Search results for: droplet size and velocity
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7090

Search results for: droplet size and velocity

6820 Parametric Investigation of Aircraft Door’s Emergency Power Assist System (EPAS)

Authors: Marshal D. Kafle, Jun H. Kim, Hyun W. Been, Kyoung M. Min

Abstract:

Fluid viscous damping systems are well suited for many air vehicles subjected to shock and vibration. These damping system work with the principle of viscous fluid throttling through the orifice to create huge pressure difference between compression and rebound chamber and obtain the required damping force. One application of such systems is its use in aircraft door system to counteract the door’s velocity and safely stop it. In exigency situations like crash or emergency landing where the door doesn’t open easily, possibly due to unusually tilting of fuselage or some obstacles or intrusion of debris obstruction to move the parts of the door, such system can be combined with other systems to provide needed force to forcefully open the door and also securely stop it simultaneously within the required time i.e.less than 8seconds. In the present study, a hydraulic system called snubber along with other systems like actuator, gas bottle assembly which together known as emergency power assist system (EPAS) is designed, built and experimentally studied to check the magnitude of angular velocity, damping force and time required to effectively open the door. Whenever needed, the gas pressure from the bottle is released to actuate the actuator and at the same time pull the snubber’s piston to operate the emergency opening of the door. Such EPAS installed in the suspension arm of the aircraft door is studied explicitly changing parameters like orifice size, oil level, oil viscosity and bypass valve gap and its spring of the snubber at varying temperature to generate the optimum design case. Comparative analysis of the EPAS at several cases is done and conclusions are made. It is found that during emergency condition, the systemopening time and angular velocity, when snubber with 0.3mm piston and shaft orifice and bypass valve gap of 0.5 mm with its original spring is used,shows significant improvement over the old ones.

Keywords: aircraft door damper, bypass valve, emergency power assist system, hydraulic damper, oil viscosity

Procedia PDF Downloads 401
6819 The Influence of Clayey Pellet Size on Adsorption Efficiency of Metal Ions Removal from Waste Printing Developer

Authors: Kiurski S. Jelena, Ranogajec G. Jonjaua, Oros B. Ivana, Kecić S. Vesna

Abstract:

The adsorption efficiency of fired clayey pellets of 5 and 8 mm diameter size for Cu(II) and Zn(II) ions removal from a waste printing developer was studied. In order to investigate the influence of contact time, adsorbent mass and pellet size on the adsorption efficiency the batch mode was carried out. Faster uptake of copper ions was obtained with the fired clay pellets of 5 mm diameter size within 30 minutes. The pellets of 8 mm diameter size showed the higher equilibrium time (60 to 75 minutes) for copper and zinc ions. The results pointed out that adsorption efficiency increases with the increase of adsorbent mass. The maximal efficiency is different for Cu(II) and Zn(II) ions due to the pellet size. Therefore, the fired clay pellets of 5 mm diameter size present an effective adsorbent for Cu(II) ions removal (adsorption efficiency is 63.6%), whereas the fired clay pellets of 8 mm diameter size are the best alternative for Zn(II) ions removal (adsorption efficiency is 92.8%) from a waste printing developer.

Keywords: adsorption efficiency, clayey pellet, metal ions, waste printing developer

Procedia PDF Downloads 274
6818 Evaluation of Geotechnical Parameters at Nubian Habitations in Kurkur Area, Aswan, Egypt

Authors: R. E. Fat-Helbary, A. A. Abdel-latief, M. S. Arfa, Alaa Mostafa

Abstract:

The Egyptian Government proposed a general plan, aiming at constructing new settlements for Nubian in south Aswan in different places around Nasser Lake, one of these settlements in Kurkur area. The Nubian habitations in Wadi Kurkur are located around 30 km southwest of Aswan City. This area are affecting by near distance earthquakes from Kalabsha faults system. The shallow seismic refraction technique was conducted at the study area, to evaluate the soil and rock material quality and geotechnical parameters, in addition to the detection of the subsurface ground model under the study area. The P and S-wave velocities were calculated. The surface layer has P-wave, velocity ranges from 900 m/sec to 1625 m/sec and S-wave velocity ranges from 650 m/sec to 1400 m/sec. On the other hand the bedrock has P-wave velocity ranges from 1300 m/sec to 1980 m/sec and S-wave velocity ranges from 1050 m/sec to1725 m/sec. Measuring Vp and Vs velocities together with bulk density are calculated and used to extract the mechanical properties and geotechnical parameters of the foundation material at the study area. Output of this study is very important for solving the problems, which associated with the construction of various civil engineering purposes, for land use planning and for earthquakes resistant structure design.

Keywords: shallow seismic refraction technique, Kurkur area, p and s-wave velocities, geotechnical parameters, bulk density, Kalabsha faults

Procedia PDF Downloads 405
6817 Household Size and Poverty Rate: Evidence from Nepal

Authors: Basan Shrestha

Abstract:

The relationship between the household size and the poverty is not well understood. Malthus followers advocate that the increasing population add pressure to the dwindling resource base due to increasing demand that would lead to poverty. Others claim that bigger households are richer due to availability of household labour for income generation activities. Facts from Nepal were analyzed to examine the relationship between the household size and poverty rate. The analysis of data from 3,968 Village Development Committee (VDC)/ municipality (MP) located in 75 districts of all five development regions revealed that the average household size had moderate positive correlation with the poverty rate (Karl Pearson's correlation coefficient=0.44). In a regression analysis, the household size determined 20% of the variation in the poverty rate. Higher positive correlation was observed in eastern Nepal (Karl Pearson's correlation coefficient=0.66). The regression analysis showed that the household size determined 43% of the variation in the poverty rate in east. The relation was poor in far-west. It could be because higher incidence of poverty was there irrespective of household size. Overall, the facts revealed that the bigger households were relatively poorer. With the increasing level of awareness and interventions for family planning, it is anticipated that the household size will decrease leading to the decreased poverty rate. In addition, the government needs to devise a mechanism to create employment opportunities for the household labour force to reduce poverty.

Keywords: household size, poverty rate, nepal, regional development

Procedia PDF Downloads 340
6816 The Superhydrophobic Surface Effect on Laminar Boundary Layer Flows

Authors: Chia-Yung Chou, Che-Chuan Cheng, Chin Chi Hsu, Chun-Hui Wu

Abstract:

This study investigates the fluid of boundary layer flow as it flows through the superhydrophobic surface. The superhydrophobic surface will be assembled into an observation channel for fluid experiments. The fluid in the channel will be doped with visual flow field particles, which will then be pumped by the syringe pump and introduced into the experimentally observed channel through the pipeline. Through the polarized light irradiation, the movement of the particles in the channel is captured by a high-speed camera, and the velocity of the particles is analyzed by MATLAB to find out the particle velocity field changes caused on the fluid boundary layer. This study found that the superhydrophobic surface can effectively increase the velocity near the wall surface, and the faster with the flow rate increases. The superhydrophobic surface also had longer the slip length compared with the plan surface. In the calculation of the drag coefficient, the superhydrophobic surface produces a lower drag coefficient, and there is a more significant difference when the Re reduced in the flow field.

Keywords: hydrophobic, boundary layer, slip length, friction

Procedia PDF Downloads 120
6815 Development of Biotechnological Emulsion Based on Bullfrog (Rana catesbeiana Shaw) Oil: A Preliminary Study

Authors: Lourena M. Veríssimo, Lucas A. Machado, Renata Rutckeviski, Francisco H. Xavier Júnior, Éverton N. Alencar, Andreza R. V. Morais, Teresa R. F. Dantas, Christian M. Oliveira, Arnóbio A. Silva Júnior, Eryvaldo S. T. Egito

Abstract:

This study aimed to obtain emulsion systems based on bullfrog oil (BO). The BO was extracted at 80ºC and analyzed by Gas Chromatography-Mass Spectrometry (GC/MS). The critical Hydrophilic-Lipophilic Balance (HLBc) Assay of the BO was performed through BO, Tween® 20, Span® 80 and deionized water mixtures using an Ultra-Turrax® and determined using dynamic light scattering, pH, electrical conductivity and creaming rate. Then, a pseudoternary phase diagram (PPD) was constructed by water titration. The GC/MS analysis of BO suggested Methyl Oleate (9.26%) as major compound. The HLBc was 12.1, wherein the correspondent emulsion showed a pH of 4.83±1.29, electrical conductivity of 103.65 µS, creaming rate of 2.51±0.54%, droplet size of 207.07±8.31 nm and polydispersity index of 0.212±0.005. The PPD showed different formulations characterized as O/W emulsions. Thus, the PPD proved to be a useful tool to produce BO emulsions, in which their constituents may vary within the range of the desired system.

Keywords: bullfrog (Rana catesbeiana Shaw) oil, emulsion production, hydrophilic-lipophilic balance, gas chromatography/mass spectrometry analysis

Procedia PDF Downloads 487
6814 Inertial Spreading of Drop on Porous Surfaces

Authors: Shilpa Sahoo, Michel Louge, Anthony Reeves, Olivier Desjardins, Susan Daniel, Sadik Omowunmi

Abstract:

The microgravity on the International Space Station (ISS) was exploited to study the imbibition of water into a network of hydrophilic cylindrical capillaries on time and length scales long enough to observe details hitherto inaccessible under Earth gravity. When a drop touches a porous medium, it spreads as if laid on a composite surface. The surface first behaves as a hydrophobic material, as liquid must penetrate pores filled with air. When contact is established, some of the liquid is drawn into pores by a capillarity that is resisted by viscous forces growing with length of the imbibed region. This process always begins with an inertial regime that is complicated by possible contact pinning. To study imbibition on Earth, time and distance must be shrunk to mitigate gravity-induced distortion. These small scales make it impossible to observe the inertial and pinning processes in detail. Instead, in the International Space Station (ISS), astronaut Luca Parmitano slowly extruded water spheres until they touched any of nine capillary plates. The 12mm diameter droplets were large enough for high-speed GX1050C video cameras on top and side to visualize details near individual capillaries, and long enough to observe dynamics of the entire imbibition process. To investigate the role of contact pinning, a text matrix was produced which consisted nine kinds of porous capillary plates made of gold-coated brass treated with Self-Assembled Monolayers (SAM) that fixed advancing and receding contact angles to known values. In the ISS, long-term microgravity allowed unambiguous observations of the role of contact line pinning during the inertial phase of imbibition. The high-speed videos of spreading and imbibition on the porous plates were analyzed using computer vision software to calculate the radius of the droplet contact patch with the plate and height of the droplet vs time. These observations are compared with numerical simulations and with data that we obtained at the ESA ZARM free-fall tower in Bremen with a unique mechanism producing relatively large water spheres and similarity in the results were observed. The data obtained from the ISS can be used as a benchmark for further numerical simulations in the field.

Keywords: droplet imbibition, hydrophilic surface, inertial phase, porous medium

Procedia PDF Downloads 112
6813 Magnetohydrodynamic Flows in a Conduit with Multiple Channels under a Magnetic Field Applied Perpendicular to the Plane of Flow

Authors: Yang Luo, Chang Nyung Kim

Abstract:

This study numerically analyzes a steady-state, three-dimensional liquid-metal magnetohydrodynamic flows in a conduit with multiple channels under a uniform magnetic field. The geometry of the conduit is of a four-parallel-channels system including one inflow channel and three outflow channels. The liquid-metal flows in the inflow channel, then turns 1800 in the transition segment, finally flows into three different outflow channels simultaneously. This kind of channel system can induce counter flow and co-flow, which is rarely investigated before. The axial velocity in the side layer near the first partitioning wall, which is located between the inflow channel and the first outflow channel, is the highest. ‘M-shaped’ velocity profiles are obtained in the side layers of the inflow and outflow channels. The interdependency of the current, fluid velocity, pressure, electric potential is examined in order to describe the electromagnetic characteristics of the liquid-metal flows.

Keywords: liquid-metal, multiple channels, magnetic field, magnetohydrodynamic

Procedia PDF Downloads 263
6812 On the Internal Structure of the ‘Enigmatic Electrons’

Authors: Natarajan Tirupattur Srinivasan

Abstract:

Quantum mechanics( QM) and (special) relativity (SR) have indeed revolutionized the very thinking of physicists, and the spectacular successes achieved over a century due to these two theories are mind-boggling. However, there is still a strong disquiet among some physicists. While the mathematical structure of these two theories has been established beyond any doubt, their physical interpretations are still being contested by many. Even after a hundred years of their existence, we cannot answer a very simple question, “What is an electron”? Physicists are struggling even now to come to grips with the different interpretations of quantum mechanics with all their ramifications. However, it is indeed strange that the (special) relativity theory of Einstein enjoys many orders of magnitude of “acceptance”, though both theories have their own stocks of weirdness in the results, like time dilation, mass increase with velocity, the collapse of the wave function, quantum jump, tunnelling, etc. Here, in this paper, it would be shown that by postulating an intrinsic internal motion to these enigmatic electrons, one can build a fairly consistent picture of reality, revealing a very simple picture of nature. This is also evidenced by Schrodinger’s ‘Zitterbewegung’ motion, about which so much has been written. This leads to a helical trajectory of electrons when they move in a laboratory frame. It will be shown that the helix is a three-dimensional wave having all the characteristics of our familiar 2D wave. Again, the helix, being a geodesic on an imaginary cylinder, supports ‘quantization’, and its representation is just the complex exponentials matching with the wave function of quantum mechanics. By postulating the instantaneous velocity of the electrons to be always ‘c’, the velocity of light, the entire relativity comes alive, and we can interpret the ‘time dilation’, ‘mass increase with velocity’, etc., in a very simple way. Thus, this model unifies both QM and SR without the need for a counterintuitive postulate of Einstein about the constancy of the velocity of light for all inertial observers. After all, if the motion of an inertial frame cannot affect the velocity of light, the converse that this constant also cannot affect the events in the frame must be true. But entire relativity is about how ‘c’ affects time, length, mass, etc., in different frames.

Keywords: quantum reconstruction, special theory of relativity, quantum mechanics, zitterbewegung, complex wave function, helix, geodesic, Schrodinger’s wave equations

Procedia PDF Downloads 47
6811 Studies on Performance of an Airfoil and Its Simulation

Authors: Rajendra Roul

Abstract:

The main objective of the project is to bring attention towards the performance of an aerofoil when exposed to the fluid medium inside the wind tunnel. This project aims at involvement of civil as well as mechanical engineering thereby making itself as a multidisciplinary project. The airfoil of desired size is taken into consideration for the project to carry out effectively. An aerofoil is the shape of the wing or blade of propeller, rotor or turbine. Lot of experiment have been carried out through wind-tunnel keeping aerofoil as a reference object to make a future forecast regarding the design of turbine blade, car and aircraft. Lift and drag now become the major identification factor for any design industry which shows that wind tunnel testing along with software analysis (ANSYS) becomes the mandatory task for any researchers to forecast an aerodynamics design. This project is an initiative towards the mitigation of drag, better lift and analysis of wake surface profile by investigating the surface pressure distribution. The readings has been taken on airfoil model in Wind Tunnel Testing Machine (WTTM) at different air velocity 20m/sec, 25m/sec, 30m/sec and different angle of attack 00,50,100,150,200. Air velocity and pressures are measured in several ways in wind tunnel testing machine by use to measuring instruments like Anemometer and Multi tube manometer. Moreover to make the analysis more accurate Ansys fluent contribution become substantial and subsequently the CFD simulation results. Analysis on an Aerofoil have a wide spectrum of application other than aerodynamics including wind loads in the design of buildings and bridges for structural engineers.

Keywords: wind-tunnel, aerofoil, Ansys, multitube manometer

Procedia PDF Downloads 386
6810 The Effects of High Velocity Low Amplitude Thrust Manipulation versus Low Velocity Low Amplitude Mobilization in Treatment of Chronic Mechanical Low Back Pain

Authors: Ahmed R. Z. Baghdadi, Ibrahim M. I. Hamoda,  Mona H. Gamal Eldein, Ibrahim Magdy Elnaggar

Abstract:

Background: High-velocity low amplitude thrust (HVLAT) manipulation and low-velocity low amplitude (LVLA) mobilization are an effective treatment for low back pain (LBP). Purpose: This study compared the effects of HVLAT versus LVLA on pain, functional deficits and segmental mobility in treatment of chronic mechanical LBP. Methods: Ninety patients suffering from chronic mechanical LBP are classified to three groups; Thirty patients treated by HVLAT (group I), thirty patients treated by LVLA (group II) and thirty patients as control group (group III) participated in the study. The mean age was 28.00±2.92, 27.83±2.28 and 28.07±3.05 years and BMI 27.98±2.60, 28.80±2.40 and 28.70±2.53 kg/m2 for group I, II and III respectively. The Visual Analogue Scale (VAS), the Oswestry low back pain disability questionnaire and modified schoper test were used for assessment. Assessments were conducted two weeks before and after treatment with the control group being assessed at the same time intervals. The treatment program group one was two weeks single session per week, and for group II two sessions per week for two weeks. Results: The One-way ANOVA revealed that group I had significantly lower pain scores and Oswestry score compared with group II two weeks after treatment. Moreover, the mobility in modified schoper increased significantly and the pain scores and Oswestry scores decreased significantly after treatment in group I and II compared with control group. Interpretation/Conclusion: HVLAT is preferable to LVLA mobilization, possibly due to a beneficial neurophysiological effect by Stimulating mechanically sensitive neurons in the lumbar facet joint capsule.

Keywords: low back pain, manipulation, mobilization, low velocity

Procedia PDF Downloads 570
6809 Meditation and Insight Interpretation Using Quantum Circle Based-on Experiment and Quantum Relativity Formalism

Authors: Somnath Bhattachryya, Montree Bunruangses, Somchat Sonasang, Preecha Yupapin

Abstract:

In this study and research on meditation and insight, the design and experiment with electronic circuits to manipulate the meditators' mental circles that call the chakras to have the same size is proposed. The shape of the circuit is 4-ports, called an add-drop multiplexer, that studies the meditation structure called the four-mindfulness foundation, then uses an AC power signal as an input instead of the meditation time function, where various behaviors with the method of re-filtering the signal (successive filtering), like eight noble paths. Start by inputting a signal at a frequency that causes the velocity of the wave on the perimeter of the circuit to cause particles to have the speed of light in a vacuum. The signal changes from electromagnetic waves and matter waves according to the velocity (frequency) until it reaches the point of the relativistic limit. The electromagnetic waves are transformed into photons with properties of wave-particle overcoming the limits of the speed of light. As for the matter wave, it will travel to the other side and cannot pass through the relativistic limit, called a shadow signal (echo) that can have power from increasing speed but cannot create speed faster than light or insight. In the experiment, the only the side where the velocity is positive, only where the speed above light or the corresponding frequency indicates intelligence. Other side(echo) can be done by changing the input signal to the other side of the circuit to get the same result. But there is no intelligence or speed beyond light. It is also used to study the stretching, contraction of time and wormholes that can be applied for teleporting, Bose-Einstein condensate and teleprinting, quantum telephone. The teleporting can happen throughout the system with wave-particle and echo, which is when the speed of the particle is faster than the stretching or contraction of time, the particle will submerge in the wormhole, when the destination and time are determined, will travel through the wormhole. In a wormhole, time can determine in the future and the past. The experimental results using the microstrip circuit have been found to be by the principle of quantum relativity, which can be further developed for both tools and meditation practitioners for quantum technology.

Keywords: quantu meditation, insight picture, quantum circuit, absolute time, teleportation

Procedia PDF Downloads 40
6808 Image-Based UAV Vertical Distance and Velocity Estimation Algorithm during the Vertical Landing Phase Using Low-Resolution Images

Authors: Seyed-Yaser Nabavi-Chashmi, Davood Asadi, Karim Ahmadi, Eren Demir

Abstract:

The landing phase of a UAV is very critical as there are many uncertainties in this phase, which can easily entail a hard landing or even a crash. In this paper, the estimation of relative distance and velocity to the ground, as one of the most important processes during the landing phase, is studied. Using accurate measurement sensors as an alternative approach can be very expensive for sensors like LIDAR, or with a limited operational range, for sensors like ultrasonic sensors. Additionally, absolute positioning systems like GPS or IMU cannot provide distance to the ground independently. The focus of this paper is to determine whether we can measure the relative distance and velocity of UAV and ground in the landing phase using just low-resolution images taken by a monocular camera. The Lucas-Konda feature detection technique is employed to extract the most suitable feature in a series of images taken during the UAV landing. Two different approaches based on Extended Kalman Filters (EKF) have been proposed, and their performance in estimation of the relative distance and velocity are compared. The first approach uses the kinematics of the UAV as the process and the calculated optical flow as the measurement; On the other hand, the second approach uses the feature’s projection on the camera plane (pixel position) as the measurement while employing both the kinematics of the UAV and the dynamics of variation of projected point as the process to estimate both relative distance and relative velocity. To verify the results, a sequence of low-quality images taken by a camera that is moving on a specifically developed testbed has been used to compare the performance of the proposed algorithm. The case studies show that the quality of images results in considerable noise, which reduces the performance of the first approach. On the other hand, using the projected feature position is much less sensitive to the noise and estimates the distance and velocity with relatively high accuracy. This approach also can be used to predict the future projected feature position, which can drastically decrease the computational workload, as an important criterion for real-time applications.

Keywords: altitude estimation, drone, image processing, trajectory planning

Procedia PDF Downloads 90
6807 Application of Seismic Refraction Method in Geotechnical Study

Authors: Abdalla Mohamed M. Musbahi

Abstract:

The study area lies in Al-Falah area on Airport-Tripoli in Zone (16) Where planned establishment of complex multi-floors for residential and commercial, this part was divided into seven subzone. In each sup zone, were collected Orthogonal profiles by using Seismic refraction method. The overall aim with this project is to investigate the applicability of Seismic refraction method is a commonly used traditional geophysical technique to determine depth-to-bedrock, competence of bedrock, depth to the water table, or depth to other seismic velocity boundaries The purpose of the work is to make engineers and decision makers recognize the importance of planning and execution of a pre-investigation program including geophysics and in particular seismic refraction method. The overall aim with this thesis is achieved by evaluation of seismic refraction method in different scales, determine the depth and velocity of the base layer (bed-rock). Calculate the elastic property in each layer in the region by using the Seismic refraction method. The orthogonal profiles was carried out in every subzones of (zone 16). The layout of the seismic refraction set up is schematically, the geophones are placed on the linear imaginary line whit a 5 m spacing, the three shot points (in beginning of layout–mid and end of layout) was used, in order to generate the P and S waves. The 1st and last shot point is placed about 5 meters from the geophones and the middle shot point is put in between 12th to 13th geophone, from time-distance curve the P and S waves was calculated and the thickness was estimated up to three-layers. As we know any change in values of physical properties of medium (shear modulus, bulk modulus, density) leads to change waves velocity which passing through medium where any change in properties of rocks cause change in velocity of waves. because the change in properties of rocks cause change in parameters of medium density (ρ), bulk modulus (κ), shear modulus (μ). Therefore, the velocity of waves which travel in rocks have close relationship with these parameters. Therefore we can estimate theses parameters by knowing primary and secondary velocity (p-wave, s-wave).

Keywords: application of seismic, geotechnical study, physical properties, seismic refraction

Procedia PDF Downloads 471
6806 Macroeconomic Determinants of Cyclical Variations in Value, Size, and Momentum Premium in the UK

Authors: G. Sarwar, C. Mateus, N. Todorovic

Abstract:

The paper examines the asymmetries in size, value and momentum premium over the economic cycles in the UK and their macroeconomic determinants. Using Markov switching approach we find clear evidence of cyclical variations of the three premiums, most noticeably variations in size premium. We associate Markov switching regime 1 with economic upturn and regime 2 with economic downturn as per OECD’s Composite Leading Indicator. The macroeconomic indicators prompting such cyclicality the most are interest rates, term structure and credit spread. The role of GDP growth, money supply and inflation is less pronounced in our sample.

Keywords: macroeconomic determinants, Markorv Switching, size, value

Procedia PDF Downloads 462
6805 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: cascade control, dynamic braking system, DC traction motors, slip control

Procedia PDF Downloads 339
6804 Class Size Effects on Reading Achievement in Europe: Evidence from Progress in International Reading Literacy Study

Authors: Ting Shen, Spyros Konstantopoulos

Abstract:

During the past three decades, class size effects have been a focal debate in education. The idea of having smaller class is enormously popular among parents, teachers and policy makers. The rationale of its popularity is that small classroom could provide a better learning environment in which there would be more teacher-pupil interaction and more individualized instruction. This early stage benefits would also have a long-term positive effect. It is a common belief that reducing class size may result in increases in student achievement. However, the empirical evidence about class-size effects from experimental or quasi-experimental studies has been mixed overall. This study sheds more light on whether class size reduction impacts reading achievement in eight European countries: Bulgaria, Germany, Hungary, Italy, Lithuania, Romania, Slovakia, and Slovenia. We examine class size effects on reading achievement using national probability samples of fourth graders. All eight European countries had participated in the Progress in International Reading Literacy Study (PIRLS) in 2001, 2006 and 2011. Methodologically, the quasi-experimental method of instrumental variables (IV) has been utilized to facilitate causal inference of class size effects. Overall, the results indicate that class size effects on reading achievement are not significant across countries and years. However, class size effects are evident in Romania where reducing class size increases reading achievement. In contrast, in Germany, increasing class size seems to increase reading achievement. In future work, it would be valuable to evaluate differential class size effects for minority or economically disadvantaged student groups or low- and high-achievers. Replication studies with different samples and in various settings would also be informative. Future research should continue examining class size effects in different age groups and countries using rich international databases.

Keywords: class size, reading achievement, instrumental variables, PIRLS

Procedia PDF Downloads 269
6803 Increment of Panel Flutter Margin Using Adaptive Stiffeners

Authors: S. Raja, K. M. Parammasivam, V. Aghilesh

Abstract:

Fluid-structure interaction is a crucial consideration in the design of many engineering systems such as flight vehicles and bridges. Aircraft lifting surfaces and turbine blades can fail due to oscillations caused by fluid-structure interaction. Hence, it is focussed to study the fluid-structure interaction in the present research. First, the effect of free vibration over the panel is studied. It is well known that the deformation of a panel and flow induced forces affects one another. The selected panel has a span 300mm, chord 300mm and thickness 2 mm. The project is to study, the effect of cross-sectional area and the stiffener location is carried out for the same panel. The stiffener spacing is varied along both the chordwise and span-wise direction. Then for that optimal location the ideal stiffener length is identified. The effect of stiffener cross-section shapes (T, I, Hat, Z) over flutter velocity has been conducted. The flutter velocities of the selected panel with two rectangular stiffeners of cantilever configuration are estimated using MSC NASTRAN software package. As the flow passes over the panel, deformation takes place which further changes the flow structure over it. With increasing velocity, the deformation goes on increasing, but the stiffness of the system tries to dampen the excitation and maintain equilibrium. But beyond a critical velocity, the system damping suddenly becomes ineffective, so it loses its equilibrium. This estimated in NASTRAN using PK method. The first 10 modal frequencies of a simple panel and stiffened panel are estimated numerically and are validated with open literature. A grid independence study is also carried out and the modal frequency values remain the same for element lengths less than 20 mm. The current investigation concludes that the span-wise stiffener placement is more effective than the chord-wise placement. The maximum flutter velocity achieved for chord-wise placement is 204 m/s while for a span-wise arrangement it is augmented to 963 m/s for the stiffeners location of ¼ and ¾ of the chord from the panel edge (50% of chord from either side of the mid-chord line). The flutter velocity is directly proportional to the stiffener cross-sectional area. A significant increment in flutter velocity from 218m/s to 1024m/s is observed for the stiffener lengths varying from 50% to 60% of the span. The maximum flutter velocity above Mach 3 is achieved. It is also observed that for a stiffened panel, the full effect of stiffener can be achieved only when the stiffener end is clamped. Stiffeners with Z cross section incremented the flutter velocity from 142m/s (Panel with no stiffener) to 328 m/s, which is 2.3 times that of simple panel.

Keywords: stiffener placement, stiffener cross-sectional area, stiffener length, stiffener cross sectional area shape

Procedia PDF Downloads 270
6802 Friction and Wear Characteristics of Pongamia Oil Based Blended Lubricant at Different Load and Sliding Distance

Authors: Yashvir Singh

Abstract:

Around the globe, there is demand for the development of bio-based lubricant which will be biodegradable, non -toxic and environmental friendly. This paper outlines the friction and wear characteristics of Pongamia oil (PO) contaminated bio-lubricant by using pin-on-disc tribometer. To formulate the bio-lubricants, PO was blended in the ratios 15, 30 and 50% by volume with the base lubricant SAE 20 W 40. Tribological characteristics of these blends were carried out at 3.8 m/s sliding velocity and loads applied were 50, 100, 150 N. Experimental results showed that the lubrication regime that occurred during the test was boundary lubrication while the main wear mechanisms were abrasive and the adhesive wear. During testing, the lowest wear was found with the addition of 15% PO, and above this contamination, the wear rate was increased considerably. With increase in load, viscosity of all the bio-lubricants increases and meets the ISO VG 100 requirement at 40 oC except PB 50. The addition of PO in the base lubricant acted as a very good lubricant additive which reduced the friction and wear scar diameter during the test. It has been concluded that the PB 15 can act as an alternative lubricant to increase the mechanical efficiency at 3.8 m/s sliding velocity and contribute in reduction of dependence on the petroleum based products.

Keywords: friction, load, pongamia oil, sliding velocity, wear

Procedia PDF Downloads 338
6801 2D Numerical Modeling of Ultrasonic Measurements in Concrete: Wave Propagation in a Multiple-Scattering Medium

Authors: T. Yu, L. Audibert, J. F. Chaix, D. Komatitsch, V. Garnier, J. M. Henault

Abstract:

Linear Ultrasonic Techniques play a major role in Non-Destructive Evaluation (NDE) for civil engineering structures in concrete since they can meet operational requirements. Interpretation of ultrasonic measurements could be improved by a better understanding of ultrasonic wave propagation in a multiple scattering medium. This work aims to develop a 2D numerical model of ultrasonic wave propagation in a heterogeneous medium, like concrete, integrating the multiple scattering phenomena in SPECFEM software. The coherent field of multiple scattering is obtained by averaging numerical wave fields, and it is used to determine the effective phase velocity and attenuation corresponding to an equivalent homogeneous medium. First, this model is applied to one scattering element (a cylinder) in a homogenous medium in a linear-elastic system, and its validation is completed thanks to the comparison with analytical solution. Then, some cases of multiple scattering by a set of randomly located cylinders or polygons are simulated to perform parametric studies on the influence of frequency and scatterer size, concentration, and shape. Also, the effective properties are compared with the predictions of Waterman-Truell model to verify its validity. Finally, the mortar viscoelastic behavior is introduced in the simulation in order to considerer the dispersion and the attenuation due to porosity included in the cement paste. In the future, different steps will be developed: The comparisons with experimental results, the interpretation of NDE measurements, and the optimization of NDE parameters before an auscultation.

Keywords: attenuation, multiple-scattering medium, numerical modeling, phase velocity, ultrasonic measurements

Procedia PDF Downloads 243
6800 Effect of Particle Size on Alkali-Activation of Slag

Authors: E. Petrakis, V. Karmali, K. Komnitsas

Abstract:

In this study grinding experiments were performed in a laboratory ball mill using Polish ferronickel slag in order to study the effect of the particle size on alkali activation and the properties of the produced alkali activated materials (AAMs). In this regard, the particle size distribution and the specific surface area of the grinding products in relation to grinding time were assessed. The experimental results show that products with high compressive strength, e.g. higher than 60 MPa, can be produced when the slag median size decreased from 39.9 μm to 11.9 μm. Also, finer fractions are characterized by higher reactivity and result in the production of AAMs with lower porosity and better mechanical properties.

Keywords: alkali activation, compressive strength, grinding time, particle size distribution, slag, structural integrity

Procedia PDF Downloads 111
6799 The Experimental Study on Reducing and Carbonizing Titanium-Containing Slag by Iron-Containing Coke

Authors: Yadong Liu

Abstract:

The experimental study on reduction carbonization of coke containing iron respectively with the particle size of <0.3mm, 0.3-0.6mm and 0.6-0.9mm and synthetic sea sand ore smelting reduction titanium-bearing slag as material were studied under the conditions of holding 6h at most at 1500℃. The effects of coke containing iron particle size and heat preservation time on the formation of TiC and the size of TiC crystal were studied by XRD, SEM and EDS. The results show that it is not good for the formation, concentration and growth of TiC crystal when the particle size of coke containing iron is too small or too large. The suitable particle size is 0.3~0.6mm. The heat preservation time of 2h basically ensures that all the component TiO2 in the slag are reduced and carbonized and converted to TiC. The size of TiC crystal will increase with the prolongation of heat preservation time. The thickness of the TiC layer can reach 20μm when the heat preservation time is 6h.

Keywords: coke containing iron, formation and concentration and growth of TiC, reduction and carbonization, titanium-bearing slag

Procedia PDF Downloads 124
6798 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact

Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze

Abstract:

Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.

Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric

Procedia PDF Downloads 142
6797 The Continuously Supported Infinity Rail Subjected to a Moving Complex Bogie System

Authors: Vladimir Stojanović, Marko D. Petković

Abstract:

The vibration of a complex bogie system that moves on along the high order shear deformable beam on a viscoelastic foundation is studied. The complex bogie system has been modeled by elastically connected rigid bars on an identical supports. Elastic coupling between bars is introduced to simulate rigidly or flexibly (transversal or/and rotational) connection. Identical supports are modeled as a system of attached spring and dashpot to the bar on one side and interact with the beam through the concentrated mass on the other side. It is assumed that the masses and the beam are always in contact. New analytically determined critical velocity of the system is presented. It is analyzed the case when the complex bogie system exceeds the minimum phase velocity of waves in the beam when the vibration of the system may become unstable. Effect of an elastic coupling between bars on the stability of the system has been analyzed. The instability regions are found for the complex bogie system by applying the principle of the argument and D-decomposition method.

Keywords: Reddy-Bickford beam, D-decomposition method, principle of argument, critical velocity

Procedia PDF Downloads 282
6796 Capability of Available Seismic Soil Liquefaction Potential Assessment Models Based on Shear-Wave Velocity Using Banchu Case History

Authors: Nima Pirhadi, Yong Bo Shao, Xusheng Wa, Jianguo Lu

Abstract:

Several models based on the simplified method introduced by Seed and Idriss (1971) have been developed to assess the liquefaction potential of saturated sandy soils. The procedure includes determining the cyclic resistance of the soil as the cyclic resistance ratio (CRR) and comparing it with earthquake loads as cyclic stress ratio (CSR). Of all methods to determine CRR, the methods using shear-wave velocity (Vs) are common because of their low sensitivity to the penetration resistance reduction caused by fine content (FC). To evaluate the capability of the models, based on the Vs., the new data from Bachu-Jianshi earthquake case history collected, then the prediction results of the models are compared to the measured results; consequently, the accuracy of the models are discussed via three criteria and graphs. The evaluation demonstrates reasonable accuracy of the models in the Banchu region.

Keywords: seismic liquefaction, banchu-jiashi earthquake, shear-wave velocity, liquefaction potential evaluation

Procedia PDF Downloads 208
6795 Determination of the Local Elastic Moduli of Shungite by Laser Ultrasonic Spectroscopy

Authors: Elena B. Cherepetskaya, Alexander A.Karabutov, Vladimir A. Makarov, Elena A. Mironova, Ivan A. Shibaev

Abstract:

In our study, the object of laser ultrasonic testing was plane-parallel plate of shungit (length 41 mm, width 31 mm, height 15 mm, medium exchange density 2247 kg/m3). We used laser-ultrasonic defectoscope with wideband opto-acoustic transducer in our investigation of the velocities of longitudinal and shear elastic ultrasound waves. The duration of arising elastic pulses was less than 100 ns. Under known material thickness, the values of the velocities were determined by the time delay of the pulses reflected from the bottom surface of the sample with respect to reference pulses. The accuracy of measurement was 0.3% in the case of longitudinal wave velocity and 0.5% in the case of shear wave velocity (scanning pitch along the surface was 2 mm). On the base of found velocities of elastic waves, local elastic moduli of shungit (Young modulus, shear modulus and Poisson's ratio) were uniquely determined.

Keywords: laser ultrasonic testing , local elastic moduli, shear wave velocity, shungit

Procedia PDF Downloads 282
6794 Effects of Particle Size Distribution on Mechanical Strength and Physical Properties in Engineered Quartz Stone

Authors: Esra Arici, Duygu Olmez, Murat Ozkan, Nurcan Topcu, Furkan Capraz, Gokhan Deniz, Arman Altinyay

Abstract:

Engineered quartz stone is a composite material comprising approximately 90 wt.% fine quartz aggregate with a variety of particle size ranges and `10 wt.% unsaturated polyester resin (UPR). In this study, the objective is to investigate the influence of particle size distribution on mechanical strength and physical properties of the engineered stone slabs. For this purpose, granular quartz with two particle size ranges of 63-200 µm and 100-300 µm were used individually and mixed with a difference in ratios of mixing. The void volume of each granular packing was measured in order to define the amount of filler; quartz powder with the size of less than 38 µm, and UPR required filling inter-particle spaces. Test slabs were prepared using vibration-compression under vacuum. The study reports that both impact strength and flexural strength of samples increased as the mix ratio of the particle size range of 63-200 µm increased. On the other hand, the values of water absorption rate, apparent density and abrasion resistance were not affected by the particle size distribution owing to vacuum compaction. It is found that increasing the mix ratio of the particle size range of 63-200 µm caused the higher porosity. This led to increasing in the amount of the binder paste needed. It is also observed that homogeneity in the slabs was improved with the particle size range of 63-200 µm.

Keywords: engineered quartz stone, fine quartz aggregate, granular packing, mechanical strength, particle size distribution, physical properties.

Procedia PDF Downloads 119
6793 Three Dimensional Simulation of the Transient Modeling and Simulation of Different Gas Flows Velocity and Flow Distribution in Catalytic Converter with Porous Media

Authors: Amir Reza Radmanesh, Sina Farajzadeh Khosroshahi, Hani Sadr

Abstract:

The transient catalytic converter performance is governed by complex interactions between exhaust gas flow and the monolithic structure of the catalytic converter. Stringent emission regulations around the world necessitate the use of highly-efficient catalytic converters in vehicle exhaust systems. Computational fluid dynamics (CFD) is a powerful tool for calculating the flow field inside the catalytic converter. Radial velocity profiles, obtained by a commercial CFD code, present very good agreement with respective experimental results published in the literature. However the applicability of CFD for transient simulations is limited by the high CPU demands. In the present work, Geometric modeling ceramic monolith substrate is done with square shaped channel type of Catalytic converter and it is coated platinum and palladium. This example illustrates the effect of flow distribution on thermal response of a catalytic converter and different gas flow velocities, during the critical phase of catalytic converter warm up.

Keywords: catalytic converter, computational fluid dynamic, porous media, velocity distribution

Procedia PDF Downloads 833
6792 Effect of Particle Aspect Ratio and Shape Factor on Air Flow inside Pulmonary Region

Authors: Pratibha, Jyoti Kori

Abstract:

Particles in industry, harvesting, coal mines, etc. may not necessarily be spherical in shape. In general, it is difficult to find perfectly spherical particle. The prediction of movement and deposition of non spherical particle in distinct airway generation is much more difficult as compared to spherical particles. Moreover, there is extensive inflexibility in deposition between ducts of a particular generation and inside every alveolar duct since particle concentrations can be much bigger than the mean acinar concentration. Consequently, a large number of particles fail to be exhaled during expiration. This study presents a mathematical model for the movement and deposition of those non-spherical particles by using particle aspect ratio and shape factor. We analyse the pulsatile behavior underneath sinusoidal wall oscillation due to periodic breathing condition through a non-Darcian porous medium or inside pulmonary region. Since the fluid is viscous and Newtonian, the generalized Navier-Stokes equation in two-dimensional coordinate system (r, z) is used with boundary-layer theory. Results are obtained for various values of Reynolds number, Womersley number, Forchsheimer number, particle aspect ratio and shape factor. Numerical computation is done by using finite difference scheme for very fine mesh in MATLAB. It is found that the overall air velocity is significantly increased by changes in aerodynamic diameter, aspect ratio, alveoli size, Reynolds number and the pulse rate; while velocity is decreased by increasing Forchheimer number.

Keywords: deposition, interstitial lung diseases, non-Darcian medium, numerical simulation, shape factor

Procedia PDF Downloads 154
6791 NaCl Erosion-Corrosion of Mild Steel under Submerged Impingement Jet

Authors: M. Sadique, S. Ainane, Y. F. Yap, P. Rostron, E. Al Hajri

Abstract:

The presence of sand in production lines in the oil and gas industries causes material degradation due to erosion-corrosion. The material degradation caused by erosion-corrosion in pipelines can result in a high cost of monitoring and maintenance and in major accidents. The process of erosion-corrosion consists of erosion, corrosion, and their interactions. Investigating and understanding how the erosion-corrosion process affects the degradation process in certain materials will allow for a reduction in economic loss and help prevent accidents. In this study, material loss due to erosion-corrosion of mild steel under impingement of sand-laden water at 90˚ impingement angle is investigated using a submerged impingement jet (SIJ) test. In particular, effects of jet velocity and sand loading on TWL due to erosion-corrosion, weight loss due to pure erosion and erosion-corrosion interactions, at a temperature of 29-33 °C in sea water environment (3.5% NaCl), are analyzed. The results show that the velocity and sand loading have a great influence on the removal of materials, and erosion is more dominant under all conditions studied. Changes in the surface characteristics of the specimen after impingement test are also discussed.

Keywords: erosion-corrosion, flow velocity, jet impingement, sand loading

Procedia PDF Downloads 251