Search results for: effective demand
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12286

Search results for: effective demand

12016 Research on the Status Quo and Countermeasures of Professional Development of Engineering Teachers in China

Authors: Wang Xiu Xiu

Abstract:

The professional development of engineering teachers in universities is the key to the construction of outstanding engineers in China, which is related to the quality and prospects of the entire engineering education. This study investigated 2789 teachers' professional development in different regions of China, which outlines the current situation of the professional development of engineering teachers from three perspectives: professional development needs, professional development methods and professional development effects. Data results show that engineering teachers have the strongest demand for the improvement of subject knowledge and teaching ability. Engineering faculty with 0-5 years of teaching experience, under 35 years of age and a doctorate degree have the strongest demand for development. The frequency of engineering teachers' participation in various professional development activities is low, especially in school-enterprise cooperation-related activities. There are significant differences in the participation frequency of professional development activities among engineering faculty with different teaching ages, ages, professional titles, degrees and administrative positions in schools. The professional development of engineering faculty has been improved to a certain extent and is positively affected by professional development needs and participation in professional development. In this regard, we can constantly improve the professional development system of engineering teachers from three aspects: training on demand, stimulating motivation, and optimizing resource allocation, to enhance the professional development level of engineering teachers.

Keywords: engineering teachers in universities, professional development, status quo, countermeasures

Procedia PDF Downloads 17
12015 AHP and TOPSIS Methods for Supplier Selection Problem in Medical Devices Company

Authors: Sevde D. Karayel, Ediz Atmaca

Abstract:

Supplier selection subject is vital because of development competitiveness and performance of firms which have right, rapid and with low cost procurement. Considering the fact that competition between firms is no longer on their supply chains, hence it is very clear that performance of the firms’ not only depend on their own success but also success of all departments in supply chain. For this purpose, firms want to work with suppliers which are cost effective, flexible in terms of demand and high quality level for customer satisfaction. However, diversification and redundancy of their expectations from suppliers, supplier selection problems need to be solved as a hard problem. In this study, supplier selection problem is discussed for critical piece, which is using almost all production of products in and has troubles with lead time from supplier, in a firm that produces medical devices. Analyzing policy in the current situation of the firm in the supplier selection indicates that supplier selection is made based on the purchasing department experience and other authorized persons’ general judgments. Because selection do not make based on the analytical methods, it is caused disruptions in production, lateness and extra cost. To solve the problem, AHP and TOPSIS which are multi-criteria decision making techniques, which are effective, easy to implement and can analyze many criteria simultaneously, are used to make a selection among alternative suppliers.

Keywords: AHP-TOPSIS methods, multi-criteria decision making, supplier selection problem, supply chain management

Procedia PDF Downloads 264
12014 Factors Influencing Household Expenditure Patterns on Cereal Grains in Nasarawa State, Nigeria

Authors: E. A. Ojoko, G. B. Umbugadu

Abstract:

This study aims at describing the expenditure pattern of households on millet, maize and sorghum across income groups in Nasarawa State. A multi-stage sampling technique was used to select a sample size of 316 respondents for the study. The Almost Ideal Demand System (AIDS) model was adopted in this study. Results from the study shows that the average household size was five persons with dependency ratio of 52 %, which plays an important role on the household’s expenditure pattern by increasing the household budget share. On the average 82 % were male headed households with an average age of 49 years and 13 years of formal education. Results on expenditure share show that maize has the highest expenditure share of 38 % across the three income groups and that most of the price effects are significantly different from zero at 5 % significant level. This shows that the low price of maize increased its demand as compared to other cereals. Household size and age of household members are major factors affecting the demand for cereals in the study. This agrees with the fact that increased household population (size) will bring about increase consumption. The results on factors influencing preferences for cereal grains reveals that cooking quality and appearance (65.7 %) were the most important factors affecting the demand for maize in the study area. This study recommends that cereal crop production should be prioritized in government policies and farming activities that help to boost food security and alleviate poverty should be subsidized.

Keywords: expenditure pattern, AIDS model, budget share, price cereal grains and consumption

Procedia PDF Downloads 195
12013 Seismic Loss Assessment for Peruvian University Buildings with Simulated Fragility Functions

Authors: Jose Ruiz, Jose Velasquez, Holger Lovon

Abstract:

Peruvian university buildings are critical structures for which very little research about its seismic vulnerability is available. This paper develops a probabilistic methodology that predicts seismic loss for university buildings with simulated fragility functions. Two university buildings located in the city of Cusco were analyzed. Fragility functions were developed considering seismic and structural parameters uncertainty. The fragility functions were generated with the Latin Hypercube technique, an improved Montecarlo-based method, which optimizes the sampling of structural parameters and provides at least 100 reliable samples for every level of seismic demand. Concrete compressive strength, maximum concrete strain and yield stress of the reinforcing steel were considered as the key structural parameters. The seismic demand is defined by synthetic records which are compatible with the elastic Peruvian design spectrum. Acceleration records are scaled based on the peak ground acceleration on rigid soil (PGA) which goes from 0.05g to 1.00g. A total of 2000 structural models were considered to account for both structural and seismic variability. These functions represent the overall building behavior because they give rational information regarding damage ratios for defined levels of seismic demand. The university buildings show an expected Mean Damage Factor of 8.80% and 19.05%, respectively, for the 0.22g-PGA scenario, which was amplified by the soil type coefficient and resulted in 0.26g-PGA. These ratios were computed considering a seismic demand related to 10% of probability of exceedance in 50 years which is a requirement in the Peruvian seismic code. These results show an acceptable seismic performance for both buildings.

Keywords: fragility functions, university buildings, loss assessment, Montecarlo simulation, latin hypercube

Procedia PDF Downloads 144
12012 Maximum Deformation Estimation for Reinforced Concrete Buildings Using Equivalent Linearization Method

Authors: Chien-Kuo Chiu

Abstract:

In the displacement-based seismic design and evaluation, equivalent linearization method is one of the approximation methods to estimate the maximum inelastic displacement response of a system. In this study, the accuracy of two equivalent linearization methods are investigated. The investigation consists of three soil condition in Taiwan (Taipei Basin 1, 2, and 3) and five different heights of building (H_r= 10, 20, 30, 40, and 50 m). The first method is the Taiwan equivalent linearization method (TELM) which was proposed based on Japanese equivalent linear method considering the modification factor, α_T= 0.85. On the basis of Lin and Miranda study, the second method is proposed with some modification considering Taiwan soil conditions. From this study, it is shown that Taiwanese equivalent linearization method gives better estimation compared to the modified Lin and Miranda method (MLM). The error index for the Taiwanese equivalent linearization method are 16%, 13%, and 12% for Taipei Basin 1, 2, and 3, respectively. Furthermore, a ductility demand spectrum of single-degree-of-freedom (SDOF) system is presented in this study as a guide for engineers to estimate the ductility demand of a structure.

Keywords: displacement-based design, ductility demand spectrum, equivalent linearization method, RC buildings, single-degree-of-freedom

Procedia PDF Downloads 162
12011 A Psychophysiological Evaluation of an Effective Recognition Technique Using Interactive Dynamic Virtual Environments

Authors: Mohammadhossein Moghimi, Robert Stone, Pia Rotshtein

Abstract:

Recording psychological and physiological correlates of human performance within virtual environments and interpreting their impacts on human engagement, ‘immersion’ and related emotional or ‘effective’ states is both academically and technologically challenging. By exposing participants to an effective, real-time (game-like) virtual environment, designed and evaluated in an earlier study, a psychophysiological database containing the EEG, GSR and Heart Rate of 30 male and female gamers, exposed to 10 games, was constructed. Some 174 features were subsequently identified and extracted from a number of windows, with 28 different timing lengths (e.g. 2, 3, 5, etc. seconds). After reducing the number of features to 30, using a feature selection technique, K-Nearest Neighbour (KNN) and Support Vector Machine (SVM) methods were subsequently employed for the classification process. The classifiers categorised the psychophysiological database into four effective clusters (defined based on a 3-dimensional space – valence, arousal and dominance) and eight emotion labels (relaxed, content, happy, excited, angry, afraid, sad, and bored). The KNN and SVM classifiers achieved average cross-validation accuracies of 97.01% (±1.3%) and 92.84% (±3.67%), respectively. However, no significant differences were found in the classification process based on effective clusters or emotion labels.

Keywords: virtual reality, effective computing, effective VR, emotion-based effective physiological database

Procedia PDF Downloads 233
12010 Shared Versus Pooled Automated Vehicles: Exploring Behavioral Intentions Towards On-Demand Automated Vehicles

Authors: Samira Hamiditehrani

Abstract:

Automated vehicles (AVs) are emerging technologies that could potentially offer a wide range of opportunities and challenges for the transportation sector. The advent of AV technology has also resulted in new business models in shared mobility services where many ride hailing and car sharing companies are developing on-demand AVs including shared automated vehicles (SAVs) and pooled automated vehicles (Pooled AVs). SAVs and Pooled AVs could provide alternative shared mobility services which encourage sustainable transport systems, mitigate traffic congestion, and reduce automobile dependency. However, the success of on-demand AVs in addressing major transportation policy issues depends on whether and how the public adopts them as regular travel modes. To identify conditions under which individuals may adopt on-demand AVs, previous studies have applied human behavior and technology acceptance theories, where Theory of Planned Behavior (TPB) has been validated and is among the most tested in on-demand AV research. In this respect, this study has three objectives: (a) to propose and validate a theoretical model for behavioral intention to use SAVs and Pooled AVs by extending the original TPB model; (b) to identify the characteristics of early adopters of SAVs, who prefer to have a shorter and private ride, versus prospective users of Pooled AVs, who choose more affordable but longer and shared trips; and (c) to investigate Canadians’ intentions to adopt on-demand AVs for regular trips. Toward this end, this study uses data from an online survey (n = 3,622) of workers or adult students (18 to 75 years old) conducted in October and November 2021 for six major Canadian metropolitan areas: Toronto, Vancouver, Ottawa, Montreal, Calgary, and Hamilton. To accomplish the goals of this study, a base bivariate ordered probit model, in which both SAV and Pooled AV adoptions are estimated as ordered dependent variables, alongside a full structural equation modeling (SEM) system are estimated. The findings of this study indicate that affective motivations such as attitude towards AV technology, perceived privacy, and subjective norms, matter more than sociodemographic and travel behavior characteristic in adopting on-demand AVs. Also, the results of second objective provide evidence that although there are a few affective motivations, such as subjective norms and having ample knowledge, that are common between early adopters of SAVs and PooledAVs, many examined motivations differ among SAV and Pooled AV adoption factors. In other words, motivations influencing intention to use on-demand AVs differ among the service types. Likewise, depending on the types of on-demand AVs, the sociodemographic characteristics of early adopters differ significantly. In general, findings paint a complex picture with respect to the application of constructs from common technology adoption models to the study of on-demand AVs. Findings from the final objective suggest that policymakers, planners, the vehicle and technology industries, and the public at large should moderate their expectations that on-demand AVs may suddenly transform the entire transportation sector. Instead, this study suggests that SAVs and Pooled AVs (when they entire the Canadian market) are likely to be adopted as supplementary mobility tools rather than substitutions for current travel modes

Keywords: automated vehicles, Canadian perception, theory of planned behavior, on-demand AVs

Procedia PDF Downloads 72
12009 Optimizing Electric Vehicle Charging Networks with Dynamic Pricing and Demand Elasticity

Authors: Chiao-Yi Chen, Dung-Ying Lin

Abstract:

With the growing awareness of environmental protection and the implementation of government carbon reduction policies, the number of electric vehicles (EVs) has rapidly increased, leading to a surge in charging demand and imposing significant challenges on the existing power grid’s capacity. Traditional urban power grid planning has not adequately accounted for the additional load generated by EV charging, which often strains the infrastructure. This study aims to optimize grid operation and load management by dynamically adjusting EV charging prices based on real-time electricity supply and demand, leveraging consumer demand elasticity to enhance system efficiency. This study uniquely addresses the intricate interplay between urban traffic patterns and power grid dynamics in the context of electric vehicle (EV) adoption. By integrating Hsinchu City's road network with the IEEE 33-bus system, the research creates a comprehensive model that captures both the spatial and temporal aspects of EV charging demand. This approach allows for a nuanced analysis of how traffic flow directly influences the load distribution across the power grid. The strategic placement of charging stations at key nodes within the IEEE 33-bus system, informed by actual road traffic data, enables a realistic simulation of the dynamic relationship between vehicle movement and energy consumption. This integration of transportation and energy systems provides a holistic view of the challenges and opportunities in urban EV infrastructure planning, highlighting the critical need for solutions that can adapt to the ever-changing interplay between traffic patterns and grid capacity. The proposed dynamic pricing strategy effectively reduces peak charging loads, enhances the operational efficiency of charging stations, and maximizes operator profits, all while ensuring grid stability. These findings provide practical insights and a valuable framework for optimizing EV charging infrastructure and policies in future smart cities, contributing to more resilient and sustainable urban energy systems.

Keywords: dynamic pricing, demand elasticity, EV charging, grid load balancing, optimization

Procedia PDF Downloads 19
12008 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 468
12007 The Optimal Order Policy for the Newsvendor Model under Worker Learning

Authors: Sunantha Teyarachakul

Abstract:

We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.

Keywords: inventory management, Newsvendor model, order policy, worker learning

Procedia PDF Downloads 416
12006 Forecasting Thermal Energy Demand in District Heating and Cooling Systems Using Long Short-Term Memory Neural Networks

Authors: Kostas Kouvaris, Anastasia Eleftheriou, Georgios A. Sarantitis, Apostolos Chondronasios

Abstract:

To achieve the objective of almost zero carbon energy solutions by 2050, the EU needs to accelerate the development of integrated, highly efficient and environmentally friendly solutions. In this direction, district heating and cooling (DHC) emerges as a viable and more efficient alternative to conventional, decentralized heating and cooling systems, enabling a combination of more efficient renewable and competitive energy supplies. In this paper, we develop a forecasting tool for near real-time local weather and thermal energy demand predictions for an entire DHC network. In this fashion, we are able to extend the functionality and to improve the energy efficiency of the DHC network by predicting and adjusting the heat load that is distributed from the heat generation plant to the connected buildings by the heat pipe network. Two case-studies are considered; one for Vransko, Slovenia and one for Montpellier, France. The data consists of i) local weather data, such as humidity, temperature, and precipitation, ii) weather forecast data, such as the outdoor temperature and iii) DHC operational parameters, such as the mass flow rate, supply and return temperature. The external temperature is found to be the most important energy-related variable for space conditioning, and thus it is used as an external parameter for the energy demand models. For the development of the forecasting tool, we use state-of-the-art deep neural networks and more specifically, recurrent networks with long-short-term memory cells, which are able to capture complex non-linear relations among temporal variables. Firstly, we develop models to forecast outdoor temperatures for the next 24 hours using local weather data for each case-study. Subsequently, we develop models to forecast thermal demand for the same period, taking under consideration past energy demand values as well as the predicted temperature values from the weather forecasting models. The contributions to the scientific and industrial community are three-fold, and the empirical results are highly encouraging. First, we are able to predict future thermal demand levels for the two locations under consideration with minimal errors. Second, we examine the impact of the outdoor temperature on the predictive ability of the models and how the accuracy of the energy demand forecasts decreases with the forecast horizon. Third, we extend the relevant literature with a new dataset of thermal demand and examine the performance and applicability of machine learning techniques to solve real-world problems. Overall, the solution proposed in this paper is in accordance with EU targets, providing an automated smart energy management system, decreasing human errors and reducing excessive energy production.

Keywords: machine learning, LSTMs, district heating and cooling system, thermal demand

Procedia PDF Downloads 142
12005 Diagnosis of the Hydrological and Hydrogeological Potential in the Mancomojan Basin for Estimations of Offer and Demand

Authors: J. M. Alzate, J. Baena

Abstract:

This work presents the final results of the ‘Diagnosis of the hydrological and hydrogeological potential in the Mancomojan basin for estimations of offer and demand’ with the purpose of obtaining solutions of domestic supply for the communities of the zone of study. There was realized the projection of population of the paths by three different scenes. The highest water total demand appears with the considerations of the scene 3, with a total demand for the year 2050 of 59.275 m3/year (1,88 l/s), being the path San Francisco the one that exercises a major pressure on the resource with a demand for the same year of the order of 31.189 m3/year (0,99 l/s). As for the hydrogeological potential of the zone and as alternative of supply of the studied communities, the stratigraphic columns obtained of the geophysical polls do not show strata saturated with water that could be considered to be a potential source of supply for the communities. The water registered in the geophysics tests presents very low resistances what indicates that he presents ions, this water meets in the rock interstices very thin granulometries which indicates that it is a water of constitution, and the flow of this one towards more permeable granulometries is void or limited. The underground resource that is registered so much in electrical vertical polls (SEV) as in tomography and that is saturating rocks of thin granulometry (clays and slimes), was demonstrated by content of ions, which is consistent with the abundant presence of plaster and the genesis marinades with transition to continental of the geological units in the zone. Predominant rocks are sedimentary, sandy rocks of grain I die principally, in minor proportion were observed also sandstones of thick grain to conglomerate with clastic rock of quartz, chert and siltstone of the Formation Mess and sandstones (of thin, average and thick grain) alternating with caps conglomerate whose thickness is, in general, between 5 and 15 cm, the nodules of sandstones are frequent with the same composition of the sandstones that contain them, in some cases with calcareous and crossed stratification of the formation Sincelejo Miembro Morroa.

Keywords: hydrological, hydrogeological potential, geotomography, vertical electrical sounding (VES)

Procedia PDF Downloads 260
12004 Searching for an Effective Marketing in the Food Supplement Industry in Japan

Authors: Michiko Miyamoto

Abstract:

The market for "functional foods" and "foods with functional claims" that are effective in maintaining and improving health, has expanded year by year due to the entry of major food and beverage manufacturers following the introduction of the specified health food system in 1991 in Japan. To bring health claims related products or services to the market, it is necessary to let consumers to learn about these products or services; an effective marketing through advertising are important. This research proposes a framework for an effective advertisement medium for the food supplement industry by using survey data of 2,500 people.

Keywords: functional foods, dietary supplements, marketing strategy, structural equation modeling

Procedia PDF Downloads 144
12003 Use of Industrial Wastes for Production of Low-Cost Building Material

Authors: Frank Aneke, Elizabeth Theron

Abstract:

Demand for building materials in the last decade due to growing population, has caused scarcity of low-cost housing in South Africa. The investigation thoroughly examined dolomitic waste (DW), silica fume (SF) and River sand (RS) effects on the geotechnical behaviour of fly ash bricks. Bricks samples were prepared at different ratios as follows: I. FA1 contained FA70% + RS30%, II. FA2 contained FA60% + DW10%+RS30%, III. FA3 has a mix proportion of FA50% + DW20%+RS30%, IV. FA4 has a mix ratio FA40% + DW30%+RS30%, V. FA5 contained FA20% + DW40% + SF10%+RS30% by mass percentage of the FA material. However, utilization of this wastes in production of bricks, does not only produce a valuable commercial product that is cost effective, but also reduces a major waste disposal problem from the surrounding environment.

Keywords: bricks, dolomite, fly ash, industrial wastes

Procedia PDF Downloads 229
12002 Water-Sensitive Landscaping in Desert-Located Egyptian Cities through Sheer Reductions of Turfgrass and Efficient Water Use

Authors: Sarah M. Asar, Nabeel M. Elhady

Abstract:

Egypt’s current per capita water share indicates that the country suffers and has been suffering from water poverty. The abundant utilization of turfgrass in Egypt’s new urban settlements, the reliance on freshwater for irrigation, and the inadequate plant selection increase the water demand in such settlements. Decreasing the surface area of turfgrass by using alternative landscape features such as mulching, using ornamental low-maintenance plants, increasing pathways, etc., could significantly decrease the water demand of urban landscapes. The use of Ammochloa palaestina, Cenchrus crientalis (Oriental Fountain Grass), and Cistus parviflorus (with water demands of approximately 0.005m³/m²/day) as alternatives for Cynodon dactylon (0.01m³/m²/day), which is the most commonly used grass species in Egypt’s landscape, could decrease an area’s water demand by approximately 40-50%. Moreover, creating hydro-zones of similar water demanding plants would enable irrigation facilitation rather than the commonly used uniformed irrigation. Such a practice could further reduce water consumption by 15-20%. These results are based on a case-study analysis of one of Egypt’s relatively new urban settlements, Al-Rehab. Such results emphasize the importance of utilizing native, drought-tolerant vegetation in the urban landscapes of Egypt to reduce irrigation demands. Furthermore, proper implementation, monitoring, and maintenance of automated irrigation systems could be an important factor in a space’s efficient water use. As most new urban settlements in Egypt adopt sprinkler and drip irrigation systems, the lack of maintenance leads to the manual operation of such systems, and, thereby, excessive irrigation occurs.

Keywords: alternative landscape, native plants, efficient irrigation, low water demand

Procedia PDF Downloads 77
12001 Optimization Method of the Number of Berth at Bus Rapid Transit Stations Based on Passenger Flow Demand

Authors: Wei Kunkun, Cao Wanyang, Xu Yujie, Qiao Yuzhi, Liu Yingning

Abstract:

The reasonable design of bus parking spaces can improve the traffic capacity of the station and reduce traffic congestion. In order to reasonably determine the number of berths at BRT (Bus Rapid Transit) stops, it is based on the actual bus rapid transit station observation data, scheduling data, and passenger flow data. Optimize the number of station berths from the perspective of optimizing the balance of supply and demand at the site. Combined with the classical capacity calculation model, this paper first analyzes the important factors affecting the traffic capacity of BRT stops by using SPSS PRO and MATLAB programming software, namely the distribution of BRT stops and the distribution of BRT stop time. Secondly, the method of calculating the number of the classic human capital management (HCM) model is optimized based on the actual passenger demand of the station, and the method applicable to the actual number of station berths is proposed. Taking Gangding Station of Zhongshan Avenue Bus Rapid Transit Corridor in Guangzhou as an example, based on the calculation method proposed in this paper, the number of berths of sub-station 1, sub-station 2 and sub-station 3 is 2, which reduces the road space of the station by 33.3% compared with the previous berth 3 of each sub-station, and returns to social vehicles. Therefore, under the condition of ensuring the passenger flow demand of BRT stations, the road space of the station is reduced, and the road is returned to social vehicles, the traffic capacity of social vehicles is improved, and the traffic capacity and efficiency of the BRT corridor system are improved as a whole.

Keywords: urban transportation, bus rapid transit station, HCM model, capacity, number of berths

Procedia PDF Downloads 95
12000 Strategies to Achieve Deep Decarbonisation in Power Generation: A Review

Authors: Abdullah Alotaiq

Abstract:

The transition to low-carbon power generation is essential for mitigating climate change and achieving sustainability. This process, however, entails considerable costs, and understanding the factors influencing these costs is critical. This is necessary to cater to the increasing demand for low-carbon electricity across the heating, industry, and transportation sectors. A crucial aspect of this transition is identifying cost-effective and feasible paths for decarbonization, which is integral to global climate mitigation efforts. It is concluded that hybrid solutions, combining different low-carbon technologies, are optimal for minimizing costs and enhancing flexibility. These solutions also address the challenges associated with phasing out existing fossil fuel-based power plants and broadening the spectrum of low-carbon power generation options.

Keywords: review, power generation, energy transition, decarbonisation

Procedia PDF Downloads 54
11999 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches

Authors: Vahid Nourani, Atefeh Ashrafi

Abstract:

Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.

Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant

Procedia PDF Downloads 128
11998 Accessibility of Institutional Credit and Its Impact on Agricultural Output: A Case Study

Authors: Showkat Ahmad Bhat, M. S. Bhatt

Abstract:

The study evaluates the ex-post impact of institutional credit on agricultural output. It first examines the key factors that influence the accessibility of institutional credit by farm households. For quantitative analysis both program participant and non-participant respondents were drawn and cross-sectional survey data were collected from 412 households in Pulwama District of Jammu & Kashmir (India). Propensity Score Matching Method was employed to analyze the impact of the institutional credit on agricultural output. Results show that institutional credit has a positive and significant impact on the agricultural output measured in terms of farm income and crop productivity. To estimate the accessibility of credit, an examination of both demand side and supply side factors were carried out. The demand for credit was measured with respect to respondents who applied for credit. Supply side credit allocation measured in terms of the proportion of ‘credit amount’ farmers obtained. Logit and Two-limit Tobit Regression Models were used to investigate the determinants that influence the accessibility of formal credit for Demand for and supply of credit respectively. The estimated results suggested that the demand for credit is positively and significantly affected by the factors such as: age of the household head, formal education, membership, cash crop grown, farm size and saving account. All the variables were found significantly increasing the household’s likelihood to demand for and supply of credit from banks. However, the impact of these factors varies considerably across the credit markets. Factors which were found negatively and significantly influencing the accessibility of credit were: ‘square of the age’, household assets and rate of interest. The credit constraints analysis suggested that square of the age; household assets and rate of interest were the three most important factors that increased the probability of being constrained. The study finally discusses these results in detail and draws some recommendations.

Keywords: institutional credit, agriculture, propensity score matching logit model, Tobit model

Procedia PDF Downloads 312
11997 Genetic Structure Analysis through Pedigree Information in a Closed Herd of the New Zealand White Rabbits

Authors: M. Sakthivel, A. Devaki, D. Balasubramanyam, P. Kumarasamy, A. Raja, R. Anilkumar, H. Gopi

Abstract:

The New Zealand White breed of rabbit is one of the most commonly used, well adapted exotic breeds in India. Earlier studies were limited only to analyze the environmental factors affecting the growth and reproductive performance. In the present study, the population of the New Zealand White rabbits in a closed herd was evaluated for its genetic structure. Data on pedigree information (n=2508) for 18 years (1995-2012) were utilized for the study. Pedigree analysis and the estimates of population genetic parameters based on gene origin probabilities were performed using the software program ENDOG (version 4.8). The analysis revealed that the mean values of generation interval, coefficients of inbreeding and equivalent inbreeding were 1.489 years, 13.233 percent and 17.585 percent, respectively. The proportion of population inbred was 100 percent. The estimated mean values of average relatedness and the individual increase in inbreeding were 22.727 and 3.004 percent, respectively. The percent increase in inbreeding over generations was 1.94, 3.06 and 3.98 estimated through maximum generations, equivalent generations, and complete generations, respectively. The number of ancestors contributing the most of 50% genes (fₐ₅₀) to the gene pool of reference population was 4 which might have led to the reduction in genetic variability and increased amount of inbreeding. The extent of genetic bottleneck assessed by calculating the effective number of founders (fₑ) and the effective number of ancestors (fₐ), as expressed by the fₑ/fₐ ratio was 1.1 which is indicative of the absence of stringent bottlenecks. Up to 5th generation, 71.29 percent pedigree was complete reflecting the well-maintained pedigree records. The maximum known generations were 15 with an average of 7.9 and the average equivalent generations traced were 5.6 indicating of a fairly good depth in pedigree. The realized effective population size was 14.93 which is very critical, and with the increasing trend of inbreeding, the situation has been assessed to be worse in future. The proportion of animals with the genetic conservation index (GCI) greater than 9 was 39.10 percent which can be used as a scale to use such animals with higher GCI to maintain balanced contribution from the founders. From the study, it was evident that the herd was completely inbred with very high inbreeding coefficient and the effective population size was critical. Recommendations were made to reduce the probability of deleterious effects of inbreeding and to improve the genetic variability in the herd. The present study can help in carrying out similar studies to meet the demand for animal protein in developing countries.

Keywords: effective population size, genetic structure, pedigree analysis, rabbit genetics

Procedia PDF Downloads 293
11996 High Temperature and High Pressure Purification of Hydrogen from Syngas Using Metal Organic Framework Adsorbent

Authors: Samira Rostom, Robert Symonds, Robin W. Hughes

Abstract:

Hydrogen is considered as one of the most important clean and renewable energy carriers for a sustainable energy future. However, its efficient and cost-effective purification remains challenging. This paper presents the potential of using metal–organic frameworks (MOFs) in combination with pressure swing adsorption (PSA) technology for syngas based H2 purification. PSA process analysis is done considering high pressure and elevated temperature process conditions, it reduces the demand for off-gas recycle to the fuel reactor and simultaneously permits higher desorption pressure, thereby reducing the parasitic load on the hydrogen compressor. The elevated pressure and temperature adsorption we present here is beneficial to minimizing overall process heating and cooling demand compared to existing processes. Here, we report the comparative performance of zeolite-5A, Cu-BTC, and the mix of zeolite-5A/Cu-BTC for H2 purification from syngas typical of those exiting water-gas-shift reactors. The MOFs were synthesized hydrothermally and then mixed systematically at different weight ratios to find the optimum composition based on the adsorption performance. The formation of different compounds were characterized by XRD, N2 adsorption and desorption, SEM, FT-IR, TG, and water vapor adsorption technologies. Single-component adsorption isotherms of CO2, CO, CH4, N2, and H2 over single materials and composites were measured at elevated pressures and different temperatures to determine their equilibrium adsorption capacity. The examination of the stability and regeneration performance of metal–organic frameworks was carried out using a gravimetric system at temperature ranges of 25-150℃ for a pressure range of 0-30 bar. The studies of adsorption/desorption on the MOFs showed selective adsorption of CO2, CH4, CO, and N2 over H2. Overall, the findings of this study suggest that the Ni-MOF-74/Cu-BTC composites are promising candidates for industrial H2 purification processes.

Keywords: MOF, H2 purification, high T, PSA

Procedia PDF Downloads 101
11995 Indoor Temperature Estimation with FIR Filter Using R-C Network Model

Authors: Sung Hyun You, Jeong Hoon Kim, Dae Ki Kim, Choon Ki Ahn

Abstract:

In this paper, we proposed a new strategy for estimating indoor temperature based on the modified resistance capacitance (R–C) network thermal dynamic model. Using minimum variance finite impulse response (FIR) filter, accurate indoor temperature estimation can be achieved. Our study is clarified by the experimental validation of the proposed indoor temperature estimation method. This experiment scenario environment is composed of a demand response (DR) server and home energy management system (HEMS) in a test bed.

Keywords: energy consumption, resistance-capacitance network model, demand response, finite impulse response filter

Procedia PDF Downloads 447
11994 A Method for Harvesting Atmospheric Lightning-Energy and Utilization of Extra Generated Power of Nuclear Power Plants during the Low Energy Demand Periods

Authors: Akbar Rahmani Nejad, Pejman Rahmani Nejad, Ahmad Rahmani Nejad

Abstract:

we proposed the arresting of atmospheric lightning and passing the electrical current of lightning-bolts through underground water tanks to produce Hydrogen and restoring Hydrogen in reservoirs to be used later as clean and sustainable energy. It is proposed to implement this method for storage of extra electrical power (instead of lightning energy) during low energy demand periods to produce hydrogen as a clean energy source to store in big reservoirs and later generate electricity by burning the stored hydrogen at an appropriate time. This method prevents the complicated process of changing the output power of nuclear power plants. It is possible to pass an electric current through sodium chloride solution to produce chlorine and sodium or human waste to produce Methane, etc. however atmospheric lightning is an accidental phenomenon, but using this free energy just by connecting the output of lightning arresters to the output of power plant during low energy demand period which there is no significant change in the design of power plant or have no cost, can be considered completely an economical design

Keywords: hydrogen gas, lightning energy, power plant, resistive element

Procedia PDF Downloads 141
11993 The Effectiveness of Exchange of Tacit and Explicit Knowledge Using Digital and Face to Face Sharing

Authors: Delio I. Castaneda, Paul Toulson

Abstract:

The purpose of this study was to investigate the knowledge sharing effectiveness of two types of knowledge, tacit and explicit, depending on two channels: face to face or digital. Participants were 217 knowledge workers in New Zealand and researchers who attended a knowledge management conference in the United Kingdom. In the study, it was found that digital tools are effective to share explicit knowledge. In addition, digital tools that facilitated dialogue were effective to share tacit knowledge. It was also found that face to face communication was an effective way to share tacit and explicit knowledge. Results of this study contribute to clarify in what cases digital tools are effective to share tacit knowledge. Additionally, even though explicit knowledge can be easily shared using digital tools, this type of knowledge is also possible to be shared through dialogue. Result of this study may support practitioners to redesign programs and activities based on knowledge sharing to make strategies more effective.

Keywords: digital knowledge, explicit knowledge, knowledge sharing, tacit knowledge

Procedia PDF Downloads 255
11992 Phosphate Capture from Sewage by Hafnium-Modified Fe₃O₄@SiO₂ Superparamagnetic Nanoparticles: Adsorption Capacity, Selectivity, Reusability Analysis and Mechanistic Insights

Authors: Qian Zhao

Abstract:

With global increasing demand for phosphorus and intensively depleting reserves, it is urgent need to explore innovative approaches towards capturing phosphate from sewage, which is also an effective way to reduce phosphate contamination and avoid eutrophication of water bodies. In the present article, the superparamagnetic nano-sorbents containing Fe₃O₄ core and hafnium-modified MgAl/MgFe layered double hydroxides shell (abbreviated as MgAlHf-NP and MgFeHf-NP) was developed using a simple and low-cost synthesis protocol. The obtained Hf-coated nano-materials showed well-defined crystal structure and sufficient saturation magnetization and exhibited higher adsorption capacity for phosphate. Meanwhile, high selectivity was also confirmed since coexisting foreign anions and biomacromolecules showed little competitive effect on phosphate adsorption. The enhancement via doping with Hf should be explained by the stronger ligand complexation built by the pair of hard acid Hf ion and hard base phosphate that matched up the bonding preferences. Sufficient OH⁻ concentration and clear pH shift during the desorption/regeneration allowed for regeneration rate of higher than 90% after 5 cycles of adsorption desorption. This article attempts to provide a competitive candidate for phosphate-capture, which is highly effective, easily separable and repeatedly usable.

Keywords: phosphate recovery, nanoparticles, superparamagnetic, adsorption, reusability

Procedia PDF Downloads 141
11991 Housing Prices and Travel Costs: Insights from Origin-Destination Demand Estimation in Taiwan’s Science Parks

Authors: Kai-Wei Ji, Dung-Ying Lin

Abstract:

This study investigates the impact of transportation on housing prices in regions surrounding Taiwan's science parks. As these parks evolve into crucial economic and population growth centers, they attract an increasing number of residents and workers, significantly influencing local housing markets. This demographic shift raises important questions about the role of transportation in shaping real estate values. Our research examines four major science parks in Taiwan, providing a comparative analysis of how transportation conditions and population dynamics interact to affect housing price premiums. We employ an origin-destination (OD) matrix derived from pervasive traffic data to model travel patterns and their effects on real estate values. The methodology utilizes a bi-level framework: a genetic algorithm optimizes OD demand estimation at the upper level, while a user equilibrium (UE) model simulates traffic flow at the lower level. This approach enables a nuanced exploration of how population growth impacts transportation conditions and housing price premiums. By analyzing the interplay between travel costs based on OD demand estimation and housing prices, we offer valuable insights for urban planners and policymakers. These findings are crucial for informed decision-making in rapidly developing areas, where understanding the relationship between mobility and real estate values is essential for sustainable urban development.

Keywords: demand estimation, genetic algorithm, housing price, transportation

Procedia PDF Downloads 20
11990 Strategies Considered Effective for Funding Public Tertiary Institutions in Nigeria

Authors: Jacinta Ifeoma Obidile

Abstract:

The study sought to ascertain from the opinions of the business educators, effective strategies for funding public tertiary institutions in Anambra State Nigeria, for effective functioning and delivery. Funding of tertiary institutions has become so important following the dilapidated state of most of the public tertiary institutions in Nigeria. Tertiary institutions are known for the production of competitive and competent workforce in the nation. Considering the state of public tertiary institutions currently, one wonders if their objectives are achieved. Many scholars have identified funding as one of the major barriers to effective functioning of tertiary institutions. Although federal and state governments have been supporting the tertiary institutions, but their support seems not to be adequate. This study therefore ascertained from the perspective of business educators, other strategies for funding public tertiary institutions in Anambra State Nigeria, for effective functioning and delivery. Survey research design was adopted for the study. A total of 104 business educators from the public tertiary institutions in the State constituted the population. There was no sampling, hence the whole population was used. Structured questionnaire validated by three experts with a reliability coefficient of 0.82 was the instrument for data collection. Data collected were analyzed using mean and standard deviation. Findings from the study revealed that public-private partnership and external aids were among the strategies considered effective for funding public tertiary institutions. It was therefore recommended among others that associations like alumni should be strongly instituted in each of the public tertiary institutions so as to assist in the funding of tertiary institutions for effective functioning and delivery.

Keywords: strategies, funding, tertiary institutions, business educators

Procedia PDF Downloads 155
11989 The Egyptian eGovernment Journey

Authors: Ali Abdelsattar Elshabrawy

Abstract:

The Egyptian government is struggling to build it's eGovernment project. They succeeded to build the Egyptian digital portal, which contain links for number of services provided by different ministries. For achieving such success, their are requirements necessary to build such a project such as: internet dissemination, IT literacy, Strategy, disqualification of paper based services. This paper is going to clarify the main obstacles to the Egyptian eGovernment project from both the supply and demand sides. Also will clarify the most critical requirements in this phase of the project lifecycle. This paper should be in great value for the project team and also for many other developing countries that share the same obstacles.

Keywords: the egyptian egovernment project lifecycle, supply side barriers, demand side barriers, egovernment project requirements

Procedia PDF Downloads 147
11988 Solar Photovoltaic Driven Air-Conditioning for Commercial Buildings: A Case of Botswana

Authors: Taboka Motlhabane, Pradeep Sahoo

Abstract:

The global demand for cooling has grown exponentially over the past century to meet economic development and social needs, accounting for approximately 10% of the global electricity consumption. As global temperatures continue to rise, the demand for cooling and heating, ventilation and air-conditioning (HVAC) equipment is set to rise with it. The increased use of HVAC equipment has significantly contributed to the growth of greenhouse gas (GHG) emissions which aid the climate crisis- one of the biggest challenges faced by the current generation. The need to address emissions caused directly by HVAC equipment and electricity generated to meet the cooling or heating demand is ever more pressing. Currently, developed countries account for the largest cooling and heating demand, however developing countries are anticipated to experience a huge increase in population growth in 10 years, resulting in a shift in energy demand. Developing countries, which are projected to account for nearly 60% of the world's GDP by 2030, are rapidly building infrastructure and economies to meet their growing needs and meet these projections. Cooling, a very energy-intensive process that can account for 20 % to 75% of a building's energy, depending on the building's use. Solar photovoltaic (PV) driven air-conditioning offers a great cost-effective alternative for adoption in both residential and non-residential buildings to offset grid electricity, particularly in countries with high irradiation, such as Botswana. This research paper explores the potential of a grid-connected solar photovoltaic vapor-compression air-conditioning system for the Peter-Smith herbarium at the Okavango Research Institute (ORI) University of Botswana campus in Maun, Botswana. The herbarium plays a critical role in the collection and preservation of botanical data, dating back over 100 years, with pristine collection from the Okavango Delta, a UNESCO world heritage site and serves as a reference and research site. Due to the herbarium’s specific needs, it operates throughout the day and year in an attempt to maintain a constant herbarium temperature of 16°?. The herbarium model studied simulates a variable-air-volume HVAC system with a system rating of 30 kW. Simulation results show that the HVAC system accounts for 68.9% of the building's total electricity at 296 509.60 kWh annually. To offset the grid electricity, a 175.1 kWp nominal power rated PV system requiring 416 modules to match the required power, covering an area of 928 m2 is used to meet the HVAC system annual needs. An economic assessment using PVsyst found that for an installation priced with average solar PV prices in Botswana totalled to be 787 090.00 BWP, with annual operating costs of 30 500 BWP/year. With self-project financing, the project is estimated to have recouped its initial investment within 6.7 years. At an estimated project lifetime of 20 years, the Net Present Value is projected at 1 565 687.00 BWP with a ROI of 198.9%, with 74 070.67 tons of CO2 saved at the end of the project lifetime. This study investigates the performance of the HVAC system to meet the indoor air comfort requirements, the annual PV system performance, and the building model has been simulated using DesignBuilder Software.

Keywords: vapor compression refrigeration, solar cooling, renewable energy, herbarium

Procedia PDF Downloads 126
11987 Reuse of Wastewater After Pretreatment Under Teril and Sand in Bechar City

Authors: Sara Seddiki, Maazouzi Abdelhak

Abstract:

The main objective of this modest work is to follow the physicochemical and bacteriological evolution of the wastewater from the town of Bechar subjected to purification by filtration according to various local supports, namely Sable and Terrill by reducing nuisances that undergo the receiving environment (Oued Bechar) and therefore make this water source reusable in different areas. The study first made it possible to characterize the urban wastewater of the Bechar wadi, which presents an environmental threat, thus allowing an estimation of the pollutant load, the chemical oxygen demand COD (145 mg / l) and the biological oxygen demand BOD5 (72 mg / l) revealed that these waters are less biodegradable (COD / BOD5 ratio = 0.62), have a fairly high conductivity (2.76 mS/cm), and high levels of mineral matter presented by chlorides and sulphates 390 and 596.1 mg / l respectively, with a pH of 8.1. The characterization of the sand dune (Beni Abbes) shows that quartz (97%) is the most present mineral. The granular analysis allowed us to determine certain parameters like the uniformity coefficient (CU) and the equivalent diameter, and scanning electron microscope (SEM) observations and X-ray analysis were performed. The study of filtered wastewater shows satisfactory and very encouraging treatment results, with complete elimination of total coliforms and streptococci and a good reduction of total aerobic germs in the sand and clay-sand filter. A good yield has been reported in the sand Terrill filter for the reduction of turbidity. The rates of reduction of organic matter in terms of the biological oxygen demand, in chemical oxygen demand recorded, are of the order of 60%. The elimination of sulphates is 40% for the sand filter.

Keywords: urban wastewater, filtration, bacteriological and physicochemical parameters, sand, Terrill, Oued Bechar

Procedia PDF Downloads 95