Search results for: input–output analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30191

Search results for: input–output analysis

29921 Development of PSS/E Dynamic Model for Controlling Battery Output to Improve Frequency Stability in Power Systems

Authors: Dae-Hee Son, Soon-Ryul Nam

Abstract:

The power system frequency falls when disturbance such as rapid increase of system load or loss of a generating unit occurs in power systems. Especially, increase in the number of renewable generating units has a bad influence on the power system because of loss of generating unit depending on the circumstance. Conventional technologies use frequency droop control battery output for the frequency regulation and balance between supply and demand. If power is supplied using the fast output characteristic of the battery, power system stability can be further more improved. To improve the power system stability, we propose battery output control using ROCOF (Rate of Change of Frequency) in this paper. The bigger the power difference between the supply and the demand, the bigger the ROCOF drops. Battery output is controlled proportionally to the magnitude of the ROCOF, allowing for faster response to power imbalances. To simulate the control method of battery output system, we develop the user defined model using PSS/E and confirm that power system stability is improved by comparing with frequency droop control.

Keywords: PSS/E user defined model, power deviation, frequency droop control, ROCOF (rate of change of frequency)

Procedia PDF Downloads 411
29920 Modelling the Effect of Head and Bucket Splitter Angle on the Power Output of a Pelton Turbine

Authors: J. A. Ujam, J. L. Chukwuneke, C. H. Achebe, G. O. R. Ikwu

Abstract:

This work investigates the effect of head and bucket splitter angle on the power output of a pelton turbine (water turbine), so as to boost the efficiency of Hydro-electric power generation systems. A simulation program was developed using MatLab to depict the force generated by the bucket as the water jet strikes the existing splitter angle (100 to 150) and predicted (10 to 250) splitter angles. Result shows that in addition to the existing splitter angle, six more angles have been investigated for the two operating conditions to give maximum power. The angles are 250, 60 and 190 for high head and low flow with increased pressure while low head and high flow with decreased pressure are 230, 210 and 30 in order of the maximum generating power. The Turbine power output for simulation was more than that of the experiment. This was as a result of their head conditions and the bucket splitter angle.

Keywords: bucket splitter angle, force, head, modelling, pelton turbine, power output, shaft output

Procedia PDF Downloads 355
29919 High Efficiency ZPS-PWM Dual-Output Converters with EMI Reduction Method

Authors: Yasunori Kobori, Nobukazu Tsukiji, Nobukazu Takai, Haruo Kobayashi

Abstract:

In this paper, we study a Pulse-WidthModulation (PWM) controlled Zero-Voltage-Switching (ZVS) for single-inductor dual-output (SIDO) converters. This method can meet the industry demands for high efficiency due to ZVS and small size and low cost, thanks to single-inductor per multiple voltages. We show the single inductor single-output (SISO) ZVS buck converter with its operation and simulation and then the experimental results. Next proposed ZVS-PWM controlled SIDO converters are explained in the simulation. Finally we have proposed EMI reduction method with spread spectrum.

Keywords: DC-DC switching converter, zero-oltage switching control, single-inductor dual-output converter, EMI reduction, spread spectrum

Procedia PDF Downloads 497
29918 All Optical Wavelength Conversion Based On Four Wave Mixing in Optical Fiber

Authors: Surinder Singh, Gursewak Singh Lovkesh

Abstract:

We have designed wavelength conversion based on four wave mixing in an optical fiber at 10 Gb/s. The power of converted signal increases with increase in signal power. The converted signal power is investigated as a function of input signal power and pump power. On comparison of converted signal power at different value of input signal power, we observe that best converted signal power is obtained at -2 dBm input signal power for both up conversion as well as for down conversion. Further, FWM efficiency, quality factor is observed for increase in input signal power and optical fiber length.

Keywords: FWM, optical fiiber, wavelngth converter, quality

Procedia PDF Downloads 579
29917 U-Net Based Multi-Output Network for Lung Disease Segmentation and Classification Using Chest X-Ray Dataset

Authors: Jaiden X. Schraut

Abstract:

Medical Imaging Segmentation of Chest X-rays is used for the purpose of identification and differentiation of lung cancer, pneumonia, COVID-19, and similar respiratory diseases. Widespread application of computer-supported perception methods into the diagnostic pipeline has been demonstrated to increase prognostic accuracy and aid doctors in efficiently treating patients. Modern models attempt the task of segmentation and classification separately and improve diagnostic efficiency; however, to further enhance this process, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional CNN module for auxiliary classification output. The proposed model achieves a final Jaccard Index of .9634 for image segmentation and a final accuracy of .9600 for classification on the COVID-19 radiography database.

Keywords: chest X-ray, deep learning, image segmentation, image classification

Procedia PDF Downloads 144
29916 High Input Driven Factors in Idea Campaigns in Large Organizations: A Case Depicting Best Practices

Authors: Babar Rasheed, Saad Ghafoor

Abstract:

Introduction: Idea campaigns are commonly held across organizations for generating employee engagement. The contribution is specifically designed to identify and solve prevalent issues. It is argued that numerous organizations fail to achieve their desired goals despite arranging for such campaigns and investing heavily in them. There are however practices that organizations use to achieve higher degree of effectiveness, and these practices may be up for exploration by research to make them usable for the other organizations. Purpose: The aim of this research is to surface the idea management practices of a leading electric company with global operations. The study involves a large sized, multi site organization that is attributed to have added challenges in terms of managing ideas from employees, in comparison to smaller organizations. The study aims to highlight the factors that are looked at as the idea management team strategies for the campaign, sets terms and rewards for it, makes follow up with the employees and lastly, evaluate and award ideas. Methodology: The study is conducted in a leading electric appliance corporation that has a large number of employees and is based in numerous regions of the world. A total of 7 interviews are carried out involving the chief innovation officer, innovation manager and members of idea management and evaluation teams. The interviews are carried out either on Skype or in-person based on the availability of the interviewee. Findings: While this being a working paper and while the study is under way, it is anticipated that valuable information is being achieved about specific details on how idea management systems are governed and how idea campaigns are carried out. The findings may be particularly useful for innovation consultants as resources they can use to promote idea campaigning. The usefulness of the best practices highlighted as a result is, in any case, the most valuable output of this study.

Keywords: employee engagement, motivation, idea campaigns, large organizations, best practices, employees input, organizational output

Procedia PDF Downloads 171
29915 Feasibility of Solar Distillation as Household Water Supply in Saline Zones of Bangladesh

Authors: Md. Rezaul Karim, Md. Ashikur Rahman, Dewan Mahmud Mim

Abstract:

Scarcity of potable water as the result of rapid climate change and saltwater intrusion in groundwater has been a major problem in the coastal regions over the world. In equinoctial countries like Bangladesh, where sunlight is available for more than 10 hours a day, Solar Distillation provides a promising sustainable way for safe drinking water supply in coastal poor households with negligible major cost and difficulty of construction and maintenance. In this paper, two passive type solar stills- a Conventional Single Slope Solar still (CSS) and a Pyramid Solar Sill (PSS) is used and relationship is established between distill water output corresponding to four different factors- temperature, solar intensity, relative humidity and wind speed for Gazipur, Bangladesh. Comparison is analyzed between the two different still outputs for nine months period (January- September) and efficiency is calculated. Later a thermal mathematical model is developed and the distilled water output for Khulna, Bangladesh is computed. Again, difference between the output of the two cities- Gazipur and Khulna is demonstrated and finally an economic analysis is prepared. The distillation output has a positive correlation with temperature and solar intensity, inverse relation with relative humidity and wind speed has nugatory consequence. The maximum output of Conventional Solar Still is obtained 3.8 L/m2/day and Pyramid still is 4.3 L/m2/day for Gazipur and almost 15% more efficiency is found for Pyramid still. Productivity in Khulna is found almost 20% more than Gazipur. Based on economic analysis, taking 10 BDT, per liter, the net profit, benefit cost ratio, payback period all indicates that both stills are feasible but pyramid still is more feasible than Conventional Still. Finally, for a 3-4 member family, area of 4 m2 is suggested for Conventional Still and 3m2 for Pyramid Solar Still.

Keywords: solar distillation, household water supply, saline zones, Bangladesh

Procedia PDF Downloads 271
29914 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
29913 Sensitivity Analysis of Oil Spills Modeling with ADIOS II for Iranian Fields in Persian Gulf

Authors: Farzingohar Mehrnaz, Yasemi Mehran, Esmaili Zinat, Baharlouian Maedeh

Abstract:

Aboozar (Ardeshir) and Bahregansar are the two important Iranian oilfields in Persian Gulf waters. The operation activities cause to create spills which impacted on the marine environment. Assumed spills are molded by ADIOS II (Automated Data Inquiry for Oil Spills) which is NOAA’s weathering oil software. Various atmospheric and marine data with different oil types are used for the modeling. Numerous scenarios for 100 bbls with mean daily air temperature and wind speed are input for 5 days. To find the model sensitivity in each setting, one parameter is changed, but the others stayed constant. In both fields, the evaporated and dispersed output values increased hence the remaining rate is reduced. The results clarified that wind speed first, second air temperature and finally oil type respectively were the most effective factors on the oil weathering process. The obtained results can help the emergency systems to predict the floating (dispersed and remained) volume spill in order to find the suitable cleanup tools and methods.

Keywords: ADIOS, modeling, oil spill, sensitivity analysis

Procedia PDF Downloads 299
29912 Selection of Optimal Reduced Feature Sets of Brain Signal Analysis Using Heuristically Optimized Deep Autoencoder

Authors: Souvik Phadikar, Nidul Sinha, Rajdeep Ghosh

Abstract:

In brainwaves research using electroencephalogram (EEG) signals, finding the most relevant and effective feature set for identification of activities in the human brain is a big challenge till today because of the random nature of the signals. The feature extraction method is a key issue to solve this problem. Finding those features that prove to give distinctive pictures for different activities and similar for the same activities is very difficult, especially for the number of activities. The performance of a classifier accuracy depends on this quality of feature set. Further, more number of features result in high computational complexity and less number of features compromise with the lower performance. In this paper, a novel idea of the selection of optimal feature set using a heuristically optimized deep autoencoder is presented. Using various feature extraction methods, a vast number of features are extracted from the EEG signals and fed to the autoencoder deep neural network. The autoencoder encodes the input features into a small set of codes. To avoid the gradient vanish problem and normalization of the dataset, a meta-heuristic search algorithm is used to minimize the mean square error (MSE) between encoder input and decoder output. To reduce the feature set into a smaller one, 4 hidden layers are considered in the autoencoder network; hence it is called Heuristically Optimized Deep Autoencoder (HO-DAE). In this method, no features are rejected; all the features are combined into the response of responses of the hidden layer. The results reveal that higher accuracy can be achieved using optimal reduced features. The proposed HO-DAE is also compared with the regular autoencoder to test the performance of both. The performance of the proposed method is validated and compared with the other two methods recently reported in the literature, which reveals that the proposed method is far better than the other two methods in terms of classification accuracy.

Keywords: autoencoder, brainwave signal analysis, electroencephalogram, feature extraction, feature selection, optimization

Procedia PDF Downloads 114
29911 Conflation Methodology Applied to Flood Recovery

Authors: Eva L. Suarez, Daniel E. Meeroff, Yan Yong

Abstract:

Current flooding risk modeling focuses on resilience, defined as the probability of recovery from a severe flooding event. However, the long-term damage to property and well-being by nuisance flooding and its long-term effects on communities are not typically included in risk assessments. An approach was developed to address the probability of recovering from a severe flooding event combined with the probability of community performance during a nuisance event. A consolidated model, namely the conflation flooding recovery (&FR) model, evaluates risk-coping mitigation strategies for communities based on the recovery time from catastrophic events, such as hurricanes or extreme surges, and from everyday nuisance flooding events. The &FR model assesses the variation contribution of each independent input and generates a weighted output that favors the distribution with minimum variation. This approach is especially useful if the input distributions have dissimilar variances. The &FR is defined as a single distribution resulting from the product of the individual probability density functions. The resulting conflated distribution resides between the parent distributions, and it infers the recovery time required by a community to return to basic functions, such as power, utilities, transportation, and civil order, after a flooding event. The &FR model is more accurate than averaging individual observations before calculating the mean and variance or averaging the probabilities evaluated at the input values, which assigns the same weighted variation to each input distribution. The main disadvantage of these traditional methods is that the resulting measure of central tendency is exactly equal to the average of the input distribution’s means without the additional information provided by each individual distribution variance. When dealing with exponential distributions, such as resilience from severe flooding events and from nuisance flooding events, conflation results are equivalent to the weighted least squares method or best linear unbiased estimation. The combination of severe flooding risk with nuisance flooding improves flood risk management for highly populated coastal communities, such as in South Florida, USA, and provides a method to estimate community flood recovery time more accurately from two different sources, severe flooding events and nuisance flooding events.

Keywords: community resilience, conflation, flood risk, nuisance flooding

Procedia PDF Downloads 103
29910 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources

Authors: Jolly Puri, Shiv Prasad Yadav

Abstract:

Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.

Keywords: multi-component DEA, fuzzy multi-component DEA, fuzzy resources, decision making units (DMUs)

Procedia PDF Downloads 407
29909 Rationalized Haar Transforms Approach to Design of Observer for Control Systems with Unknown Inputs

Authors: Joon-Hoon Park

Abstract:

The fundamental concept of observability is important in both theoretical and practical points of modern control systems. In modern control theory, a control system has criteria for determining the design solution exists for the system parameters and design objectives. The idea of observability relates to the condition of observing or estimating the state variables from the output variables that is generally measurable. To design closed-loop control system, the practical problems of implementing the feedback of the state variables must be considered and implementing state feedback control problem has been existed in this case. All the state variables are not available, so it is requisite to design and implement an observer that will estimate the state variables form the output parameters. However sometimes unknown inputs are presented in control systems as practical cases. This paper presents a design method and algorithm for observer of control system with unknown input parameters based on Rationalized Haar transform. The proposed method is more advantageous than the other numerical method.

Keywords: orthogonal functions, rationalized Haar transforms, control system observer, algebraic method

Procedia PDF Downloads 370
29908 A Multi-Output Network with U-Net Enhanced Class Activation Map and Robust Classification Performance for Medical Imaging Analysis

Authors: Jaiden Xuan Schraut, Leon Liu, Yiqiao Yin

Abstract:

Computer vision in medical diagnosis has achieved a high level of success in diagnosing diseases with high accuracy. However, conventional classifiers that produce an image to-label result provides insufficient information for medical professionals to judge and raise concerns over the trust and reliability of a model with results that cannot be explained. In order to gain local insight into cancerous regions, separate tasks such as imaging segmentation need to be implemented to aid the doctors in treating patients, which doubles the training time and costs which renders the diagnosis system inefficient and difficult to be accepted by the public. To tackle this issue and drive AI-first medical solutions further, this paper proposes a multi-output network that follows a U-Net architecture for image segmentation output and features an additional convolutional neural networks (CNN) module for auxiliary classification output. Class activation maps are a method of providing insight into a convolutional neural network’s feature maps that leads to its classification but in the case of lung diseases, the region of interest is enhanced by U-net-assisted Class Activation Map (CAM) visualization. Therefore, our proposed model combines image segmentation models and classifiers to crop out only the lung region of a chest X-ray’s class activation map to provide a visualization that improves the explainability and is able to generate classification results simultaneously which builds trust for AI-led diagnosis systems. The proposed U-Net model achieves 97.61% accuracy and a dice coefficient of 0.97 on testing data from the COVID-QU-Ex Dataset which includes both diseased and healthy lungs.

Keywords: multi-output network model, U-net, class activation map, image classification, medical imaging analysis

Procedia PDF Downloads 202
29907 Forecasting the Sea Level Change in Strait of Hormuz

Authors: Hamid Goharnejad, Amir Hossein Eghbali

Abstract:

Recent investigations have demonstrated the global sea level rise due to climate change impacts. In this study climate changes study the effects of increasing water level in the strait of Hormuz. The probable changes of sea level rise should be investigated to employ the adaption strategies. The climatic output data of a GCM (General Circulation Model) named CGCM3 under climate change scenario of A1b and A2 were used. Among different variables simulated by this model, those of maximum correlation with sea level changes in the study region and least redundancy among themselves were selected for sea level rise prediction by using stepwise regression. One models of Discrete Wavelet artificial Neural Network (DWNN) was developed to explore the relationship between climatic variables and sea level changes. In these models, wavelet was used to disaggregate the time series of input and output data into different components and then ANN was used to relate the disaggregated components of predictors and predictands to each other. The results showed in the Shahid Rajae Station for scenario A1B sea level rise is among 64 to 75 cm and for the A2 Scenario sea level rise is among 90 to 105 cm. Furthermore the result showed a significant increase of sea level at the study region under climate change impacts, which should be incorporated in coastal areas management.

Keywords: climate change scenarios, sea-level rise, strait of Hormuz, forecasting

Procedia PDF Downloads 271
29906 New Machine Learning Optimization Approach Based on Input Variables Disposition Applied for Time Series Prediction

Authors: Hervice Roméo Fogno Fotsoa, Germaine Djuidje Kenmoe, Claude Vidal Aloyem Kazé

Abstract:

One of the main applications of machine learning is the prediction of time series. But a more accurate prediction requires a more optimal model of machine learning. Several optimization techniques have been developed, but without considering the input variables disposition of the system. Thus, this work aims to present a new machine learning architecture optimization technique based on their optimal input variables disposition. The validations are done on the prediction of wind time series, using data collected in Cameroon. The number of possible dispositions with four input variables is determined, i.e., twenty-four. Each of the dispositions is used to perform the prediction, with the main criteria being the training and prediction performances. The results obtained from a static architecture and a dynamic architecture of neural networks have shown that these performances are a function of the input variable's disposition, and this is in a different way from the architectures. This analysis revealed that it is necessary to take into account the input variable's disposition for the development of a more optimal neural network model. Thus, a new neural network training algorithm is proposed by introducing the search for the optimal input variables disposition in the traditional back-propagation algorithm. The results of the application of this new optimization approach on the two single neural network architectures are compared with the previously obtained results step by step. Moreover, this proposed approach is validated in a collaborative optimization method with a single objective optimization technique, i.e., genetic algorithm back-propagation neural networks. From these comparisons, it is concluded that each proposed model outperforms its traditional model in terms of training and prediction performance of time series. Thus the proposed optimization approach can be useful in improving the accuracy of time series forecasts. This proves that the proposed optimization approach can be useful in improving the accuracy of time series prediction based on machine learning.

Keywords: input variable disposition, machine learning, optimization, performance, time series prediction

Procedia PDF Downloads 109
29905 Robust Model Predictive Controller for Uncertain Nonlinear Wheeled Inverted Pendulum Systems: A Tube-Based Approach

Authors: Tran Gia Khanh, Dao Phuong Nam, Do Trong Tan, Nguyen Van Huong, Mai Xuan Sinh

Abstract:

This work presents the problem of tube-based robust model predictive controller for a class of continuous-time systems in the presence of input disturbances. The main objective is to point out the state trajectory of closed system being maintained inside a sequence of tubes. An estimation of attraction region of the closed system is pointed out based on input state stability (ISS) theory and linearized model in each time interval. The theoretical analysis and simulation results demonstrate the performance of the proposed algorithm for a wheeled inverted pendulum system.

Keywords: input state stability (ISS), tube-based robust MPC, continuous-time nonlinear systems, wheeled inverted pendulum

Procedia PDF Downloads 220
29904 Environmental Sustainability and Energy Consumption: The Role of Financial Development in OPEC-1 Countries

Authors: Isah Wada

Abstract:

The current research investigates the role of financial development in an environmental sustainability-energy consumption nexus for OPEC-1 member countries. The empirical findings suggest that financial development increases environmental sustainability but energy consumption and real output expansion diminishes environmental sustainability, generally. Thus, whilst real output and financial development accelerates energy consumption, environmental sustainability quality diminishes clean energy initiatives. Even more so, energy consumption and financial development stimulates real output growth. The result empirically demonstrates that policy advocates must address broader issues relating to financial development whilst seeking to achieve environmental sustainability due largely to energy consumption.

Keywords: energy consumption, environmental sustainability, financial development, OPEC, real output

Procedia PDF Downloads 194
29903 Fault Tolerant and Testable Designs of Reversible Sequential Building Blocks

Authors: Vishal Pareek, Shubham Gupta, Sushil Chandra Jain

Abstract:

With increasing high-speed computation demand the power consumption, heat dissipation and chip size issues are posing challenges for logic design with conventional technologies. Recovery of bit loss and bit errors is other issues that require reversibility and fault tolerance in the computation. The reversible computing is emerging as an alternative to conventional technologies to overcome the above problems and helpful in a diverse area such as low-power design, nanotechnology, quantum computing. Bit loss issue can be solved through unique input-output mapping which require reversibility and bit error issue require the capability of fault tolerance in design. In order to incorporate reversibility a number of combinational reversible logic based circuits have been developed. However, very few sequential reversible circuits have been reported in the literature. To make the circuit fault tolerant, a number of fault model and test approaches have been proposed for reversible logic. In this paper, we have attempted to incorporate fault tolerance in sequential reversible building blocks such as D flip-flop, T flip-flop, JK flip-flop, R-S flip-flop, Master-Slave D flip-flop, and double edge triggered D flip-flop by making them parity preserving. The importance of this proposed work lies in the fact that it provides the design of reversible sequential circuits completely testable for any stuck-at fault and single bit fault. In our opinion our design of reversible building blocks is superior to existing designs in term of quantum cost, hardware complexity, constant input, garbage output, number of gates and design of online testable D flip-flop have been proposed for the first time. We hope our work can be extended for building complex reversible sequential circuits.

Keywords: parity preserving gate, quantum computing, fault tolerance, flip-flop, sequential reversible logic

Procedia PDF Downloads 545
29902 A Transfer Function Representation of Thermo-Acoustic Dynamics for Combustors

Authors: Myunggon Yoon, Jung-Ho Moon

Abstract:

In this paper, we present a transfer function representation of a general one-dimensional combustor. The input of the transfer function is a heat rate perturbation of a burner and the output is a flow velocity perturbation at the burner. This paper considers a general combustor model composed of multiple cans with different cross sectional areas, along with a non-zero flow rate.

Keywords: combustor, dynamics, thermoacoustics, transfer function

Procedia PDF Downloads 381
29901 Analysis of a Power Factor Correction Converter for Light Emitting Diode Driver Application

Authors: Edwina G. Rodrigues, S. J. Bindhu, A. V. Rajesh

Abstract:

This paper proposes a switched capacitor based driver circuit for high power light emitting diodes with a front end rectifier. LEDs are low-voltage light sources, requiring a constant DC voltage or current to operate optimally. LEDs, therefore, require a device that can convert incoming AC power to the proper DC voltage, and regulate the current flowing through the LED during operation. Proposed topology has a front end converter. It is an AC-DC rectifier that works on bridgeless boost topology which shapes the input current waveform. The front end converter is followed by a DC-DC converter which provides a constant DC voltage across the LEDs. A 12V AC input is given to the input of frontend converter which rectifies and boost the voltage to 24v DC and gives it to the DC-DC converter. The DC-DC converter converts the 24V DC and regulates this constant DC voltage across the LEDs.

Keywords: bridgeless rectifier, power factor correction(PFC), SC converter, total harmonic distortion (THD)

Procedia PDF Downloads 873
29900 Integration of a Load Switch with DC/DC Buck Converter for Power Distribution in Low Cost Educational Nanosatellite

Authors: Bentoutou Houari, Boutte Aissa, Belaidi El Yazid, Limam Lakhdar

Abstract:

The integration of a load switch with a DC/DC buck converter using LM2596 for power distribution in low-cost educational nanosatellites is a technique that aims to efficiently manage the power distribution system in these small spacecraft. The converter is based on the LM2596 regulator and designed to step down the input voltage of +16.8V to +12V, +5V, and +3.3V output, which are suitable for the nanosatellite's various subsystems. The load switch is based on MOSFET and is used to turn on or off the power supply to a particular load and protect the nanosatellite from power surges. A prototype of a +12V DC/DC buck converter with a high side load switch has been realized and tested, which meets our requirements and shows a good efficiency of 89%. In addition, the prototype features a capacitor between the source and gate of the MOSFET, which has effectively reduced the inrush current, demonstrating the effectiveness of this approach in reducing surges of current when the load is connected. The output current and voltage were measured at 0.7A and 11.89V, respectively, making this design suitable for use in low-cost educational nanosatellites.

Keywords: DC/DC buck converter, load switch, LM2596, electrical power subsystems, nanosatellite, inrush current

Procedia PDF Downloads 101
29899 Experimenting the Influence of Input Modality on Involvement Load Hypothesis

Authors: Mohammad Hassanzadeh

Abstract:

As far as incidental vocabulary learning is concerned, the basic contention of the Involvement Load Hypothesis (ILH) is that retention of unfamiliar words is, generally, conditional upon the degree of involvement in processing them. This study examined input modality and incidental vocabulary uptake in a task-induced setting whereby three variously loaded task types (marginal glosses, fill-in-task, and sentence-writing) were alternately assigned to one group of students at Allameh Tabataba’i University (n=2l) during six classroom sessions. While one round of exposure was comprised of the audiovisual medium (TV talk shows), the second round consisted of textual materials with approximately similar subject matter (reading texts). In both conditions, however, the tasks were equivalent to one another. Taken together, the study pursued the dual objectives of establishing a litmus test for the ILH and its proposed values of ‘need’, ‘search’ and ‘evaluation’ in the first place. Secondly, it sought to bring to light the superiority issue of exposure to audiovisual input versus the written input as far as the incorporation of tasks is concerned. At the end of each treatment session, a vocabulary active recall test was administered to measure their incidental gains. Running a one-way analysis of variance revealed that the audiovisual intervention yielded higher gains than the written version even when differing tasks were included. Meanwhile, task 'three' (sentence-writing) turned out the most efficient in tapping learners' active recall of the target vocabulary items. In addition to shedding light on the superiority of audiovisual input over the written input when circumstances are relatively held constant, this study for the most part, did support the underlying tenets of ILH.

Keywords: Keywords— Evaluation, incidental vocabulary learning, input mode, Involvement Load Hypothesis, need, search.

Procedia PDF Downloads 279
29898 Dissolved Gas Analysis Based Regression Rules from Trained ANN for Transformer Fault Diagnosis

Authors: Deepika Bhalla, Raj Kumar Bansal, Hari Om Gupta

Abstract:

Dissolved Gas Analysis (DGA) has been widely used for fault diagnosis in a transformer. Artificial neural networks (ANN) have high accuracy but are regarded as black boxes that are difficult to interpret. For many problems it is desired to extract knowledge from trained neural networks (NN) so that the user can gain a better understanding of the solution arrived by the NN. This paper applies a pedagogical approach for rule extraction from function approximating neural networks (REFANN) with application to incipient fault diagnosis using the concentrations of the dissolved gases within the transformer oil, as the input to the NN. The input space is split into subregions and for each subregion there is a linear equation that is used to predict the type of fault developing within a transformer. The experiments on real data indicate that the approach used can extract simple and useful rules and give fault predictions that match the actual fault and are at times also better than those predicted by the IEC method.

Keywords: artificial neural networks, dissolved gas analysis, rules extraction, transformer

Procedia PDF Downloads 536
29897 The Efficiency Analysis in the Health Sector: Marmara Region

Authors: Hale Kirer Silva Lecuna, Beyza Aydin

Abstract:

Health is one of the main components of human capital and sustainable development, and it is very important for economic growth. Health economics, which is an indisputable part of the science of economics, has five stages in general. These are health and development, financing of health services, economic regulation in the health, allocation of resources and efficiency of health services. A well-developed and efficient health sector plays a major role by increasing the level of development of countries. The most crucial pillars of the health sector are the hospitals that are divided into public and private. The main purpose of the hospitals is to provide more efficient services. Therefore the aim is to meet patients’ satisfaction by increasing the service quality. Health-related studies in Turkey date back to the Ottoman and Seljuk Empires. In the near past, Turkey applied 'Health Sector Transformation Programs' under different titles between 2003 and 2010. Our aim in this paper is to measure how effective these transformation programs are for the health sector, to see how much they can increase the efficiency of hospitals over the years, to see the return of investments, to make comments and suggestions on the results, and to provide a new reference for the literature. Within this framework, the public and private hospitals in Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, Istanbul, Kirklareli, Kocaeli, Sakarya, Tekirdağ, Yalova will be examined by using Data Envelopment Analysis (DEA) for the years between 2000 and 2019. DEA is a linear programming-based technique, which gives relatively good results in multivariate studies. DEA basically estimates an efficiency frontier and make a comparison. Constant returns to scale and variable returns to scale are two most commonly used DEA methods. Both models are divided into two as input and output-oriented. To analyze the data, the number of personnel, number of specialist physicians, number of practitioners, number of beds, number of examinations will be used as input variables; and the number of surgeries, in-patient ratio, and crude mortality rate as output variables. 11 hospitals belonging to the Marmara region were included in the study. It is seen that these hospitals worked effectively only in 7 provinces (Balıkesir, Bilecik, Bursa, Edirne, İstanbul, Kırklareli, Yalova) for the year 2001 when no transformation program was implemented. After the transformation program was implemented, for example, in 2014 and 2016, 10 hospitals (Balıkesir, Bilecik, Bursa, Çanakkale, Edirne, İstanbul, Kocaeli, Kırklareli, Tekirdağ, Yalova) were found to be effective. In 2015, ineffective results were observed for Sakarya, Tekirdağ and Yalova. However, since these values are closer to 1 after the transformation program, we can say that the transformation program has positive effects. For Sakarya alone, no effective results have been achieved in any year. When we look at the results in general, it shows that the transformation program has a positive effect on the effectiveness of hospitals.

Keywords: data envelopment analysis, efficiency, health sector, Marmara region

Procedia PDF Downloads 130
29896 Farming Production in Brazil: Innovation and Land-Sparing Effect

Authors: Isabela Romanha de Alcantara, Jose Eustaquio Ribeiro Vieira Filho, Jose Garcia Gasques

Abstract:

Innovation and technology can be determinant factors to ensure agricultural and sustainable growth, as well as productivity gains. Technical change has contributed considerably to supply agricultural expansion in Brazil. This agricultural growth could be achieved by incorporating more land or capital. If capital is the main source of agricultural growth, it is possible to increase production per unit of land. The objective of this paper is to estimate: 1) total factor productivity (TFP), which is measured in terms of the rate of output per unit of input; and 2) the land-saving effect (LSE) that is the amount of land required in the case that yield rate is constant over time. According to this study, from 1990 to 2019, it appears that 87 percent of Brazilian agriculture product growth comes from the gains of productivity; the rest of 13 percent comes from input growth. In the same period, the total LSE was roughly 400 Mha, which corresponds to 47 percent of the national territory. These effects reflect the greater efficiency of using productive factors, whose technical change has allowed an increase in agricultural production based on productivity gains.

Keywords: agriculture, land-saving effect, livestock, productivity

Procedia PDF Downloads 231
29895 A Theory and Empirical Analysis on the Efficency of Chinese Electricity Pricing

Authors: Jianlin Wang, Jiajia Zhao

Abstract:

This paper applies the theory and empirical method to examine the relationship between electricity price and coal price, as well as electricity and industry output, for China during Jan 1999-Dec 2012. Our results indicate that there is no any causality between coal price and electricity price under other factors are controlled. However, we found a bi-directional causality between electricity consumption and industry output. Overall, the electricity price set by China’s NDRC is inefficient, which lead to the electricity supply shortage after 2004. It is time to reform electricity price system for China’s reformers.

Keywords: electricity price, coal price, power supply, China

Procedia PDF Downloads 468
29894 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: noise signal, pulse interference, signal power, spectrum width, detection

Procedia PDF Downloads 337
29893 CMOS Positive and Negative Resistors Based on Complementary Regulated Cascode Topology with Cross-Coupled Regulated Transistors

Authors: Kittipong Tripetch, Nobuhiko Nakano

Abstract:

Two types of floating active resistors based on a complementary regulated cascode topology with cross-coupled regulated transistors are presented in this paper. The first topology is a high swing complementary regulated cascode active resistor. The second topology is a complementary common gate with a regulated cross coupled transistor. The small-signal input resistances of the floating resistors are derived. Three graphs of the input current versus the input voltage for different aspect ratios are designed and plotted using the Cadence Spectre 0.18-µm Rohm Semiconductor process. The total harmonic distortion graphs are plotted for three different aspect ratios with different input-voltage amplitudes and different input frequencies. From the simulation results, it is observed that a resistance of approximately 8.52 MΩ can be obtained from supply voltage at  ±0.9 V.

Keywords: floating active resistor, complementary common gate, complementary regulated cascode, current mirror

Procedia PDF Downloads 259
29892 Experimental Study on the Heat Transfer Characteristics of the 200W Class Woofer Speaker

Authors: Hyung-Jin Kim, Dae-Wan Kim, Moo-Yeon Lee

Abstract:

The objective of this study is to experimentally investigate the heat transfer characteristics of 200 W class woofer speaker units with the input voice signals. The temperature and heat transfer characteristics of the 200 W class woofer speaker unit were experimentally tested with the several input voice signals such as 1500 Hz, 2500 Hz, and 5000 Hz respectively. From the experiments, it can be observed that the temperature of the woofer speaker unit including the voice-coil part increases with a decrease in input voice signals. Also, the temperature difference in measured points of the voice coil is increased with decrease of the input voice signals. In addition, the heat transfer characteristics of the woofer speaker in case of the input voice signal of 1500 Hz is 40% higher than that of the woofer speaker in case of the input voice signal of 5000 Hz at the measuring time of 200 seconds. It can be concluded from the experiments that initially the temperature of the voice signal increases rapidly with time, after a certain period of time it increases exponentially. Also during this time dependent temperature change, it can be observed that high voice signal is stable than low voice signal.

Keywords: heat transfer, temperature, voice coil, woofer speaker

Procedia PDF Downloads 360