Search results for: data driven decision making
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30464

Search results for: data driven decision making

30194 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining

Authors: İbrahi̇m Kara, Seher Arslankaya

Abstract:

Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.

Keywords: data mining, decision support systems, heart attack, health sector

Procedia PDF Downloads 358
30193 The Role of Emotions in Addressing Social and Environmental Issues in Ethical Decision Making

Authors: Kirsi Snellman, Johannes Gartner, , Katja Upadaya

Abstract:

A transition towards a future where the economy serves society so that it evolves within the safe operating space of the planet calls for fundamental changes in the way managers think, feel and act, and make decisions that relate to social and environmental issues. Sustainable decision-making in organizations are often challenging tasks characterized by trade-offs between environmental, social and financial aspects, thus often bringing forth ethical concerns. Although there have been significant developments in incorporating uncertainty into environmental decision-making and measuring constructs and dimensions in ethical behavior in organizations, the majority of sustainable decision-making models are rationalist-based. Moreover, research in psychology indicates that one’s readiness to make a decision depends on the individual’s state of mind, the feasibility of the implied change, and the compatibility of strategies and tactics of implementation. Although very informative, most of this extant research is limited in the sense that it often directs attention towards the rational instead of the emotional. Hence, little is known about the role of emotions in sustainable decision making, especially in situations where decision-makers evaluate a variety of options and use their feelings as a source of information in tackling the uncertainty. To fill this lacuna, and to embrace the uncertainty and perceived risk involved in decisions that touch upon social and environmental aspects, it is important to add emotion to the evaluation when aiming to reach the one right and good ethical decision outcome. This analysis builds on recent findings in moral psychology that associate feelings and intuitions with ethical decisions and suggests that emotions can sensitize the manager to evaluate the rightness or wrongness of alternatives if ethical concerns are present in sustainable decision making. Capturing such sensitive evaluation as triggered by intuitions, we suggest that rational justification can be complemented by using emotions as a tool to tune in to what feels right in making sustainable decisions. This analysis integrates ethical decision-making theories with recent advancements in emotion theories. It determines the conditions under which emotions play a role in sustainability decisions by contributing to a personal equilibrium in which intuition and rationality are both activated and in accord. It complements the rationalist ethics view according to which nothing fogs the mind in decision making so thoroughly as emotion, and the concept of cheater’s high that links unethical behavior with positive affect. This analysis contributes to theory with a novel theoretical model that specifies when and why managers, who are more emotional, are, in fact, more likely to make ethical decisions than those managers who are more rational. It also proposes practical advice on how emotions can convert the manager’s preferences into choices that benefit both common good and one’s own good throughout the transition towards a more sustainable future.

Keywords: emotion, ethical decision making, intuition, sustainability

Procedia PDF Downloads 134
30192 Proposed Framework based on Classification of Vertical Handover Decision Strategies in Heterogeneous Wireless Networks

Authors: Shidrokh Goudarzi, Wan Haslina Hassan

Abstract:

Heterogeneous wireless networks are converging towards an all-IP network as part of the so-called next-generation network. In this paradigm, different access technologies need to be interconnected; thus, vertical handovers or vertical handoffs are necessary for seamless mobility. In this paper, we conduct a review of existing vertical handover decision-making mechanisms that aim to provide ubiquitous connectivity to mobile users. To offer a systematic comparison, we categorize these vertical handover measurement and decision structures based on their respective methodology and parameters. Subsequently, we analyze several vertical handover approaches in the literature and compare them according to their advantages and weaknesses. The paper compares the algorithms based on the network selection methods, complexity of the technologies used and efficiency in order to introduce our vertical handover decision framework. We find that vertical handovers on heterogeneous wireless networks suffer from the lack of a standard and efficient method to satisfy both user and network quality of service requirements at different levels including architectural, decision-making and protocols. Also, the consolidation of network terminal, cross-layer information, multi packet casting and intelligent network selection algorithm appears to be an optimum solution for achieving seamless service continuity in order to facilitate seamless connectivity.

Keywords: heterogeneous wireless networks, vertical handovers, vertical handover metric, decision-making algorithms

Procedia PDF Downloads 395
30191 Challenges of School Leadership

Authors: Stefan Ninković

Abstract:

The main purpose of this paper is to examine the different theoretical approaches and relevant empirical evidence and thus, recognize some of the most pressing challenges faced by school leaders. This paper starts from the fact that the new mission of the school is characterized by the need for stronger coordination among students' academic, social and emotional learning. In this sense, school leaders need to focus their commitment, vision and leadership on the issues of students' attitudes, language, cultural and social background, and sexual orientation. More specifically, they should know what a good teaching is for student’s at-risk, students whose first language is not dominant in school, those who’s learning styles are not in accordance with usual teaching styles, or who are stigmatized. There is a rather wide consensus around the fact that the traditionally popular concept of instructional leadership of the school principal is no longer sufficient. However, in a number of "pro-leadership" circles, including certain groups of academic researchers, consultants and practitioners, there is an established tendency of attributing school principal an extraordinary influence towards school achievements. On the other hand, the situation in which all employees in the school are leaders is a utopia par excellence. Although leadership obviously can be efficiently distributed across the school, there are few findings that speak about sources of this distribution and factors making it sustainable. Another idea that is not particularly new, but has only recently gained in importance is related to the fact that the collective capacity of the school is an important resource that often remains under-cultivated. To understand the nature and power of collaborative school cultures, it is necessary to know that these operate in a way that they make their all collective members' tacit knowledge explicit. In this sense, the question is how leaders in schools can shape collaborative culture and create social capital in the school. Pressure exerted on schools to systematically collect and use the data has been accompanied by the need for school leaders to develop new competencies. The role of school leaders is critical in the process of assessing what data are needed and for what purpose. Different types of data are important: test results, data on student’s absenteeism, satisfaction with school, teacher motivation, etc. One of the most important tasks of school leaders are data-driven decision making as well as ensuring transparency of the decision-making process. Finally, the question arises whether the existing models of school leadership are compatible with the current social and economic trends. It is necessary to examine whether and under what conditions schools are in need for forms of leadership that are different from those that currently prevail. Closely related to this issue is also to analyze the adequacy of different approaches to leadership development in the school.

Keywords: educational changes, leaders, leadership, school

Procedia PDF Downloads 336
30190 International Tourists’ Travel Motivation by Push-Pull Factors and Decision Making for Selecting Thailand as Destination Choice

Authors: Siripen Yiamjanya, Kevin Wongleedee

Abstract:

This research paper aims to identify travel motivation by push and pull factors that affected decision making of international tourists in selecting Thailand as their destination choice. A total of 200 international tourists who traveled to Thailand during January and February, 2014 were used as the sample in this study. A questionnaire was employed as a tool in collecting the data, conducted in Bangkok. The list consisted of 30 attributes representing both psychological factors as “push- based factors” and destination factors as “pull-based factors”. Mean and standard deviation were used in order to find the top ten travel motives that were important determinants in the respondents’ decision making process to select Thailand as their destination choice. The finding revealed the top ten travel motivations influencing international tourists to select Thailand as their destination choice included [i] getting experience in foreign land; [ii] Thai food; [iii] learning new culture; [iv] relaxing in foreign land; [v] wanting to learn new things; [vi] being interested in Thai culture, and traditional markets; [vii] escaping from same daily life; [viii] enjoying activities; [ix] adventure; and [x] good weather. Classification of push- based and pull- based motives suggested that getting experience in foreign land was the most important push motive for international tourists to travel, while Thai food portrayed its highest significance as pull motive. Discussion and suggestions were also made for tourism industry of Thailand.

Keywords: decision making, destination choice, international tourist, pull factor, push factor, Thailand, travel motivation

Procedia PDF Downloads 394
30189 Exploring the Interplay Between Emotions, Employee’s Social Cognition and Decision Making Among Employees

Authors: Khushi, Simrat

Abstract:

The study aims to investigate the relationship between emotions and employee's social cognition and decision-making among employees. The sample of the study was the total number of participants, which included employees from various industries and job positions. Research papers in the same area were reviewed, providing a comprehensive review of existing literature and theoretical frameworks and shedding light on the interpersonal effects of emotions in the workplace. It emphasizes how one worker's emotions can significantly impact the overall work environment and productivity as well as the work of a common phenomenon known as Emotional contagion at the workplace, affecting social interactions and group dynamics. Therefore, this study concludes that Emotional contagion can lead to a ripple effect within the workplace, influencing the overall atmosphere and productivity. Emotions can shape how employees process information and make choices, ultimately impacting organizational outcomes.

Keywords: employee decision making, social cognition, emotions, industry, emotional contagion, workplace dynamics

Procedia PDF Downloads 60
30188 Discrete State Prediction Algorithm Design with Self Performance Enhancement Capacity

Authors: Smail Tigani, Mohamed Ouzzif

Abstract:

This work presents a discrete quantitative state prediction algorithm with intelligent behavior making it able to self-improve some performance aspects. The specificity of this algorithm is the capacity of self-rectification of the prediction strategy before the final decision. The auto-rectification mechanism is based on two parallel mathematical models. In one hand, the algorithm predicts the next state based on event transition matrix updated after each observation. In the other hand, the algorithm extracts its residues trend with a linear regression representing historical residues data-points in order to rectify the first decision if needs. For a normal distribution, the interactivity between the two models allows the algorithm to self-optimize its performance and then make better prediction. Designed key performance indicator, computed during a Monte Carlo simulation, shows the advantages of the proposed approach compared with traditional one.

Keywords: discrete state, Markov Chains, linear regression, auto-adaptive systems, decision making, Monte Carlo Simulation

Procedia PDF Downloads 498
30187 Environmental Decision Making Model for Assessing On-Site Performances of Building Subcontractors

Authors: Buket Metin

Abstract:

Buildings cause a variety of loads on the environment due to activities performed at each stage of the building life cycle. Construction is the first stage that affects both the natural and built environments at different steps of the process, which can be defined as transportation of materials within the construction site, formation and preparation of materials on-site and the application of materials to realize the building subsystems. All of these steps require the use of technology, which varies based on the facilities that contractors and subcontractors have. Hence, environmental consequences of the construction process should be tackled by focusing on construction technology options used in every step of the process. This paper presents an environmental decision-making model for assessing on-site performances of subcontractors based on the construction technology options which they can supply. First, construction technologies, which constitute information, tools and methods, are classified. Then, environmental performance criteria are set forth related to resource consumption, ecosystem quality, and human health issues. Finally, the model is developed based on the relationships between the construction technology components and the environmental performance criteria. The Fuzzy Analytical Hierarchy Process (FAHP) method is used for weighting the environmental performance criteria according to environmental priorities of decision-maker(s), while the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) method is used for ranking on-site environmental performances of subcontractors using quantitative data related to the construction technology components. Thus, the model aims to provide an insight to decision-maker(s) about the environmental consequences of the construction process and to provide an opportunity to improve the overall environmental performance of construction sites.

Keywords: construction process, construction technology, decision making, environmental performance, subcontractor

Procedia PDF Downloads 247
30186 Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry

Authors: B. Güney, Ç. Teke

Abstract:

In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit.

Keywords: food industry, fuzzy linear programming, fuzzy logic, linear programming

Procedia PDF Downloads 652
30185 Development Planning in the System of the Islamic Republic of Iran in the Light of Development Laws: From Rationally Planning to Wisely Decision Making

Authors: Mohammad Sadeghi, Mahdieh Saniee

Abstract:

Nowadays, development laws have become a major branch of engineering science, laws help humankind achieve his/her basic needs, and it is attracted to the attention of the nations. Therefore, lawyers have been invited to contemplate legislator's approaches respecting legislating countries' economic, social and cultural development plans and to observe the reliance of approaches on two elements of distributive justice and transitional justice in light of legal rationality. Legal rationality in development planning has encountered us with this question that whether a rational approach and existing models in the Iran development planning system approximate us to the goal of development laws respecting the rationalist approach and also regarding wisely decision-making model. The present study will investigate processes, approaches, and damages of development planning in the legislation of country development plans to answer this question.

Keywords: rationality, decision-making process, policymaking, development

Procedia PDF Downloads 115
30184 Redefining Health Information Systems with Machine Learning: Harnessing the Potential of AI-Powered Data Fusion Ecosystems

Authors: Shohoni Mahabub

Abstract:

Health Information Systems (HIS) are essential to contemporary healthcare; nonetheless, they frequently encounter challenges such as data fragmentation, inefficiencies, and an absence of real-time analytics. The advent of machine learning (ML) and artificial intelligence (AI) provides a revolutionary potential to address these difficulties via AI-driven data fusion ecosystems. These ecosystems integrate many health data sources, including electronic health records (EHRs), wearable devices, and genetic data, with sophisticated machine learning techniques such as natural language processing (NLP) and predictive analytics to produce actionable insights. Through the integration of strong data intake layers, secure interoperability protocols, and privacy-preserving models, these ecosystems provide individualized treatment, early illness diagnosis, and enhanced operational efficiency. This paradigm change enhances clinical decision-making and rectifies systemic inefficiencies in healthcare delivery. Nonetheless, adoption presents problems such as data privacy concerns, ethical considerations, and scalability constraints. The study examines options such as federated learning for safe, decentralized data sharing, explainable AI for transparency, and cloud-based infrastructure for scalability to address these issues. These ecosystems aim to address health equity disparities, particularly in resource-limited environments, and improve public health surveillance, notably in pandemic response initiatives. This article emphasizes the revolutionary potential of AI-driven data fusion ecosystems in redefining Health Information Systems by providing an implementation roadmap and showcasing successful deployment case studies. The suggested method promotes a cooperative initiative among legislators, healthcare professionals, and technology to establish a cohesive, efficient, and patient-centric healthcare model.

Keywords: AI-powered healthcare systems, data fusion ecosystem, predictive analytics, digital health interoperability

Procedia PDF Downloads 15
30183 Carbon Skimming: Towards an Application to Summarise and Compare Embodied Carbon to Aid Early-Stage Decision Making

Authors: Rivindu Nethmin Bandara Menik Hitihamy Mudiyanselage, Matthias Hank Haeusler, Ben Doherty

Abstract:

Investors and clients in the Architectural, Engineering and Construction industry find it difficult to understand complex datasets and reports with little to no graphic representation. The stakeholders examined in this paper include designers, design clients and end-users. Communicating embodied carbon information graphically and concisely can aid with decision support early in a building's life cycle. It is essential to create a common visualisation approach as the level of knowledge about embodied carbon varies between stakeholders. The tool, designed in conjunction with Bates Smart, condenses Tally Life Cycle Assessment data to a carbon hot-spotting visualisation, highlighting the sections with the highest amounts of embodied carbon. This allows stakeholders at every stage of a given project to have a better understanding of the carbon implications with minimal effort. It further allows stakeholders to differentiate building elements by their carbon values, which enables the evaluation of the cost-effectiveness of the selected materials at an early stage. To examine and build a decision-support tool, an action-design research methodology of cycles of iterations was used along with precedents of embodied carbon visualising tools. Accordingly, the importance of visualisation and Building Information Modelling are also explored to understand the best format for relaying these results.

Keywords: embodied carbon, visualisation, summarisation, data filtering, early-stage decision-making, materiality

Procedia PDF Downloads 83
30182 Evaluation of Suitable Housing System for Adoption in Addis Ababa

Authors: Yidnekachew Daget, Hong Zhang

Abstract:

The decision-making process in order to select the suitable housing system for application in housing construction has been a challenge for many developing countries. This study evaluates the decision process to identify the suitable housing systems for adoption in Addis Ababa. Ten industrialized housing systems were considered as alternatives for comparison. These systems have been used in a housing development in different parts of the world. A relevant literature review and contextual analysis were conducted. An analytical hierarchy process and an Expert Choice Comparion platform were employed as a research technique and tool to evaluate the professionals’ level of preferences with regard to the housing systems. The findings revealed the priority rank and characteristics of the suitable housing systems to be adapted for application in housing development. The decision criteria and the analytical process used in this study can help the decision-makers and the housing developers in developing countries make effective evaluations and decisions.

Keywords: analytical hierarchy process, decision-making, expert choice comparion, industrialized housing systems

Procedia PDF Downloads 269
30181 Leveraging Learning Analytics to Inform Learning Design in Higher Education

Authors: Mingming Jiang

Abstract:

This literature review aims to offer an overview of existing research on learning analytics and learning design, the alignment between the two, and how learning analytics has been leveraged to inform learning design in higher education. Current research suggests a need to create more alignment and integration between learning analytics and learning design in order to not only ground learning analytics on learning sciences but also enable data-driven decisions in learning design to improve learning outcomes. In addition, multiple conceptual frameworks have been proposed to enhance the synergy and alignment between learning analytics and learning design. Future research should explore this synergy further in the unique context of higher education, identifying learning analytics metrics in higher education that can offer insight into learning processes, evaluating the effect of learning analytics outcomes on learning design decision-making in higher education, and designing learning environments in higher education that make the capturing and deployment of learning analytics outcomes more efficient.

Keywords: learning analytics, learning design, big data in higher education, online learning environments

Procedia PDF Downloads 174
30180 Integrating of Multi-Criteria Decision Making and Spatial Data Warehouse in Geographic Information System

Authors: Zohra Mekranfar, Ahmed Saidi, Abdellah Mebrek

Abstract:

This work aims to develop multi-criteria decision making (MCDM) and spatial data warehouse (SDW) methods, which will be integrated into a GIS according to a ‘GIS dominant’ approach. The GIS operating tools will be operational to operate the SDW. The MCDM methods can provide many solutions to a set of problems with various and multiple criteria. When the problem is so complex, integrating spatial dimension, it makes sense to combine the MCDM process with other approaches like data mining, ascending analyses, we present in this paper an experiment showing a geo-decisional methodology of SWD construction, On-line analytical processing (OLAP) technology which combines both basic multidimensional analysis and the concepts of data mining provides powerful tools to highlight inductions and information not obvious by traditional tools. However, these OLAP tools become more complex in the presence of the spatial dimension. The integration of OLAP with a GIS is the future geographic and spatial information solution. GIS offers advanced functions for the acquisition, storage, analysis, and display of geographic information. However, their effectiveness for complex spatial analysis is questionable due to their determinism and their decisional rigor. A prerequisite for the implementation of any analysis or exploration of spatial data requires the construction and structuring of a spatial data warehouse (SDW). This SDW must be easily usable by the GIS and by the tools offered by an OLAP system.

Keywords: data warehouse, GIS, MCDM, SOLAP

Procedia PDF Downloads 178
30179 The Role of Group Interaction and Managers’ Risk-willingness for Business Model Innovation Decisions: A Thematic Analysis

Authors: Sarah Müller-Sägebrecht

Abstract:

Today’s volatile environment challenges executives to make the right strategic decisions to gain sustainable success. Entrepreneurship scholars postulate mainly positive effects of environmental changes on entrepreneurship behavior, such as developing new business opportunities, promoting ingenuity, and the satisfaction of resource voids. A strategic solution approach to overcome threatening environmental changes and catch new business opportunities is business model innovation (BMI). Although this research stream has gained further importance in the last decade, BMI research is still insufficient. Especially BMI barriers, such as inefficient strategic decision-making processes, need to be identified. Strategic decisions strongly impact organizational future and are, therefore, usually made in groups. Although groups draw on a more extensive information base than single individuals, group-interaction effects can influence the decision-making process - in a favorable but also unfavorable way. Decisions are characterized by uncertainty and risk, whereby their intensity is perceived individually differently. The individual risk-willingness influences which option humans choose. The special nature of strategic decisions, such as in BMI processes, is that these decisions are not made individually but in groups due to their high organizational scope. These groups consist of different personalities whose individual risk-willingness can vary considerably. It is known from group decision theory that these individuals influence each other, observable in different group-interaction effects. The following research questions arise: i) How does group interaction shape BMI decision-making from managers’ perspective? ii) What are the potential interrelations among managers’ risk-willingness, group biases, and BMI decision-making? After conducting 26 in-depth interviews with executives from the manufacturing industry, applied Gioia methodology reveals the following results: i) Risk-averse decision-makers have an increased need to be guided by facts. The more information available to them, the lower they perceive uncertainty and the more willing they are to pursue a specific decision option. However, the results also show that social interaction does not change the individual risk-willingness in the decision-making process. ii) Generally, it could be observed that during BMI decisions, group interaction is primarily beneficial to increase the group’s information base for making good decisions, less than for social interaction. Further, decision-makers mainly focus on information available to all decision-makers in the team but less on personal knowledge. This work contributes to strategic decision-making literature twofold. First, it gives insights into how group-interaction effects influence an organization’s strategic BMI decision-making. Second, it enriches risk-management research by highlighting how individual risk-willingness impacts organizational strategic decision-making. To date, it was known in BMI research that risk aversion would be an internal BMI barrier. However, with this study, it becomes clear that it is not risk aversion that inhibits BMI. Instead, the lack of information prevents risk-averse decision-makers from choosing a riskier option. Simultaneously, results show that risk-averse decision-makers are not easily carried away by the higher risk-willingness of their team members. Instead, they use social interaction to gather missing information. Therefore, executives need to provide sufficient information to all decision-makers to catch promising business opportunities.

Keywords: business model innovation, cognitive biases, group-interaction effects, strategic decision-making, risk-willingness

Procedia PDF Downloads 79
30178 Integrating Data Envelopment Analysis and Variance Inflation Factor to Measure the Efficiency of Decision Making Units

Authors: Mostafa Kazemi, Zahra N. Farkhani

Abstract:

This paper proposes an integrated Data Envelopment Analysis (DEA) and Variance Inflation Factor (VIF) model for measuring the technical efficiency of decision making units. The model is validated using a set of 69% sales representatives’ dairy products. The analysis is done in two stages, in the first stage, VIF technique is used to distinguish independent effective factors of resellers, and in the second stage we used DEA for measuring efficiency for both constant and variable return to scales status. Further DEA is used to examine the utilization of environmental factors on efficiency. Results of this paper indicated an average managerial efficiency of 83% in the whole sales representatives’ dairy products. In addition, technical and scale efficiency were counted 96% and 80% respectively. 38% of sales representative have the technical efficiency of 100% and 72% of the sales representative in terms of managerial efficiency are quite efficient.High levels of relative efficiency indicate a good condition for sales representative efficiency.

Keywords: data envelopment analysis (DEA), relative efficiency, sales representatives’ dairy products, variance inflation factor (VIF)

Procedia PDF Downloads 570
30177 Risk Tolerance in Youth With Emerging Mood Disorders

Authors: Ange Weinrabe, James Tran, Ian B. Hickie

Abstract:

Risk-taking behaviour is common during youth. In the time between adolescence and early adulthood, young people (aged 15-25 years) are more vulnerable to mood disorders, such as anxiety and depression. What impact does an emerging mood disorder have on decision-making in youth at critical decision points in their lives? In this article, we explore the impact of risk and ambiguity on youth decision-making in a clinical setting using a well-known economic experiment. At two time points, separated by six to eight weeks, we measured risky and ambiguous choices concurrently with findings from three psychological questionnaires, the 10-item Kessler Psychological Distress Scale (K10), the 17-item Quick Inventory of Depressive Symptomatology Adolescent Version (QIDS-A17), and the 12-item Somatic and Psychological Health Report (SPHERE-12), for young help seekers aged 16-25 (n=30, mean age 19.22 years, 19 males). When first arriving for care, we found that 50% (n=15) of participants experienced severe anxiety (K10 ≥ 30) and were severely depressed (QIDS-A17 ≥ 16). In Session 2, taking attrition rates into account (n=5), we found that 44% (n=11) remained severe across the full battery of questionnaires. When applying multiple regression analyses of the pooled sample of observations (N=55), across both sessions, we found that participants who rated severely anxious avoided making risky decisions. We suggest there is some statistically significant (although weak) (p=0.09) relation between risk and severe anxiety scores as measured by K10. Our findings may support working with novel tools with which to evaluate youth experiencing an emerging mood disorder and their cognitive capacities influencing decision-making.

Keywords: anxiety, decision-making, risk, adolescence

Procedia PDF Downloads 116
30176 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management

Authors: Kenneth Harper

Abstract:

The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.

Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups

Procedia PDF Downloads 29
30175 Improving Equipment Life and Overall Equipment Effectiveness (O.E.E.) through Proper Maintenance Strategy Using Value Engineering

Authors: Malay Niraj, Praveen Kumar

Abstract:

The present study is a new approach for improving equipment life and Overall Equipment Efficiency (O.E.E.) through suitable maintenance practice with the help of value engineering. Value engineering is a one of the most powerful decision-making techniques which depend on many factors. The improvements are the result of recommendations made by multidisciplinary teams representing all parties involved. VE is a rigorous, systematic effort to improve the OEE and optimize the life cycle cost of a facility. The study describes problems in maintenance arising due to the absence of having clear criteria and strong decision constrain how to maintain failing equipment. Using factor comparisons, the study has been made between different maintenance practices and finally best maintenance practice based on value engineering technique has been selected.

Keywords: maintenance strategy, overall equipment efficiency, value engineering, decision-making

Procedia PDF Downloads 409
30174 Survey on Big Data Stream Classification by Decision Tree

Authors: Mansoureh Ghiasabadi Farahani, Samira Kalantary, Sara Taghi-Pour, Mahboubeh Shamsi

Abstract:

Nowadays, the development of computers technology and its recent applications provide access to new types of data, which have not been considered by the traditional data analysts. Two particularly interesting characteristics of such data sets include their huge size and streaming nature .Incremental learning techniques have been used extensively to address the data stream classification problem. This paper presents a concise survey on the obstacles and the requirements issues classifying data streams with using decision tree. The most important issue is to maintain a balance between accuracy and efficiency, the algorithm should provide good classification performance with a reasonable time response.

Keywords: big data, data streams, classification, decision tree

Procedia PDF Downloads 522
30173 Risk Analysis in Road Transport of Dangerous Goods Using Complex Multi-Criteria Analysis Method

Authors: Zoran Masoničić, Siniša Dragutinović, Ivan Lazović

Abstract:

In the management and organization of the road transport of dangerous goods, in addition to the existing influential criteria and restrictions that apply to the road transport in general, it is necessary to include an additional criteria related to the safety of people and the environment, considering the danger that comes from the substances being transported. In that manner, the decision making process becomes very complex and rather challenging task that is inherent to the application of complex numerical multi-criteria analysis methods. In this paper some initial results of application of complex analysis method in decision making process are presented. Additionally, the method for minimization or even complete elimination of subjective element in the decision making process is provided. The results obtained can be used in order to point the direction towards some measures have to be applied in order to minimize or completely annihilate the influence of the risk source identified.

Keywords: road transport, dangerous goods, risk analysis, risk evaluation

Procedia PDF Downloads 18
30172 Use of Information Technology in the Government of a State

Authors: Pavel E. Golosov, Vladimir I. Gorelov, Oksana L. Karelova

Abstract:

There are visible changes in the world organization, environment and health of national conscience that create a background for discussion on possible redefinition of global, state and regional management goals. Authors apply the sustainable development criteria to a hierarchical management scheme that is to lead the world community to non-contradictory growth. Concrete definitions are discussed in respect of decision-making process representing the state mostly. With the help of system analysis it is highlighted how to understand who would carry the distinctive sign of world leadership in the nearest future.

Keywords: decision-making, information technology, public administration

Procedia PDF Downloads 516
30171 Strategic Thinking to Enhance Critical Transport Infrastructure and Build Resilience

Authors: Jayantha Withanaarachchi, Sujeeva Setunge, Sara Moridpour

Abstract:

Gaps in strategic thinking and planning lead to critical transport infrastructure resilience. These gaps in strategic transport and land use development planning have an impact on communities and cities. Natural and man-induced disasters can be catastrophic to communities. After a disaster, many types of critical infrastructure, including transport infrastructure gets un-usable or gets damaged. This paper examines strategic thinking behind the resilience and protection of Critical Transport Infrastructure (CI) within transport networks by investigating the impact of disasters such as bushfires, hurricanes and earthquakes. A detailed analysis of three case studies have been conducted to identify the gaps in strategic transport planning and strategic decision making processes required to mitigate the impacts of disasters. Case studies will be analysed to identify existing gaps in road design, transport planning and decision making. This paper examines the effect of road designing, transport corridors and decision making during transport planning stages and how it impacts transport infrastructure as well as community resilience. A set of recommendations to overcome the shortcomings of existing strategic planning and designing process are presented. This research paper reviews transport infrastructure planning issues and presents the common approach suitable for future strategic thinking and planning which could be adopted in practices.

Keywords: community resilience, decision making , infrastructure resilience, strategic transport planning, transport infrastructure

Procedia PDF Downloads 293
30170 Differences in Patient Satisfaction Observed between Female Japanese Breast Cancer Patients Who Receive Breast-Conserving Surgery or Total Mastectomy

Authors: Keiko Yamauchi, Motoyuki Nakao, Yoko Ishihara

Abstract:

The increase in the number of women with breast cancer in Japan has required hospitals to provide a higher quality of medicine so that patients are satisfied with the treatment they receive. However, patients’ satisfaction following breast cancer treatment has not been sufficiently studied. Hence, we investigated the factors influencing patient satisfaction following breast cancer treatment among Japanese women. These women underwent either breast-conserving surgery (BCS) (n = 380) or total mastectomy (TM) (n = 247). In March 2016, we conducted a cross-sectional internet survey of Japanese women with breast cancer in Japan. We assessed the following factors: socioeconomic status, cancer-related information, the role of medical decision-making, the degree of satisfaction regarding the treatments received, and the regret arising from the medical decision-making processes. We performed logistic regression analyses with the following dependent variables: extreme satisfaction with the treatments received, and regret regarding the medical decision-making process. For both types of surgery, the odds ratio (OR) of being extremely satisfied with the cancer treatment was significantly higher among patients who did not have any regrets compared to patients who had. Also, the OR tended to be higher among patients who chose to play a wanted role in the medical decision-making process, compared with patients who did not. In the BCS group, the OR of being extremely satisfied with the treatment was higher if, at diagnosis, the patient’s youngest child was older than 19 years, compared with patients with no children. The OR was also higher if patient considered the stage and characteristics of their cancer significant. The OR of being extremely satisfied with the treatments was lower among patients who were not employed on full-time basis, and among patients who considered the second medical opinions and medical expenses to be significant. These associations were not observed in the TM group. The OR of having regrets regarding the medical decision-making process was higher among patients who chose to play a role in the decision-making process as they preferred, and was also higher in patients who were employed on either a part-time or contractual basis. For both types of surgery, the OR was higher among patients who considered a second medical opinion to be significant. Regardless of surgical type, regret regarding the medical decision-making process decreases treatment satisfaction. Patients who received breast-conserving surgery were more likely to have regrets concerning the medical decision-making process if they could not play a role in the process as they preferred. In addition, factors associated with the satisfaction with treatment in BCS group but not TM group included the second medical opinion, medical expenses, employment status, and age of the youngest child at diagnosis.

Keywords: medical decision making, breast-conserving surgery, total mastectomy, Japanese

Procedia PDF Downloads 149
30169 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning

Authors: Rik van Leeuwen, Ger Koole

Abstract:

Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.

Keywords: hierarchical cluster analysis, hospitality, market segmentation

Procedia PDF Downloads 108
30168 Modelling Mode Choice Behaviour Using Cloud Theory

Authors: Leah Wright, Trevor Townsend

Abstract:

Mode choice models are crucial instruments in the analysis of travel behaviour. These models show the relationship between an individual’s choice of transportation mode for a given O-D pair and the individual’s socioeconomic characteristics such as household size and income level, age and/or gender, and the features of the transportation system. The most popular functional forms of these models are based on Utility-Based Choice Theory, which addresses the uncertainty in the decision-making process with the use of an error term. However, with the development of artificial intelligence, many researchers have started to take a different approach to travel demand modelling. In recent times, researchers have looked at using neural networks, fuzzy logic and rough set theory to develop improved mode choice formulas. The concept of cloud theory has recently been introduced to model decision-making under uncertainty. Unlike the previously mentioned theories, cloud theory recognises a relationship between randomness and fuzziness, two of the most common types of uncertainty. This research aims to investigate the use of cloud theory in mode choice models. This paper highlights the conceptual framework of the mode choice model using cloud theory. Merging decision-making under uncertainty and mode choice models is state of the art. The cloud theory model is expected to address the issues and concerns with the nested logit and improve the design of mode choice models and their use in travel demand.

Keywords: Cloud theory, decision-making, mode choice models, travel behaviour, uncertainty

Procedia PDF Downloads 389
30167 Distributive School Leadership in Croatian Primary Schools

Authors: Iva Buchberger, Vesna Kovač

Abstract:

Global education policy trends and recommendations underline the importance of (distributive) school leadership as a school effectiveness key factor. In this context, the broader aim of this research (supported by the Croatian Science Foundation) is to identify school leadership characteristics in Croatian schools and to examine the correlation between school leadership and school effectiveness. The aim of the proposed conference paper is to focus on the school leadership characteristics which are additionally explained with school leadership facilitators that contribute to (distributive) school leadership development. The aforementioned school leadership characteristics include the following dimensions: (a) participation in the process of making different types of decisions, (b) influence in the decision making process, (c) social interactions between different stakeholders in the decision making process in schools. Further, the school leadership facilitators are categorized as follows: (a) principal’s activities (such as providing support to different stakeholders and developing mutual trust among them), (b) stakeholders’ characteristics (such as developed stakeholders’ interest and competence to participate in decision-making process), (c) organizational and material resources (such as school material conditions, the necessary information and time as resources for making decisions). The data were collected by a constructed and validated questionnaire for examining the school leadership characteristics and facilitators from teachers’ perspective. The main population in this study consists of all primary schools in Croatia while the sample is comprised of 100 primary schools, selected by random sampling. Furthermore, the sample of teachers was selected by an additional procedure taking into consideration the independent variables of sex, work experience, etc. Data processing was performed by standard statistical methods of descriptive and inferential statistics. Statistical program IBM SPSS 20.0 was used for data processing. The results of this study show that there is a (positive) correlation between school leadership characteristics and school leadership facilitators. Specifically, it is noteworthy to mention that all the dimensions of school leadership characteristics are in positive correlation with the categories of school leadership facilitators. These results are indicative for the education policy creators who should ensure positive and supportive environment for the school leadership development including the development of school leadership characteristics and school leadership facilitators.

Keywords: distributive school leadership, school effectiveness , school leadership characteristics, school leadership facilitators

Procedia PDF Downloads 250
30166 Purchasing Decision-Making in Supply Chain Management: A Bibliometric Analysis

Authors: Ahlem Dhahri, Waleed Omri, Audrey Becuwe, Abdelwahed Omri

Abstract:

In industrial processes, decision-making ranges across different scales, from process control to supply chain management. The purchasing decision-making process in the supply chain is presently gaining more attention as a critical contributor to the company's strategic success. Given the scarcity of thorough summaries in the prior studies, this bibliometric analysis aims to adopt a meticulous approach to achieve quantitative knowledge on the constantly evolving subject of purchasing decision-making in supply chain management. Through bibliometric analysis, we examine a sample of 358 peer-reviewed articles from the Scopus database. VOSviewer and Gephi software were employed to analyze, combine, and visualize the data. Data analytic techniques, including citation network, page-rank analysis, co-citation, and publication trends, have been used to identify influential works and outline the discipline's intellectual structure. The outcomes of this descriptive analysis highlight the most prominent articles, authors, journals, and countries based on their citations and publications. The findings from the research illustrate an increase in the number of publications, exhibiting a slightly growing trend in this field. Co-citation analysis coupled with content analysis of the most cited articles identified five research themes mentioned as follows integrating sustainability into the supplier selection process, supplier selection under disruption risks assessment and mitigation strategies, Fuzzy MCDM approaches for supplier evaluation and selection, purchasing decision in vendor problems, decision-making techniques in supplier selection and order lot sizing problems. With the help of a graphic timeline, this exhaustive map of the field illustrates a visual representation of the evolution of publications that demonstrate a gradual shift from research interest in vendor selection problems to integrating sustainability in the supplier selection process. These clusters offer insights into a wide variety of purchasing methods and conceptual frameworks that have emerged; however, they have not been validated empirically. The findings suggest that future research would emerge with a greater depth of practical and empirical analysis to enrich the theories. These outcomes provide a powerful road map for further study in this area.

Keywords: bibliometric analysis, citation analysis, co-citation, Gephi, network analysis, purchasing, SCM, VOSviewer

Procedia PDF Downloads 86
30165 The Impact of Social Media on Urban E-planning: A Review of the Literature

Authors: Farnoosh Faal

Abstract:

The rapid growth of social media has brought significant changes to the field of urban e-planning. This study aims to review the existing literature on the impact of social media on urban e-planning processes. The study begins with a discussion of the evolution of social media and its role in urban e-planning. The review covers research on the use of social media for public engagement, citizen participation, stakeholder communication, decision-making, and monitoring and evaluation of urban e-planning initiatives. The findings suggest that social media has the potential to enhance public participation and improve decision-making in urban e-planning processes. Social media platforms such as Facebook, Twitter, and Instagram can provide a platform for citizens to engage with planners and policymakers, express their opinions, and provide feedback on planning proposals. Social media can also facilitate the collection and analysis of data, including real-time data, to inform urban e-planning decision-making. However, the literature also highlights some challenges associated with the use of social media in urban e-planning. These challenges include issues related to the representativeness of social media users, the quality of information obtained from social media, the potential for bias and manipulation of social media content, and the need for effective data management and analysis. The study concludes with recommendations for future research on the use of social media in urban e-planning. The recommendations include the need for further research on the impact of social media on equity and social justice in planning processes, the need for more research on effective strategies for engaging underrepresented groups, and the development of guidelines for the use of social media in urban e-planning processes. Overall, the study suggests that social media has the potential to transform urban e-planning processes but that careful consideration of the opportunities and challenges associated with its use is essential for effective and ethical planning practice.

Keywords: social media, Urban e-planning, public participation, citizen engagement

Procedia PDF Downloads 238