypothyroidism. The need for resuscitation of the neonates at the time of birth was higher in the case of neonates of hypothyroid mothers, especially with Subclinical Hypothyroidism. Also, it was found that the requirement of oxygen therapy in the form of oxygen by nasal prongs, oxygen by a hood, CPAP, CPAP along with surfactant therapy and mechanical ventilation along with surfactant therapy was significantly higher in the case of neonates of hypothyroid mothers. CONCLUSION: The results of our study imply that uncontrolled and untreated maternal Hypothyroidism may also lead to preterm delivery. The neonates of mothers with Hypothyroidism have higher cord blood TSH levels. The study also shows that there is an increased incidence and severity of respiratory distress in the neonates of hypothyroid mothers with untreated subclinical Hypothyroidism. Hence, we propose that routine screening for thyroid dysfunction in pregnant women should be done to prevent thyroid-related feto-maternal complications.

Keywords: high-risk pregnancy, thyroid, dysfunction, hypothyroidism, Preterm labor

Procedia PDF Downloads 54
393 Development of Wound Dressing System Based on Hydrogel Matrix Incorporated with pH-Sensitive Nanocarrier-Drug Systems

Authors: Dagmara Malina, Katarzyna Bialik-Wąs, Klaudia Pluta

Abstract:

The growing significance of transdermal systems, in which skin is a route for systemic drug delivery, has generated a considerable amount of data which has resulted in a deeper understanding of the mechanisms of transport across the skin in the context of the controlled and prolonged release of active substances. One of such solutions may be the use of carrier systems based on intelligent polymers with different physicochemical properties. In these systems, active substances, e.g. drugs, can be conjugated (attached), immobilized, or encapsulated in a polymer matrix that is sensitive to specific environmental conditions (e.g. pH or temperature changes). Intelligent polymers can be divided according to their sensitivity to specific environmental stimuli such as temperature, pH, light, electric, magnetic, sound, or electromagnetic fields. Materials & methods—The first stage of the presented research concerned the synthesis of pH-sensitive polymeric carriers by a radical polymerization reaction. Then, the selected active substance (hydrocortisone) was introduced into polymeric carriers. In a further stage, bio-hybrid sodium alginate/poly(vinyl alcohol) – SA/PVA-based hydrogel matrices modified with various carrier-drug systems were prepared with the chemical cross-linking method. The conducted research included the assessment of physicochemical properties of obtained materials i.e. degree of hydrogel swelling and degradation studies as a function of pH in distilled water and phosphate-buffered saline (PBS) at 37°C in time. The gel fraction represents the insoluble gel fraction as a result of inter-molecule cross-linking formation was also measured. Additionally, the chemical structure of obtained hydrogels was confirmed using FT-IR spectroscopic technique. The dynamic light scattering (DLS) technique was used for the analysis of the average particle size of polymer-carriers and carrier-drug systems. The nanocarriers morphology was observed using SEM microscopy. Results & Discussion—The analysis of the encapsulated polymeric carriers showed that it was possible to obtain the time-stable empty pH-sensitive carrier with an average size 479 nm and the encapsulated system containing hydrocortisone with an average 543 nm, which was introduced into hydrogel structure. Bio-hybrid hydrogel matrices are stable materials, and the presence of an additional component: pH-sensitive carrier – hydrocortisone system, does not reduce the degree of cross-linking of the matrix nor its swelling ability. Moreover, the results of swelling tests indicate that systems containing higher concentrations of the drug have a slightly higher sorption capacity in each of the media used. All analyzed materials show stable and statically changing swelling values in simulated body fluids - there is no sudden fluid uptake and no rapid release from the material. The analysis of FT-IR spectra confirms the chemical structure of the obtained bio-hybrid hydrogel matrices. In the case of modifications with a pH-sensitive carrier, a much more intense band can be observed in the 3200-3500 cm⁻¹ range, which most likely originates from the strong hydrogen interactions that occur between individual components.

Keywords: hydrogels, polymer nanocarriers, sodium alginate/poly(vinyl alcohol) matrices, wound dressings.

Procedia PDF Downloads 123
392 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam

Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir

Abstract:

Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.

Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory

Procedia PDF Downloads 274
391 An Investigation of the Structural and Microstructural Properties of Zn1-xCoxO Thin Films Applied as Gas Sensors

Authors: Ariadne C. Catto, Luis F. da Silva, Khalifa Aguir, Valmor Roberto Mastelaro

Abstract:

Zinc oxide (ZnO) pure or doped are one of the most promising metal oxide semiconductors for gas sensing applications due to the well-known high surface-to-volume area and surface conductivity. It was shown that ZnO is an excellent gas-sensing material for different gases such as CO, O2, NO2 and ethanol. In this context, pure and doped ZnO exhibiting different morphologies and a high surface/volume ratio can be a good option regarding the limitations of the current commercial sensors. Different studies showed that the sensitivity of metal-doped ZnO (e.g. Co, Fe, Mn,) enhanced its gas sensing properties. Motivated by these considerations, the aim of this study consisted on the investigation of the role of Co ions on structural, morphological and the gas sensing properties of nanostructured ZnO samples. ZnO and Zn1-xCoxO (0 < x < 5 wt%) thin films were obtained via the polymeric precursor method. The sensitivity, selectivity, response time and long-term stability gas sensing properties were investigated when the sample was exposed to a different concentration range of ozone (O3) at different working temperatures. The gas sensing property was probed by electrical resistance measurements. The long and short-range order structure around Zn and Co atoms were investigated by X-ray diffraction and X-ray absorption spectroscopy. X-ray photoelectron spectroscopy measurement was performed in order to identify the elements present on the film surface as well as to determine the sample composition. Microstructural characteristics of the films were analyzed by a field-emission scanning electron microscope (FE-SEM). Zn1-xCoxO XRD patterns were indexed to the wurtzite ZnO structure and any second phase was observed even at a higher cobalt content. Co-K edge XANES spectra revealed the predominance of Co2+ ions. XPS characterization revealed that Co-doped ZnO samples possessed a higher percentage of oxygen vacancies than the ZnO samples, which also contributed to their excellent gas sensing performance. Gas sensor measurements pointed out that ZnO and Co-doped ZnO samples exhibit a good gas sensing performance concerning the reproducibility and a fast response time (around 10 s). Furthermore, the Co addition contributed to reduce the working temperature for ozone detection and improve the selective sensing properties.

Keywords: cobalt-doped ZnO, nanostructured, ozone gas sensor, polymeric precursor method

Procedia PDF Downloads 218
390 Fabrication of a High-Performance Polyetherimide Membrane for Helium Separation

Authors: Y. Alqaheem, A. Alomair, F. Altarkait, F. Alswaileh, Nusrat Tanoli

Abstract:

Helium market is continuously growing due to its essential uses in the electronic and healthcare sectors. Currently, helium is produced by cryogenic distillation but the process is uneconomical especially for low production volumes. On the other hand, polymeric membranes can provide a cost-effective solution for helium purification due to their low operating energy. However, the preparation of membranes involves the use of very toxic solvents such as chloroform. In this work, polyetherimide membranes were prepared using a less toxic solvent, n-methylpyrrolidone with a polymer-to-solvent ratio of 27 wt%. The developed membrane showed a superior helium permeability of 15.9 Barrer that surpassed the permeability of membranes made by chloroform.

Keywords: helium separation, polyetherimide, dense membrane, gas permeability

Procedia PDF Downloads 142
389 Synthesis and Characterization of Amino-Functionalized Polystyrene Nanoparticles as Reactive Filler

Authors: Yaseen Elhebshi, Abdulkareem Hamid, Nureddin Bin Issa, Xiaonong Chen

Abstract:

A convenient method of preparing ultrafine polystyrene latex nano-particles with amino groups on the surface is developed. Polystyrene latexes in the size range 50–400 nm were prepared via emulsion polymerization, using sodium dodecyl sulfate (SDS) as surfactant. Polystyrene with amino groups on the surface will be fine to use as organic filler to modify rubber. Transmission electron microscopy (TEM) was used to observe the morphology of silicon dioxide and functionalized polystyrene nano-particles. The nature of bonding between the polymer and the reactive groups on the filler surfaces was analyzed using Fourier transform infrared spectroscopy (FTIR). Scanning electron microscopy (SEM) was employed to examine the filler surface.

Keywords: reactive filler, emulsion polymerization, particle size, polystyrene nanoparticles

Procedia PDF Downloads 332
388 Synthesis of Ethoxylated Amide as Bactericide to Enhance the Storage Period of Diesel Fuel Nanoemulsions

Authors: S. M. Abd-Altwab, M. R. Noor El-Din

Abstract:

This paper aims to the synthesis of new ethoxylated amide as bactericides to prevent the growth of Gram +ve and –ve bacteria of water-in-diesel fuel nanoemulsions over a long period of time as three months. To realize it, eight kinetically stable water-in-diesel fuel nanoemulsions differing in surfactant concentrations and water contents ranging from 4 to 8 and 5 to 8 wt.,wt.,% of total weight of the nanoemulsions, respectively were formed at a temperature of 20 °C. The performance of this ethoxylated amide as bactericides agents against two strains of Gram-negative bacteria, namely, Pseudomonas aeruginosa and Escherichia coli, and two strains of Gram-positive bacteria namely, Staphylococcus aureus and Bacillus subtilis, were evaluated as antimicrobial agents. The maximum and minimum antimicrobial activities were 85 and 71 % against S. aureus and E. coli, respectively, at a concentration of 5 mg/l, pH 7, and 37 °C.

Keywords: nanoemulsion, bacteriocide, diesel fuel, emulsifier

Procedia PDF Downloads 336
387 Synthesis and Characterization of pH-Responsive Nanocarriers Based on POEOMA-b-PDPA Block Copolymers for RNA Delivery

Authors: Bruno Baptista, Andreia S. R. Oliveira, Patricia V. Mendonca, Jorge F. J. Coelho, Fani Sousa

Abstract:

Drug delivery systems are designed to allow adequate protection and controlled delivery of drugs to specific locations. These systems aim to reduce side effects and control the biodistribution profile of drugs, thus improving therapeutic efficacy. This study involved the synthesis of polymeric nanoparticles, based on amphiphilic diblock copolymers, comprising a biocompatible, poly (oligo (ethylene oxide) methyl ether methacrylate (POEOMA) as hydrophilic segment and a pH-sensitive block, the poly (2-diisopropylamino)ethyl methacrylate) (PDPA). The objective of this work was the development of polymeric pH-responsive nanoparticles to encapsulate and carry small RNAs as a model to further develop non-coding RNAs delivery systems with therapeutic value. The responsiveness of PDPA to pH allows the electrostatic interaction of these copolymers with nucleic acids at acidic pH, as a result of the protonation of the tertiary amine groups of this polymer at pH values below its pKa (around 6.2). Initially, the molecular weight parameters and chemical structure of the block copolymers were determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (1H-NMR) spectroscopy, respectively. Then, the complexation with small RNAs was verified, generating polyplexes with sizes ranging from 300 to 600 nm and with encapsulation efficiencies around 80%, depending on the molecular weight of the polymers, their composition, and concentration used. The effect of pH on the morphology of nanoparticles was evaluated by scanning electron microscopy (SEM) being verified that at higher pH values, particles tend to lose their spherical shape. Since this work aims to develop systems for the delivery of non-coding RNAs, studies on RNA protection (contact with RNase, FBS, and Trypsin) and cell viability were also carried out. It was found that they induce some protection against constituents of the cellular environment and have no cellular toxicity. In summary, this research work contributes to the development of pH-sensitive polymers, capable of protecting and encapsulating RNA, in a relatively simple and efficient manner, to further be applied on drug delivery to specific sites where pH may have a critical role, as it can occur in several cancer environments.

Keywords: drug delivery systems, pH-responsive polymers, POEOMA-b-PDPA, small RNAs

Procedia PDF Downloads 235
386 Deformation Characteristics of Fire Damaged and Rehabilitated Normal Strength Concrete Beams

Authors: Yeo Kyeong Lee, Hae Won Min, Ji Yeon Kang, Hee Sun Kim, Yeong Soo Shin

Abstract:

Fire incidents have been steadily increased over the last year according to national emergency management agency of South Korea. Even though most of the fire incidents with property damage have been occurred in building, rehabilitation has not been properly done with consideration of structure safety. Therefore, this study aims at evaluating rehabilitation effects on fire damaged normal strength concrete beams through experiments and finite element analyses. For the experiments, reinforced concrete beams were fabricated having designed concrete strength of 21 MPa. Two different cover thicknesses were used as 40 mm and 50 mm. After cured, the fabricated beams were heated for 1hour or 2hours according to ISO-834 standard time-temperature curve. Rehabilitation was done by removing the damaged part of cover thickness and filling polymeric mortar into the removed part. Both fire damaged beams and rehabilitated beams were tested with four point loading system to observe structural behaviors and the rehabilitation effect. To verify the experiment, finite element (FE) models for structural analysis were generated using commercial software ABAQUS 6.10-3. For the rehabilitated beam models, integrated temperature-structural analyses were performed in advance to obtain geometries of the fire damaged beams. In addition to the fire damaged beam models, rehabilitated part was added with material properties of polymeric mortar. Three dimensional continuum brick elements were used for both temperature and structural analyses. The same loading and boundary conditions as experiments were implemented to the rehabilitated beam models and non-linear geometrical analyses were performed. Test results showed that maximum loads of the rehabilitated beams were 8~10% higher than those of the non-rehabilitated beams and even 1~6 % higher than those of the non-fire damaged beam. Stiffness of the rehabilitated beams were also larger than that of non-rehabilitated beams but smaller than that of the non-fire damaged beams. In addition, predicted structural behaviors from the analyses also showed good rehabilitation effect and the predicted load-deflection curves were similar to the experimental results. From this study, both experiments and analytical results demonstrated good rehabilitation effect on the fire damaged normal strength concrete beams. For the further, the proposed analytical method can be used to predict structural behaviors of rehabilitated and fire damaged concrete beams accurately without suffering from time and cost consuming experimental process.

Keywords: fire, normal strength concrete, rehabilitation, reinforced concrete beam

Procedia PDF Downloads 483
385 Development of Coir Reinforced Composite for Automotive Parts Application

Authors: Okpala Charles Chikwendu, Ezeanyim Okechukwu Chiedu, Onukwuli Somto Kenneth

Abstract:

The demand for lightweight and fuel-efficient automobiles has led to the use of fiber-reinforced polymer composites in place of traditional metal parts. Coir, a natural fiber, offers qualities such as low cost, good tensile strength, and biodegradability, making it a potential filler material for automotive components. However, poor interfacial adhesion between coir and polymeric matrices has been a challenge. To address poor interfacial adhesion with polymeric matrices due to their moisture content and method of preparation, the extracted coir was chemically treated using NaOH. To develop a side view mirror encasement by investigating the mechanical effect of fiber percentage composition, fiber length and percentage composition of Epoxy in a coir fiber reinforced composite, polyester was adopted as the resin for the mold, while that of the product is Epoxy. Coir served as the filler material for the product. Specimens with varied compositions of fiber loading (15, 30 and 45) %, length (10, 15, 20, 30 and 45) mm, and (55, 70, 85) % weight of epoxy resin were fabricated using hand lay-up technique, while those specimens were later subjected to mechanical tests (Tensile, Flexural and Impact test). The results of the mechanical test showed that the optimal solution for the input factors is coir at 45%, epoxy at 54.543%, and 45mm coir length, which was used for the development of a vehicle’s side view mirror encasement. The optimal solutions for the response parameters are 49.333 Mpa for tensile strength, flexural for 57.118 Mpa, impact strength for 34.787 KJ/M2, young modulus for 4.788 GPa, stress for 4.534 KN, and 20.483 mm for strain. The models that were developed using Design Expert software revealed that the input factors can achieve the response parameters in the system with 94% desirability. The study showed that coir is quite durable for filler material in an epoxy composite for automobile applications and that fiber loading and length have a significant effect on the mechanical behavior of coir fiber-reinforced epoxy composites. The coir's low density, considerable tensile strength, and bio-degradability contribute to its eco-friendliness and potential for reducing the environmental hazards of synthetic automotive components.

Keywords: coir, composite, coir fiber, coconut husk, polymer, automobile, mechanical test

Procedia PDF Downloads 31
384 Fabrication of Al/Al2O3 Functionally Graded Composites via Centrifugal Method by Using a Polymeric Suspension

Authors: Majid Eslami

Abstract:

Functionally graded materials (FGMs) exhibit heterogeneous microstructures in which the composition and properties gently change in specified directions. The common type of FGMs consist of a metal in which ceramic particles are distributed with a graded concentration. There are many processing routes for FGMs. An important group of these methods is casting techniques (gravity or centrifugal). However, the main problem of casting molten metal slurry with dispersed ceramic particles is a destructive chemical reaction between these two phases which deteriorates the properties of the materials. In order to overcome this problem, in the present investigation a suspension of 6061 aluminum and alumina powders in a liquid polymer was used as the starting material and subjected to centrifugal force for making FGMs. The size rang of these powders was 45-63 and 106-125 μm. The volume percent of alumina in the Al/Al2O3 powder mixture was in the range of 5 to 20%. PMMA (Plexiglas) in different concentrations (20-50 g/lit) was dissolved in toluene and used as the suspension liquid. The glass mold contaning the suspension of Al/Al2O3 powders in the mentioned liquid was rotated at 1700 rpm for different times (4-40 min) while the arm length was kept constant (10 cm) for all the experiments. After curing the polymer, burning out the binder, cold pressing and sintering , cylindrical samples (φ=22 mm h=20 mm) were produced. The density of samples before and after sintering was quantified by Archimedes method. The results indicated that by using the same sized alumina and aluminum powders particles, FGM sample can be produced by rotation times exceeding 7 min. However, by using coarse alumina and fine alumina powders the sample exhibits step concentration. On the other hand, using fine alumina and coarse alumina results in a relatively uniform concentration of Al2O3 along the sample height. These results are attributed to the effects of size and density of different powders on the centrifugal force induced on the powders during rotation. The PMMA concentration and the vol.% of alumina in the suspension did not have any considerable effect on the distribution of alumina particles in the samples. The hardness profiles along the height of samples were affected by both the alumina vol.% and porosity content. The presence of alumina particles increased the hardness while increased porosity reduced the hardness. Therefore, the hardness values did not show the expected gradient in same sample. The sintering resulted in decreased porosity for all the samples investigated.

Keywords: FGM, powder metallurgy, centrifugal method, polymeric suspension

Procedia PDF Downloads 190
383 Investigation of the Catalytic Role of Surfactants on Carbon Dioxide Hydrate Formation in Sediments

Authors: Ehsan Heidaryan

Abstract:

Gas hydrate sediments are ice like permafrost in deep see and oceans. Methane production in sequestration process and reducing atmospheric carbon dioxide, a main source of greenhouse gas, has been accentuated recently. One focus is capture, separation, and sequestration of industrial carbon dioxide. As a hydrate former, carbon dioxide forms hydrates at moderate temperatures and pressures. This phenomenon could be utilized to capture and separate carbon dioxide from flue gases, and also has the potential to sequester carbon dioxide in the deep seabeds. This research investigated the effect of synthetic surfactants on carbon dioxide hydrate formation, catalysis and consequently, methane production from hydrate permafrosts in sediments. It investigated the sequestration potential of carbon dioxide hydrates in ocean sediments. Also, the catalytic effect of biosurfactants in these processes was investigated.

Keywords: carbon dioxide, hydrate, sequestration, surfactant

Procedia PDF Downloads 403
382 DNA and DNA-Complexes Modified with Electromagnetic Radiation

Authors: Ewelina Nowak, Anna Wisla-Swider, Krzysztof Danel

Abstract:

Aqueous suspensions of DNA were illuminated with linearly polarized visible light and ultraviolet for 5, 15, 20 and 40 h. In order to check the nature of modification, DNA interactions were characterized by FTIR spectroscopy. For each illuminated sample, weight average molecular weight and hydrodynamic radius were measured by high pressure size exclusion chromatography. Resulting optical changes for illuminated DNA were investigated using UV-Vis spectra and photoluminescent. Optical properties show potential application in sensors based on modified DNA. Then selected DNA-surfactant complexes were illuminated with electromagnetic radiation for 5h. Molecular structure, optical characteristic were examinated for obtained complexes. Illumination led to changes of complexes physicochemical properties as compared with native DNA. Observed changes were induced by rearrangement of the molecular structure of DNA chains.

Keywords: biopolymers, deoxyribonucleic acid, ionic liquids, linearly polarized visible light, ultraviolet

Procedia PDF Downloads 190
381 Grading of Emulsified Agarwood Oil Using Gel Electrophoresis Technique

Authors: Y. T. Boon, M. N. Naim, R. Zakaria, N. F. Abu Bakar, N. Ahmad, I. W. Lenggoro

Abstract:

In this study, encapsulation of agarwood oil with non-ionic surfactant, Tween 80 was prepared at critical micelle concentration of 0.0167 % v/v to produce the most stable nano-emulsion in aqueous. The encapsulation has minimized the bioactive compounds degradation in various pH conditions thus prolong their shelf life and maintained its initial oil grade. The oil grading of the prepared samples were conducted using the gel electrophoresis instead of using common analytical industrial grading such as gas chromatography- mass spectrometry (GC- MS). The grading method was chosen due to their unique zeta potential value after the encapsulation process. This paper demonstrates the feasibility of applying the electrophoresis principles to separate the encapsulated agarwood oil or grading of the emulsified agarwood oil. The results indicated that the grading process are potential to be further investigate based on their droplet size and zeta potential value at various pH condition when the droplet were migrate through polyacrylamide gel.

Keywords: electrophoretic mobility, essential oil, nanoemulsion, polyacrylamide gel electrophoresis, tween 80, zeta potential

Procedia PDF Downloads 352
380 Preparation of Cupric Oxides Nanoparticles for Antibacterial Applications

Authors: Yong-Cin Chen, Meng-Jiy Wang

Abstract:

This study reports to prepare cuprous oxide (Cu2O) particles with different dimension and shape for evaluating the antibacterial applications. In the preparation of Cu2O, the surfactant, cetyltrimethylammonium bromide (CTAB), was used as templates to modulate the size of the prepared Cu2O particles. Furthermore, ammonia water was used for adjusting the pH environment that four different shapes of particles including cubic, spherical, octahedral, and star-like Cu2O were synthesized. The physical characteristics of Cu2O particles were evaluated by scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), UV/VIS spectrophotometer, and zeta potential meter/particle size analyzer (ZetaPALS). The resistance to bacteria was investigated against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) by applying the synthesized Cu2O particles that the qualitative analyses were facilitated by measuring the inhibition zone on Agar plate.

Keywords: copper oxide, cupric oxide, nanoparticles, antibacetrial

Procedia PDF Downloads 495
379 Mechanical Properties of Nanocomposites Cobalt Matrix with Nano SiC Particles

Authors: Dhuha Albusalih, David Weston, Simon Gill

Abstract:

Nanocomposites Co-SiC with well dispersed nanoparticles and Co nano grain size has produced using Pulse Reverse Plating (PRP) and using anionic surfactant. Different particle contents of nanocomposites were produced by altering the plating parameters. The method allows great control over the level of nanoparticles in the coating, without changing bath chemistry. Examination by Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDX), TEM and X-Ray Diffraction (XRD) analysis was performed to characterize and study the strengthening mechanisms of these nanocomposites. The primary strengthening mechanisms were shown to be grain refinement and dispersion strengthening. Tribological performances of the produced electroplated nanocomposite Co-SiC coatings were examined. Results showed that the coating with the higher volume fraction (vol. %) of SiC and the smallest grain size has the higher hardness and low wear rate.

Keywords: nanocomposites, pulse reverse plating, tribological performance of cobalt nanocomposites

Procedia PDF Downloads 279
378 Synthesis of Ion Imprinted Polymer for Removal of Chromium(III) Ion in Environmental Samples

Authors: Elham Moniri, Zohre Moradi

Abstract:

In this study, ion imprinted poly urea-formaldehyde was prepared. The morphology imprinted polymer was studied by scanning electron microscopy. Then, the effects of various parameters on Cr(III) sorption such as pH, contact time were investigated. The optimum pH value for sorption of Cr(III) was 6. The sorption capacity of imprinted poly urea-formaldehyde for Cr(III) were 4 mg.g−1. A Cr(III) removal of 97-98% was obtained. The profile of Cr(III) uptake on this sorbent reflects good accessibility of the chelating sites in the imprinted poly urea-formaldehyde. The developed method was utilized for determination of Cr(III) in environmental water samples by flame atomic absorption spectrometry with satisfactory results.

Keywords: chromium ion, environmental sample, elimination, imprinted poly urea-formaldehyde, polymeric sorbent

Procedia PDF Downloads 269
377 Characterization of the Viscoelastic Behavior of Polymeric Composites

Authors: Abir Abdessalem, Sahbi Tamboura, J. Fitoussi, Hachmi Ben Daly, Abbas Tcharkhtchi

Abstract:

Dynamic mechanical analysis (DMA) is one of the most used experimental techniques to investigate the temperature and frequency dependence of the mechanical behavior of viscoelastic materials. The measured data are generally shifted by the application of the principle of the time– temperature superposition (TTS) to obtain the viscoelastic system’s master curve. The aim of this work is to show the methodology to define the horizontal shift factor to be applied to the storage modulus measured in order to indicate the validity of (TTS) principle for this material system. This principle was successfully used to determine the long-term properties of the Sheet Moulding Compound (SMC) composites.

Keywords: composite material, dynamic mechanical analysis, SMC composites, viscoelastic behavior, modeling

Procedia PDF Downloads 202
376 Bamboo Fibre Extraction and Its Reinforced Polymer Composite Material

Authors: P. Zakikhani, R. Zahari, M. T. H. Sultan, D. L. Majid

Abstract:

Natural plant fibres reinforced polymeric composite materials have been used in many fields of our lives to save the environment. Especially, bamboo fibres due to its environmental sustainability, mechanical properties, and recyclability have been utilized as reinforced polymer matrix composite in construction industries. In this review study bamboo structure and three different methods such as mechanical, chemical and combination of mechanical and chemical to extract fibres from bamboo are summarized. Each extraction method has been done base on the application of bamboo. In addition Bamboo fibre is compared with glass fibre from various aspects and in some parts it has advantages over the glass fibre.

Keywords: bamboo fibres, natural fibres, bio composite, mechanical extraction, glass fibres

Procedia PDF Downloads 458
375 Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education

Authors: J. Otegui, M. Agirre, M. A. Cestau, H. Erauskin

Abstract:

The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated.

Keywords: 3D printing, additive manufacturing, mechanical design, stirling engine.

Procedia PDF Downloads 22
374 Re-Entrant Direct Hexagonal Phases in a Lyotropic System Induced by Ionic Liquids

Authors: Saheli Mitra, Ramesh Karri, Praveen K. Mylapalli, Arka. B. Dey, Gourav Bhattacharya, Gouriprasanna Roy, Syed M. Kamil, Surajit Dhara, Sunil K. Sinha, Sajal K. Ghosh

Abstract:

The most well-known structures of lyotropic liquid crystalline systems are the two dimensional hexagonal phase of cylindrical micelles with a positive interfacial curvature and the lamellar phase of flat bilayers with zero interfacial curvature. In aqueous solution of surfactants, the concentration dependent phase transitions have been investigated extensively. However, instead of changing the surfactant concentrations, the local curvature of an aggregate can be altered by tuning the electrostatic interactions among the constituent molecules. Intermediate phases with non-uniform interfacial curvature are still unexplored steps to understand the route of phase transition from hexagonal to lamellar. Understanding such structural evolution in lyotropic liquid crystalline systems is important as it decides the complex rheological behavior of the system, which is one of the main interests of the soft matter industry. Sodium dodecyl sulfate (SDS) is an anionic surfactant and can be considered as a unique system to tune the electrostatics by cationic additives. In present study, imidazolium-based ionic liquids (ILs) with different number of carbon atoms in their single hydrocarbon chain were used as the additive in the aqueous solution of SDS. At a fixed concentration of total non-aqueous components (SDS and IL), the molar ratio of these components was changed, which effectively altered the electrostatic interactions between the SDS molecules. As a result, the local curvature is observed to modify, and correspondingly, the structure of the hexagonal liquid crystalline phases are transformed into other phases. Polarizing optical microscopy of SDS and imidazole-based-IL systems have exhibited different textures of the liquid crystalline phases as a function of increasing concentration of the ILs. The small angle synchrotron x-ray diffraction (SAXD) study has indicated the hexagonal phase of direct cylindrical micelles to transform to a rectangular phase at the presence of short (two hydrocarbons) chain IL. However, the hexagonal phase is transformed to a lamellar phase at the presence of long (ten hydrocarbons) chain IL. Interestingly, at the presence of a medium (four hydrocarbons) chain IL, the hexagonal phase is transformed to another hexagonal phase of direct cylindrical micelles through the lamellar phase. To the best of our knowledge, such a phase sequence has not been reported earlier. Even though the small angle x-ray diffraction study has revealed the lattice parameters of these phases to be similar to each other, their rheological behavior has been distinctly different. These rheological studies have shed lights on how these phases differ in their viscoelastic behavior. Finally, the packing parameters, calculated for these phases based on the geometry of the aggregates, have explained the formation of the self-assembled aggregates.

Keywords: lyotropic liquid crystals, polarizing optical microscopy, rheology, surfactants, small angle x-ray diffraction

Procedia PDF Downloads 115
373 Localized Treatment of Cutaneous Candidiasis through Cubosomes in vitro Evaluation

Authors: Aakanchha Jain, D. V. Kohli

Abstract:

Cubosomes are nanoparticles but instead of the solid particles, cubosomes are self-assembled liquid crystalline particles of certain surfactant with proper ratio of water with a microstructure that provides unique properties of practical interest. Cubosomes encapsulating Fluconazole were prepared by emulsification method and characterized for particle size, entrapment efficiency. The cubosomes prepared were 257.2±2.94 nm in size with drug entrapment efficiency of 66.2±2.69%. The optimized formulation characterized for shape and surface morphology by TEM and SEM analysis. SEM photograph showed the smooth surface of optimized cubosomes and TEM photograph revealed square somewhat circular intact shapes of cubosomes. MIC was determined by XTT based method and antifungal activity was determined in vitro. The cumulative percentage of Fnz from cubosomes permeated via dialysis membrane (MWCO 12-14 KD) showed a percent cumulative drug release of 76.86% while Fnz solution showed release up to 91.04% in 24 hours in PBS (pH 6.5)(p < 0.005).

Keywords: Candids albicans, cubosomes, fluconazole, topical delivery

Procedia PDF Downloads 275
372 Hybrid Quasi-Steady Thermal Lattice Boltzmann Model for Studying the Behavior of Oil in Water Emulsions Used in Machining Tool Cooling and Lubrication

Authors: W. Hasan, H. Farhat, A. Alhilo, L. Tamimi

Abstract:

Oil in water (O/W) emulsions are utilized extensively for cooling and lubricating cutting tools during parts machining. A robust Lattice Boltzmann (LBM) thermal-surfactants model, which provides a useful platform for exploring complex emulsions’ characteristics under variety of flow conditions, is used here for the study of the fluid behavior during conventional tools cooling. The transient thermal capabilities of the model are employed for simulating the effects of the flow conditions of O/W emulsions on the cooling of cutting tools. The model results show that the temperature outcome is slightly affected by reversing the direction of upper plate (workpiece). On the other hand, an important increase in effective viscosity is seen which supports better lubrication during the work.

Keywords: hybrid lattice Boltzmann method, Gunstensen model, thermal, surfactant-covered droplet, Marangoni stress

Procedia PDF Downloads 281
371 Poly(ε-caprolactone)/Halloysite Nanotube Nanocomposites Scaffolds for Tissue Engineering

Authors: Z. Terzopoulou, I. Koliakou, D. Bikiaris

Abstract:

Tissue engineering offers a new approach to regenerate diseased or damaged tissues such as bone. Great effort is devoted to eliminating the need of removing non-degradable implants at the end of their life span, with biodegradable polymers playing a major part. Poly(ε-caprolactone) (PCL) is one of the best candidates for this purpose due to its high permeability, good biodegradability and exceptional biocompatibility, which has stimulated extensive research into its potential application in the biomedical fields. However, PCL degrades much slower than other known biodegradable polymers and has a total degradation of 2-4 years depending on the initial molecular weight of the device. This is due to its relatively hydrophobic character and high crystallinity. Consequently, much attention has been given to the tunable degradation of PCL to meet the diverse requirements of biomedicine. Poly(ε-caprolactone) (PCL) is a biodegradable polyester that lacks bioactivity, so when used in bone tissue engineering, new bone tissue cannot bond tightly on the polymeric surface. Therefore, it is important to incorporate reinforcing fillers into PCL matrix in order to result in a promising combination of bioactivity, biodegradability, and strength. Natural clay halloysite nanotubes (HNTs) were incorporated into PCL polymeric matrix, via in situ ring-opening polymerization of caprolactone, in concentrations 0.5, 1 and 2.5 wt%. Both unmodified and modified with aminopropyltrimethoxysilane (APTES) HNTs were used in this study. The effect of nanofiller concentration and functionalization with end-amino groups on the physicochemical properties of the prepared nanocomposites was studied. Mechanical properties were found enhanced after the incorporation of nanofillers, while the modification increased further the values of tensile and impact strength. Thermal stability of PCL was not affected by the presence of nanofillers, while the crystallization rate that was studied by Differential Scanning Calorimetry (DSC) and Polarized Light Optical Microscopy (POM) increased. All materials were subjected to enzymatic hydrolysis in phosphate buffer in the presence of lipases. Due to the hydrophilic nature of HNTs, the biodegradation rate of nanocomposites was higher compared to neat PCL. In order to confirm the effect of hydrophilicity, contact angle measurements were also performed. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. All scaffolds were tested in relevant cell culture using osteoblast-like cells (MG-63) to demonstrate their biocompatibility

Keywords: biomaterials, nanocomposites, scaffolds, tissue engineering

Procedia PDF Downloads 290
370 Comparative Economic Evaluation of Additional Respiratory Resources Utilized after Methylxanthine Initiation for the Treatment of Apnea of Prematurity in a South Asian Country

Authors: Shivakumar M, Leslie Edward S Lewis, Shashikala Devadiga, Sonia Khurana

Abstract:

Introduction: Methylxanthines are used for the treatment of AOP, to facilitate extubation and as a prophylactic agent to prevent apnea. Though the popularity of Caffeine has risen, it is expensive in a resource constrained developing countries like India. Objective: To evaluate the cost-effectiveness of Caffeine compared with Aminophylline treatment for AOP with respect to additional ventilatory resource utilized in different birth weight categorization. Design, Settings and Participants – Single centered, retrospective economic evaluation was done. Participants included preterm newborns with < 34 completed weeks of gestation age that were recruited under an Indian Council of Medical Research funded randomized clinical trial. Per protocol data was included from Neonatal Intensive Care Unit, Kasturba Hospital, Manipal, India between April 2012 and December 2014. Exposure: Preterm neonates were randomly allocated to either Caffeine or Aminophylline as per the trial protocol. Outcomes and Measures – We assessed surfactant requirement, duration of Invasive and Non-Invasive Ventilation, Total Methylxanthine cost and additional cost for respiratory support bared by the payers per day during hospital stay. For the purpose of this study Newborns were stratified as Category A – < 1000g, Category B – 1001 to 1500g and Category C – 1501 to 2500g. Results: Total 146 (Caffeine -72 and Aminophylline – 74) babies with Mean ± SD gestation age of 29.63 ± 1.89 weeks were assessed. 32.19% constitute of Category A, 55.48% were B and 12.33% were C. The difference in median duration of additional NIV and IMV support was statistically insignificant. However 60% of neonates who received Caffeine required additional surfactant therapy (p=0.02). The total median (IQR) cost of Caffeine was significantly high with Rs.10535 (Q3-6317.50, Q1-15992.50) where against Aminophylline cost was Rs.352 (Q3-236, Q1-709) (p < 0.001). The additional costs spent on respiratory support per day in neonates on either Methylxanthines were found to be statistically insignificant in the entire weight based category of our study. Whereas in Category B, the median O2 charges per day were found to have more in Caffeine treated newborns (p=0.05) with border line significance. In category A, providing one day NIV or IMV support significantly increases the unit log cost of Caffeine by 13.6% (CI – 95% ranging from 4 to 24; p=0.005) over log cost of Aminophylline. Conclusion: Cost of Caffeine is expensive than Aminophylline. It was found to be equally efficacious in reducing the number duration of NIV or IMV support. However adjusted with the NIV and IMV days of support, neonates fall in category A and category B who were on Caffeine pays excess amount of respiratory charges per day over aminophylline. In perspective of resource poor settings Aminophylline is cost saving and economically approachable.

Keywords: methylxanthines include caffeine and aminophylline, AOP (apnea of prematurity), IMV (invasive mechanical ventilation), NIV (non invasive ventilation), category a – <1000g, category b – 1001 to 1500g and category c – 1501 to 2500g

Procedia PDF Downloads 408
369 Isolation of Biosurfactant Producing Spore-Forming Bacteria from Oman: Potential Applications in Bioremediation

Authors: Saif N. Al-Bahry, Yahya M. Al-Wahaibi, Abdulkadir E. Elshafie, Ali S. Al-Bemani, Sanket J. Joshi

Abstract:

Environmental pollution is a global problem and best possible solution is identifying and utilizing native microorganisms. One possible application of microbial product -biosurfactant is in bioremediation of hydrocarbon contaminated sites. We have screened forty two different petroleum contaminated sites from Oman, for biosurfactant producing spore-forming bacterial isolates. Initial screening showed that out of 42 soil samples, three showed reduction in surface tension (ST) and interfacial tension (IFT) within 24h of incubation at 40°C. Out of those 3 soil samples, one was further selected for isolation of bacteria and 14 different bacteria were isolated in pure form. Of those 14 spore-forming, rod shaped bacteria, two showed highest reduction in ST and IFT in the range of 70mN/m to < 35mN/m and 26.69mN/m to < 9mN/m, respectively within 24h. These bacterial biosurfactants may be utilized for bioremediation of oil-spills.

Keywords: bioremediation, hydrocarbon pollution, spore-forming bacteria, bio-surfactant

Procedia PDF Downloads 265
368 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability

Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis

Abstract:

Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.

Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability

Procedia PDF Downloads 47