Search results for: data utilization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26419

Search results for: data utilization

26149 Experimental Implementation of Model Predictive Control for Permanent Magnet Synchronous Motor

Authors: Abdelsalam A. Ahmed

Abstract:

Fast speed drives for Permanent Magnet Synchronous Motor (PMSM) is a crucial performance for the electric traction systems. In this paper, PMSM is drived with a Model-based Predictive Control (MPC) technique. Fast speed tracking is achieved through optimization of the DC source utilization using MPC. The technique is based on predicting the optimum voltage vector applied to the driver. Control technique is investigated by comparing to the cascaded PI control based on Space Vector Pulse Width Modulation (SVPWM). MPC and SVPWM-based FOC are implemented with the TMS320F2812 DSP and its power driver circuits. The designed MPC for a PMSM drive is experimentally validated on a laboratory test bench. The performances are compared with those obtained by a conventional PI-based system in order to highlight the improvements, especially regarding speed tracking response.

Keywords: permanent magnet synchronous motor, model-based predictive control, DC source utilization, cascaded PI control, space vector pulse width modulation, TMS320F2812 DSP

Procedia PDF Downloads 644
26148 Biodistribution Studies of 177Lu-DOTATOC in Mouse Tumor Model: Possible Utilization in Adenocarcinoma Breast Cancer Treatment

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri, S. Kakaei

Abstract:

Despite the appropriate characteristics of 177Lu and DOTATOC, to our best knowledge, the therapeutic benefit of 177Lu-DOTATOC complex in breast cancer has not been reported until now. In this study, biodistribution of 177Lu-DOTA-TOC in mouse tumor model for evaluation of possible utilization of this complex in breast cancer treatment was investigated.177Lu was prepared with the specific activity of 2.6-3 GBq.mg-1 and radionuclidic purity higher than 99%. The radiolabeled complex was prepared in the optimized conditions with the radiochemical purity higher than 99%. The final solution was injected to the BALB/c mice with adenocarcinoma breast cancer. The biodistribution results showed major accumulation in the kidneys as the major excretion route and the somatostatin receptor-positive tissues such as pancreas compared with the other tissues. Also, significant uptake was observed in tumor even in longer time after injection. According to the results obtained in this research study, somatostatin receptors expressed in breast cancers can be targeted with DOTATOC analogues especially with 177Lu-DOTATOC as an ideal therapeutic agent.

Keywords: ¹⁷⁷Lu, adenocarcinoma breast cancer, DOTATOC, BALB/c mice

Procedia PDF Downloads 227
26147 Digitalization, Supply Chain Integration and Financial Performance: Case of Tunisian Agro-industrial Sector

Authors: Rym Ghariani, Younes Boujelbene

Abstract:

In contemporary times, global technological advancements, particularly those in the realm of digital technology, have emerged as pivotal instruments for enterprises in fostering viable partnerships and forging meaningful alliances with other firms. The advent of these digital innovations is poised to revolutionize nearly every facet and operation within corporate entities. The primary objective of this study is to explore the correlation between digitization, integration of supply chains, and the financial efficacy of the agro-industrial sector in Tunisia. To accomplish this, data collection employed a questionnaire as the primary research instrument. Subsequently, the research queries were addressed, and hypotheses were examined by subjecting the gathered data to principal component analysis and linear regression modeling, facilitated by the utilization of SPSS26 software. The findings revealed that digitalization within the supply chain, along with external supply chain integration, exerted discernible impacts on the financial performance of the organization.

Keywords: digitalization, supply chain integration, financial performance, Tunisian agro-industrial sector

Procedia PDF Downloads 48
26146 Supply Side Barriers to Maternal Health Care Utilization in District Gwadar, Balochistan

Authors: Changaiz Khan

Abstract:

Pakistan has the highest rates of maternal mortality in South Asia. From the year 2000 to 2017 the global rate of maternal mortality has decreased up to 39 %. In the context of South Asia, it has decreased by 59% since 2000s. Pakistan has also reduced the rate of maternal mortality, but there is a difference on the provincial level. According to the report of the National Institute of Population Studies (NIPS) conducted in 2020, the MMR in Balochistan has crossed the ratio of most of the South Asian countries, i.e., 298 maternal deaths per 100,000 live births. In comparison, the province of Punjab has the lowest maternal mortality rate i.e. 157 deaths (per 100,000 live births). The rate of maternal mortality is much higher in Balochistan as compared to the other provinces. This research is aimed to discuss the supply side barriers and utilization of maternal healthcare services in the District Gwadar. Likert scale survey method has been used to collect data from the Healthcare Professionals from hospitals -private and government- and the maternal healthcare receiver, that is patient. Semi-structured interviews of healthcare professionals such as doctors, nurses, and Lab technicians have also been conducted. It has been found in this research study that the hospitals in Gwadar district are lagging behind in providing modern maternal healthcare to women due to the lack of staff training, medicine supply, and Laboratories. Moreover, the system of the lady health worker is also not catering to the needs of the women in District Gwadar. It has been recommended in the study that first of all the government should fulfill the supply of the medicine in the hospital. Secondly, the government should open laboratories in the hospitals. Thirdly, the government should increase the funding of the government hospital and the allocation of lady health workers in District Gwadar, Balochistan should be increased.

Keywords: maternal mortality, neonatal, postnatal, supply barriers, patients, healthcare professionals, laboratory, medical supply, training

Procedia PDF Downloads 55
26145 Characterization and Evaluation of LD Slag and Fly Ash Mixture for Their Possible Utilization in Different Sectors

Authors: Jagdeep Nayak, Biswajit Paul, Anup Gupta

Abstract:

Characterization of coal refuses to fly ash, and steel slag from steel industries have been performed to develop a mixture of both these materials to enhance strength properties of their utilization in other sectors like mine fill, construction work, etc. A large amount of Linz-Donawitz (LD) slag and fly ash waste are generated from steel and thermal power industries respectively. Management of these wastes is problematic, and their reutilization may provide a sustainable waste management option. LD slag and fly ash mixed in different proportions were tested to analyse the micro structural improvement and hardening rate of the matrix. Mixing of activators such as sodium hydroxide and potassium silicate with silica-alumina of LD slag-fly ash mixture, geopolymeric structure were found to be developed. The effect of geo-polymerization behaviour and subsequent structural rearrangement has been studied using compressibility; shear strength and permeability tests followed by micro-graphical analysis. Densification in the mixture was observed along with an improvement of geotechnical properties due to the addition of LD slag. Due to suitable strength characteristics of these two waste materials as mixture, it can be used in the various construction field or may be used as a filling material in mine voids.

Keywords: LD slag, fly-ash, geopolymer, strength property, compressibility

Procedia PDF Downloads 391
26144 Federated Knowledge Distillation with Collaborative Model Compression for Privacy-Preserving Distributed Learning

Authors: Shayan Mohajer Hamidi

Abstract:

Federated learning has emerged as a promising approach for distributed model training while preserving data privacy. However, the challenges of communication overhead, limited network resources, and slow convergence hinder its widespread adoption. On the other hand, knowledge distillation has shown great potential in compressing large models into smaller ones without significant loss in performance. In this paper, we propose an innovative framework that combines federated learning and knowledge distillation to address these challenges and enhance the efficiency of distributed learning. Our approach, called Federated Knowledge Distillation (FKD), enables multiple clients in a federated learning setting to collaboratively distill knowledge from a teacher model. By leveraging the collaborative nature of federated learning, FKD aims to improve model compression while maintaining privacy. The proposed framework utilizes a coded teacher model that acts as a reference for distilling knowledge to the client models. To demonstrate the effectiveness of FKD, we conduct extensive experiments on various datasets and models. We compare FKD with baseline federated learning methods and standalone knowledge distillation techniques. The results show that FKD achieves superior model compression, faster convergence, and improved performance compared to traditional federated learning approaches. Furthermore, FKD effectively preserves privacy by ensuring that sensitive data remains on the client devices and only distilled knowledge is shared during the training process. In our experiments, we explore different knowledge transfer methods within the FKD framework, including Fine-Tuning (FT), FitNet, Correlation Congruence (CC), Similarity-Preserving (SP), and Relational Knowledge Distillation (RKD). We analyze the impact of these methods on model compression and convergence speed, shedding light on the trade-offs between size reduction and performance. Moreover, we address the challenges of communication efficiency and network resource utilization in federated learning by leveraging the knowledge distillation process. FKD reduces the amount of data transmitted across the network, minimizing communication overhead and improving resource utilization. This makes FKD particularly suitable for resource-constrained environments such as edge computing and IoT devices. The proposed FKD framework opens up new avenues for collaborative and privacy-preserving distributed learning. By combining the strengths of federated learning and knowledge distillation, it offers an efficient solution for model compression and convergence speed enhancement. Future research can explore further extensions and optimizations of FKD, as well as its applications in domains such as healthcare, finance, and smart cities, where privacy and distributed learning are of paramount importance.

Keywords: federated learning, knowledge distillation, knowledge transfer, deep learning

Procedia PDF Downloads 75
26143 Analysis of Big Data

Authors: Sandeep Sharma, Sarabjit Singh

Abstract:

As per the user demand and growth trends of large free data the storage solutions are now becoming more challenge-able to protect, store and to retrieve data. The days are not so far when the storage companies and organizations are start saying 'no' to store our valuable data or they will start charging a huge amount for its storage and protection. On the other hand as per the environmental conditions it becomes challenge-able to maintain and establish new data warehouses and data centers to protect global warming threats. A challenge of small data is over now, the challenges are big that how to manage the exponential growth of data. In this paper we have analyzed the growth trend of big data and its future implications. We have also focused on the impact of the unstructured data on various concerns and we have also suggested some possible remedies to streamline big data.

Keywords: big data, unstructured data, volume, variety, velocity

Procedia PDF Downloads 548
26142 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model

Procedia PDF Downloads 147
26141 Optimization of Mechanical Cacao Shelling Parameters Using Unroasted Cocoa Beans

Authors: Jeffrey A. Lavarias, Jessie C. Elauria, Arnold R. Elepano, Engelbert K. Peralta, Delfin C. Suministrado

Abstract:

Shelling process is one of the primary processes and critical steps in the processing of chocolate or any product that is derived from cocoa beans. It affects the quality of the cocoa nibs in terms of flavor and purity. In the Philippines, small-scale food processor cannot really compete with large scale confectionery manufacturers because of lack of available postharvest facilities that are appropriate to their level of operation. The impact of this study is to provide the needed intervention that will pave the way for cacao farmers of engaging on the advantage of value-adding as way to maximize the economic potential of cacao. Thus, provision and availability of needed postharvest machines like mechanical cacao sheller will revolutionize the current state of cacao industry in the Philippines. A mechanical cacao sheller was developed, fabricated, and evaluated to establish optimum shelling conditions such as moisture content of cocoa beans, clearance where of cocoa beans passes through the breaker section and speed of the breaking mechanism on shelling recovery, shelling efficiency, shelling rate, energy utilization and large nib recovery; To establish the optimum level of shelling parameters of the mechanical sheller. These factors were statistically analyzed using design of experiment by Box and Behnken and Response Surface Methodology (RSM). By maximizing shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization, the optimum shelling conditions were established at moisture content, clearance and breaker speed of 6.5%, 3 millimeters and 1300 rpm, respectively. The optimum values for shelling recovery, shelling efficiency, shelling rate, large nib recovery and minimizing energy utilization were recorded at 86.51%, 99.19%, 21.85kg/hr, 89.75%, and 542.84W, respectively. Experimental values obtained using the optimum conditions were compared with predicted values using predictive models and were found in good agreement.

Keywords: cocoa beans, optimization, RSM, shelling parameters

Procedia PDF Downloads 358
26140 Processing and Characterization of Glass-Epoxy Composites Filled with Linz-Donawitz (LD) Slag

Authors: Pravat Ranjan Pati, Alok Satapathy

Abstract:

Linz-Donawitz (LD) slag a major solid waste generated in huge quantities during steel making. It comes from slag formers such as burned lime/dolomite and from oxidizing of silica, iron etc. while refining the iron into steel in the LD furnace. Although a number of ways for its utilization have been suggested, its potential as a filler material in polymeric matrices has not yet been explored. The present work reports the possible use of this waste in glass fiber reinforced epoxy composites as a filler material. Hybrid composites consisting of bi-directional e-glass-fiber reinforced epoxy filled with different LD slag content (0, 7.5, 15, 22.5 wt%) are prepared by simple hand lay-up technique. The composites are characterized in regard to their density, porosity, micro-hardness and strength properties. X-ray diffractography is carried out in order to ascertain the various phases present in LDS. This work shows that LD slag, in spite of being a waste, possesses fairly good filler characteristics as it modifies the strength properties and improves the composite micro-hardness of the polymeric resin.

Keywords: characterization, glass-epoxy composites, LD slag, waste utilization

Procedia PDF Downloads 392
26139 Consumer Load Profile Determination with Entropy-Based K-Means Algorithm

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

With the continuous increment of smart meter installations across the globe, the need for processing of the load data is evident. Clustering-based load profiling is built upon the utilization of unsupervised machine learning tools for the purpose of formulating the typical load curves or load profiles. The most commonly used algorithm in the load profiling literature is the K-means. While the algorithm has been successfully tested in a variety of applications, its drawback is the strong dependence in the initialization phase. This paper proposes a novel modified form of the K-means that addresses the aforementioned problem. Simulation results indicate the superiority of the proposed algorithm compared to the K-means.

Keywords: clustering, load profiling, load modeling, machine learning, energy efficiency and quality

Procedia PDF Downloads 164
26138 Energy and Exergy Analysis of Anode-Supported and Electrolyte–Supported Solid Oxide Fuel Cells Gas Turbine Power System

Authors: Abdulrazzak Akroot, Lutfu Namli

Abstract:

Solid oxide fuel cells (SOFCs) are one of the most promising technologies since they can produce electricity directly from fuel and generate a lot of waste heat that is generally used in the gas turbines to promote the general performance of the thermal power plant. In this study, the energy, and exergy analysis of a solid oxide fuel cell/gas turbine hybrid system was proceed in MATLAB to examine the performance characteristics of the hybrid system in two different configurations: anode-supported model and electrolyte-supported model. The obtained results indicate that if the fuel utilization factor reduces from 0.85 to 0.65, the overall efficiency decreases from 64.61 to 59.27% for the anode-supported model whereas it reduces from 58.3 to 56.4% for the electrolyte-supported model. Besides, the overall exergy reduces from 53.86 to 44.06% for the anode-supported model whereas it reduces from 39.96 to 33.94% for the electrolyte-supported model. Furthermore, increasing the air utilization factor has a negative impact on the electrical power output and the efficiencies of the overall system due to the reduction in the O₂ concentration at the cathode-electrolyte interface.

Keywords: solid oxide fuel cell, anode-supported model, electrolyte-supported model, energy analysis, exergy analysis

Procedia PDF Downloads 152
26137 Utilization Of Medical Plants Tetrastigma glabratum (Blume) Planch from Mount Prau in the Blumah, Central Java

Authors: A. Lianah, B. Peter Sopade, C. Krisantini

Abstract:

Walikadep/Tetrastigma glabratum (Blume) Planch is a traditional herb that has been used by people of Blumah village; it is believed to have a stimulant effect and ailments for many illnesses. Our survey demonstrated that the people of Blumah village has exploited walikadep from Protected Forest of Mount Prau. More than 10% of 448 households at Blumah village have used walikadep as traditional herb or jamu. Part of the walikadep plants used is the liquid extract of the stem. The population of walikadep is getting scarce and it is rarely found now. The objectives of this study are to examine the stimulant effect of walikadep, to measure growth and exploitation rate of walikadep, and to find ways to effectively propagate the plants, as well as identifying the impact on the environment through field experiments and explorative survey. Stimulant effect was tested using open-field and hole-board test. Data were collected through field observation and experiment, and data were analysed using lab test and Anova. Rate of exploitation and plant growth was measured using Regression analysis; comparison of plant growth in-situ and ex-situ used descriptive analysis. The environmental impact was measured by population structure vegetation analysis method by Shannon Weinner. The study revealed that the walikadep exudates did not have a stimulant effect. Exploitation of walikadep and the long time required to reach harvestable size resulted in the scarcity of the plant in the natural habitat. Plant growth was faster in-situ than ex-situ; and fast growth was obtained from middle part cuttings treated with vermicompost. Biodiversity index after exploitation was higher than before exploitation, possibly due to the toxic and allellopathic effect (phenolics) of the plant. Based on these findings, further research is needed to examine the toxic effects of the leave and stem extract of walikadep and their allelopathic effects. We recommend that people of Blumah village to stop using walikadep as the stimulant. The local people, village government in the regional and central levels, and perhutani should do an integrated efforts to conserve walikadep through Pengamanan Terpadu Konservasi Walikadep Lestari (PTKWL) program, so this population of this plant in the natural habitat can be maintained.

Keywords: utilization, medical plants, traditional, Tetastigma glabratum

Procedia PDF Downloads 280
26136 Utilization of Online Risk Mapping Techniques versus Desktop Geospatial Tools in Making Multi-Hazard Risk Maps for Italy

Authors: Seyed Vahid Kamal Alavi

Abstract:

Italy has experienced a notable quantity and impact of disasters due to natural hazards and technological accidents caused by diverse risk sources on its physical, technological, and human/sociological infrastructures during past decade. This study discusses the frequency and impacts of the most three physical devastating natural hazards in Italy for the period 2000–2013. The approach examines the reliability of a range of open source WebGIS techniques versus a proposed multi-hazard risk management methodology. Spatial and attribute data which include USGS publically available hazard data and thirteen years Munich RE recorded data for Italy with different severities have been processed, visualized in a GIS (Geographic Information System) framework. Comparison of results from the study showed that the multi-hazard risk maps generated using open source techniques do not provide a reliable system to analyze the infrastructures losses in respect to national risk sources while they can be adopted for general international risk management purposes. Additionally, this study establishes the possibility to critically examine and calibrate different integrated techniques in evaluating what better protection measures can be taken in an area.

Keywords: multi-hazard risk mapping, risk management, GIS, Italy

Procedia PDF Downloads 371
26135 Mitochondrial Energy Utilization is Unchanged with Age in the Trophocytes and Oenocytes of Queen Honeybees (Apis mellifera)

Authors: Chia-Ying Yen, Chin-Yuan Hsu

Abstract:

The lifespans of queen honeybees (Apis mellifera) are much longer than those of worker bees. The expression, concentration, and activity of mitochondrial energy-utilized molecules decreased with age in the trophocytes and oenocytes of worker bees, but they are unknown in queen bees. In this study, the expression, concentration, and activity of mitochondrial energy-utilized molecules were evaluated in the trophocytes and oenocytes of young and old queen bees by biochemical techniques. The results showed that mitochondrial density and mitochondrial membrane potential; nicotinamide adenine dinucleotide (NAD+), nicotinamide adenine dinucleotide reduced form (NADH), and adenosine triphosphate (ATP) levels; the NAD+/NADH ratio; and relative expression of NADH dehydrogenase 1 and ATP synthase normalized against mitochondrial density were not significantly different between young and old queen bees. These findings reveal that mitochondrial energy utilization maintains a young status in the trophocytes and oenocytes of old queen bees and that trophocytes and oenocytes have aging-delaying mechanisms and can be used to study cellular longevity.

Keywords: aging, longevity, mitochondrial energy, queen bees

Procedia PDF Downloads 483
26134 Research of Data Cleaning Methods Based on Dependency Rules

Authors: Yang Bao, Shi Wei Deng, WangQun Lin

Abstract:

This paper introduces the concept and principle of data cleaning, analyzes the types and causes of dirty data, and proposes several key steps of typical cleaning process, puts forward a well scalability and versatility data cleaning framework, in view of data with attribute dependency relation, designs several of violation data discovery algorithms by formal formula, which can obtain inconsistent data to all target columns with condition attribute dependent no matter data is structured (SQL) or unstructured (NoSQL), and gives 6 data cleaning methods based on these algorithms.

Keywords: data cleaning, dependency rules, violation data discovery, data repair

Procedia PDF Downloads 564
26133 Experimental Investigation on Utilization of Waste Materials in Fly Ash Brick

Authors: S. Southamirajan, D. Dhavashankaran

Abstract:

Fly ash is one of the major residues generated during combustion of coal in thermal power plants. Fly ash brick technology is the process of converting industrial waste materials into quality building material. Another issue in earth is dumping of the Bagasse ash, rice husk ash and copper slag waste. In a growing country like India a huge amount of fly ash waste materials are polluting the environment. The necessity of recycling the materials play a big role in the development of the safe and non- polluted earth. Fly ash, lime, gypsum and quarry dust are used as a replacement material for fly ash. The fly ash was replaced by the Bagasse ash and rice husk ash in the proportion of 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 17.5%, 20%, 22.5%, 25%27.5% and 30%. Two types of fly ash bricks were casted. One type is Bagasse ash replaced fly ash and another type is rice husk ash replaced fly ash bricks then copper slag are partially replaced in quarry dust. The prepared bricks are cured for 7 days and 28 days and dried in regular temperature. The mechanical and durability properties of optimum percentages of Bagasse ash and rice husk ash replaced fly ash bricks. The use of Bagasse ash and rice husk ash provides for considerable value – added utilization of Bagasse and rice husk in bricks and significant reductions in the production of greenhouse gases by the cement industry.

Keywords: Bagasse Ash, Fly ash, bricks, mechanical & durability properties, Rice husk ash

Procedia PDF Downloads 190
26132 An Integer Nonlinear Program Proposal for Intermodal Transportation Service Network Design

Authors: Laaziz El Hassan

Abstract:

The Service Network Design Problem (SNDP) is a tactical issue in freight transportation firms. The existing formulations of the problem for intermodal rail-road transportation were not always adapted to the intermodality in terms of full asset utilization and modal shift reinforcement. The objective of the article is to propose a model having a more compliant formulation with intermodality, including constraints highlighting the imperatives of asset management, reinforcing modal shift from road to rail and reducing, by the way, road mode CO2 emissions. The model is a fixed charged, path based integer nonlinear program. Its objective is to minimize services total cost while ensuring full assets utilization to satisfy freight demand forecast. The model's main feature is that it gives as output both the train sizes and the services frequencies for a planning period. We solved the program using a commercial solver and discussed the numerical results.

Keywords: intermodal transport network, service network design, model, nonlinear integer program, path-based, service frequencies, modal shift

Procedia PDF Downloads 118
26131 Real-Time Aerial Marine Surveillance System for Safe Navigation

Authors: Vinesh Thiruchelvam, Umar Mumtaz Chowdry, Sathish Kumar Selvaperumal

Abstract:

The prime purpose of the project is to provide a sophisticated system for surveillance specialized for the Port Authorities in the Maritime Industry. The current aerial surveillance does not have a wide dimensioning view. The channels of communication is shared and not exclusive allowing for communications errors or disturbance mainly due to traffic. The scope is to analyze the various aspects as real-time aerial and marine surveillance is one of the most important methods which could ensure the domain security of the sailors. The system will improve real time data as obtained for the controller base station. The key implementation will be based on camera speed, angle and adherence to a sustainable power utilization module.

Keywords: SMS, real time, GUI, maritime industry

Procedia PDF Downloads 498
26130 Data-Driven Monitoring and Control of Water Sanitation and Hygiene for Improved Maternal Health in Rural Communities

Authors: Paul Barasa Wanyama, Tom Wanyama

Abstract:

Governments and development partners in low-income countries often prioritize building Water Sanitation and Hygiene (WaSH) infrastructure of healthcare facilities to improve maternal healthcare outcomes. However, the operation, maintenance, and utilization of this infrastructure are almost never considered. Many healthcare facilities in these countries use untreated water that is not monitored for quality or quantity. Consequently, it is common to run out of water while a patient is on their way to or in the operating theater. Further, the handwashing stations in healthcare facilities regularly run out of water or soap for months, and the latrines are typically not clean, in part due to the lack of water. In this paper, we present a system that uses Internet of Things (IoT), big data, cloud computing, and AI to initiate WaSH security in healthcare facilities, with a specific focus on maternal health. We have implemented smart sensors and actuators to monitor and control WaSH systems from afar to ensure their objectives are achieved. We have also developed a cloud-based system to analyze WaSH data in real time and communicate relevant information back to the healthcare facilities and their stakeholders (e.g., medical personnel, NGOs, ministry of health officials, facilities managers, community leaders, pregnant women, and new mothers and their families) to avert or mitigate problems before they occur.

Keywords: WaSH, internet of things, artificial intelligence, maternal health, rural communities, healthcare facilities

Procedia PDF Downloads 17
26129 Bio-Medical Equipment Technicians: Crucial Workforce to Improve Quality of Health Services in Rural Remote Hospitals in Nepal

Authors: C. M. Sapkota, B. P. Sapkota

Abstract:

Background: Continuous developments in science and technology are increasing the availability of thousands of medical devices – all of which should be of good quality and used appropriately to address global health challenges. It is obvious that bio medical devices are becoming ever more indispensable in health service delivery and among the key workforce responsible for their design, development, regulation, evaluation and training in their use: biomedical technician (BMET) is the crucial. As a pivotal member of health workforce, biomedical technicians are an essential component of the quality health service delivery mechanism supporting the attainment of the Sustainable Development Goals. Methods: The study was based on cross sectional descriptive design. Indicators measuring the quality of health services were assessed in Mechi Zonal Hospital (MZH) and Sagarmatha Zonal Hospital (SZH). Indicators were calculated based on the data about hospital utilization and performance of 2018 available in Medical record section of both hospitals. MZH had employed the BMET during 2018 but SZH had no BMET in 2018.Focus Group Discussion with health workers in both hospitals was conducted to validate the hospital records. Client exit interview was conducted to assess the level of client satisfaction in both the hospitals. Results: In MZH there was round the clock availability and utilization of Radio diagnostics equipment, Laboratory equipment. Operation Theater was functional throughout the year. Bed Occupancy rate in MZH was 97% but in SZH it was only 63%.In SZH, OT was functional only 54% of the days in 2018. CT scan machine was just installed but not functional. Computerized X-Ray in SZH was functional only in 72% of the days. Level of client satisfaction was 87% in MZH but was just 43% in SZH. MZH performed all (256) the Caesarean Sections but SZH performed only 36% of 210 Caesarean Sections in 2018. In annual performance ranking of Government Hospitals, MZH was placed in 1st rank while as SZH was placed in 19th rank out of 32 referral hospitals nationwide in 2018. Conclusion: Biomedical technicians are the crucial member of the human resource for health team with the pivotal role. Trained and qualified BMET professionals are required within health-care systems in order to design, evaluate, regulate, acquire, maintain, manage and train on safe medical technologies. Applying knowledge of engineering and technology to health-care systems to ensure availability, affordability, accessibility, acceptability and utilization of the safer, higher quality, effective, appropriate and socially acceptable bio medical technology to populations for preventive, promotive, curative, rehabilitative and palliative care across all levels of the health service delivery.

Keywords: biomedical equipment technicians, BMET, human resources for health, HRH, quality health service, rural hospitals

Procedia PDF Downloads 126
26128 Modeling Jordan University of Science and Technology Parking Using Arena Program

Authors: T. Qasim, M. Alqawasmi, M. Hawash, M. Betar, W. Qasim

Abstract:

Over the last decade, the over population that has happened in urban areas has been reflecting on the services that various local institutions provide to car users in the form of car parks, which is becoming a daily necessity in our lives. This study focuses on car parks at Jordan University of Science and Technology, in Irbid, Jordan, to understand the university parking needs. Data regarding arrival and departure times of cars and the parking utilization were collected, to find various options that the university can implement to solve and develop an efficient car parking system. Arena software was used to simulate a parking model. This model allows measuring the different solutions that solve the parking problem at Jordan University of Science and Technology.

Keywords: car park, simulation, modeling, service time

Procedia PDF Downloads 183
26127 Optimizing The Residential Design Process Using Automated Technologies

Authors: Martin Georgiev, Milena Nanova, Damyan Damov

Abstract:

Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.

Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization

Procedia PDF Downloads 52
26126 Knowledge, Attitude, and Practice Related to Potential Application of Artificial Intelligence in Health Supply Chain

Authors: Biniam Bahiru Tufa, Hana Delil Tesfaye, Seife Demisse Legesse, Manaye Tamire

Abstract:

The healthcare industry is witnessing a digital transformation, with artificial intelligence (AI) offering potential solutions for challenges in health supply chain management (HSCM). However, the adoption of AI in this field remains limited. This research aimed to assess the knowledge, attitude, and practice of AI among students and employees in the health supply chain sector in Ethiopia. Using an explanatory case study research design with a concurrent mixed approach, quantitative and qualitative data were collected simultaneously. The study included 153 participants comprising students and employed health supply chain professionals working in various sectors. The majority had a pharmacy background, and one-third of the participants were male. Most respondents were under 35 years old, and around 68.6% had less than 10 years of experience. The findings revealed that 94.1% of participants had prior knowledge of AI, but only 35.3% were aware of its application in the supply chain. Moreover, the majority indicated that their training curriculum did not cover AI in health supply chain management. Participants generally held positive attitudes toward the necessity of AI for improving efficiency, effectiveness, and cost savings in the supply chain. However, many expressed concerns about its impact on job security and satisfaction, considering it as a burden Graduate students demonstrated higher knowledge of AI compared to employed staff, while graduate students also exhibited a more positive attitude toward AI. The study indicated low previous utilization and potential future utilization of AI in the health supply chain, suggesting untapped opportunities for improvement. Overall, while supply chain experts and graduate students lacked sufficient understanding of AI and its significance, they expressed favorable views regarding its implementation in the sector. The study recommends that the Ethiopian government and international organizations consider introducing AI in the undergraduate pharmacy curriculum and promote its integration into the health supply chain field.

Keywords: knowledge, attitude, practice, supply chain, articifial intellegence

Procedia PDF Downloads 91
26125 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 518
26124 Production of Gluten-Free Bread Using Emulsifying Salts and Rennet Casein

Authors: A. Morina, S. Ö. Muti, M. Öztürk

Abstract:

Celiac disease is a chronic intestinal disease observed in individuals with gluten intolerance. In this study, our aim was to create a protein matrix to mimic the functional properties of gluten. For this purpose, rennet casein and four emulsifying salts (disodium phosphate (DSP), tetrasodium pyrophosphate (TSPP), sodium acid pyrophosphate (SAPP), and sodium hexametaphosphate (SHMP)) were investigated in gluten-free bread manufacture. Compositional, textural, and visual properties of the gluten-free bread dough and gluten-free breads were investigated by a two–level factorial experimental design with two-star points (α = 1.414) and two replicates of the center point. Manufacturing gluten-free bread with rennet casein and SHMP significantly increased the bread volume (P < 0.0001, R² = 97.8). In general, utilization of rennet casein with DSP and SAPP increased bread hardness while no difference was observed in samples manufactured with TSPP and SHMP. Except for TSPP, bread color was improved by the utilization of rennet casein and DSP, SAPP, and SHMP combinations. In conclusion, it is possible to manufacture gluten-free bread with acceptable texture and color by rennet casein and SHMP.

Keywords: celiac disease, gluten-free bread, emulsified salts, rennet casein, rice flour

Procedia PDF Downloads 167
26123 The Evaluation of Costs and Greenhouse Gas Reduction by Using Technologies for Energy from Sewage Sludge

Authors: Futoshi Kakuta, Takashi Ishida

Abstract:

Sewage sludge is a biomass resource that can create a solid fuel and electricity. Utilizing sewage sludge as a renewable energy can contribute to the reduction of greenhouse gasses. In Japan, 'The National Plan for the Promotion of Biomass Utilization' and 'The Priority Plan for Social Infrastructure Development' were approved at cabinet meetings in December 2010 and August 2012, respectively, to promote the energy utilization of sewage sludge. This study investigated costs and greenhouse gas emission in different sewage sludge treatments with technologies for energy from sewage sludge. Costs were estimated on capital costs and O&M costs including energy consumption of solid fuel plants and biogas power generation plants for sewage sludge. Results showed that cost of sludge digestion treatment with solid fuel technologies was 8% lower than landfill disposal. Greenhouse gas emission of sludge digestion treatment with solid fuel technologies was also 6,390t as CO2 smaller than landfill disposal. Biogas power generation reduced the electricity of a wastewater treatment plant by 30% and the cost by 5%.

Keywords: global warming countermeasure, energy technology, solid fuel production, biogas

Procedia PDF Downloads 386
26122 Mining Big Data in Telecommunications Industry: Challenges, Techniques, and Revenue Opportunity

Authors: Hoda A. Abdel Hafez

Abstract:

Mining big data represents a big challenge nowadays. Many types of research are concerned with mining massive amounts of data and big data streams. Mining big data faces a lot of challenges including scalability, speed, heterogeneity, accuracy, provenance and privacy. In telecommunication industry, mining big data is like a mining for gold; it represents a big opportunity and maximizing the revenue streams in this industry. This paper discusses the characteristics of big data (volume, variety, velocity and veracity), data mining techniques and tools for handling very large data sets, mining big data in telecommunication and the benefits and opportunities gained from them.

Keywords: mining big data, big data, machine learning, telecommunication

Procedia PDF Downloads 410
26121 Knowledge Sharing Practices in the Healthcare Sector: Evidences from Primary Health Care Organizations in Indonesia

Authors: Galih Imaduddin

Abstract:

Knowledge has been viewed as one of the most important resources in organizations, including those that operate in the healthcare sector. On that basis, Knowledge Management (KM) is crucial for healthcare organizations to improve their productivity and ensure effective utilization of their resources. Despite the growing interests to understand how KM might work for healthcare organizations, there is only a modest amount of empirical inquiries which have specifically focused on the tools and initiatives to share knowledge. Hence, the main purpose of this paper is to investigate the way healthcare organizations, particularly public sector ones, utilize knowledge sharing tools and initiatives for the benefit of patient-care. Employing a qualitative method, 13 (thirteen) Community Health Centers (CHCs) from a high-performing district health setting in Indonesia were observed. Data collection and analysis involved a repetition of document retrievals and interviews (n=41) with multidisciplinary health professionals who work in these CHCs. A single case study was cultivated reflecting on the means that were used to share knowledge, along with the factors that inhibited the exchange of knowledge among those health professionals. The study discovers that all of the thirteen CHCs exhibited and applied knowledge sharing means which included knowledge documents, virtual communication channels (i.e. emails and chatting applications), and social learning forums such as staff meetings, morning briefings, and communities of practices. However, the intensity of utilization was different among these CHCs, in which organizational culture, leadership, professional boundaries, and employees’ technological aptitude were presumed to be the factors that inhibit knowledge sharing processes. Making a distance with the KM literature of other sectors, this study denounces the primacy of technology-based tools, suggesting that socially-based initiatives could be more reliable for sharing knowledge. This suggestion is largely due to the nature of healthcare work which is still predominantly based on the tacit form of knowledge.

Keywords: knowledge management, knowledge sharing, knowledge sharing tools and initiatives, knowledge sharing inhibitors, primary health care organizations

Procedia PDF Downloads 243
26120 Geological Mapping of Gabel Humr Akarim Area, Southern Eastern Desert, Egypt: Constrain from Remote Sensing Data, Petrographic Description and Field Investigation

Authors: Doaa Hamdi, Ahmed Hashem

Abstract:

The present study aims at integrating the ASTER data and Landsat 8 data to discriminate and map alteration and/or mineralization zones in addition to delineating different lithological units of Humr Akarim Granites area. The study area is located at 24º9' to 24º13' N and 34º1' to 34º2'45"E., covering a total exposed surface area of about 17 km². The area is characterized by rugged topography with low to moderate relief. Geologic fieldwork and petrographic investigations revealed that the basement complex of the study area is composed of metasediments, mafic dikes, older granitoids, and alkali-feldspar granites. Petrographic investigations revealed that the secondary minerals in the study area are mainly represented by chlorite, epidote, clay minerals and iron oxides. These minerals have specific spectral signatures in the region of visible near-infrared and short-wave infrared (0.4 to 2.5 µm). So that the ASTER imagery processing was concentrated on VNIR-SWIR spectrometric data in order to achieve the purposes of this study (geologic mapping of hydrothermal alteration zones and delineate possible radioactive potentialities). Mapping of hydrothermal alterations zones in addition to discriminating the lithological units in the study area are achieved through the utilization of some different image processing, including color band composites (CBC) and data transformation techniques such as band ratios (BR), band ratio codes (BRCs), principal component analysis(PCA), Crosta Technique and minimum noise fraction (MNF). The field verification and petrographic investigation confirm the results of ASTER imagery and Landsat 8 data, proposing a geological map (scale 1:50000).

Keywords: remote sensing, petrography, mineralization, alteration detection

Procedia PDF Downloads 164