Search results for: RP/SP fusion data
25170 Providing Security to Private Cloud Using Advanced Encryption Standard Algorithm
Authors: Annapureddy Srikant Reddy, Atthanti Mahendra, Samala Chinni Krishna, N. Neelima
Abstract:
In our present world, we are generating a lot of data and we, need a specific device to store all these data. Generally, we store data in pen drives, hard drives, etc. Sometimes we may loss the data due to the corruption of devices. To overcome all these issues, we implemented a cloud space for storing the data, and it provides more security to the data. We can access the data with just using the internet from anywhere in the world. We implemented all these with the java using Net beans IDE. Once user uploads the data, he does not have any rights to change the data. Users uploaded files are stored in the cloud with the file name as system time and the directory will be created with some random words. Cloud accepts the data only if the size of the file is less than 2MB.Keywords: cloud space, AES, FTP, NetBeans IDE
Procedia PDF Downloads 20625169 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications
Procedia PDF Downloads 525168 Numerical Investigation of AL₂O₃ Nanoparticle Effect on a Boiling Forced Swirl Flow Field
Authors: Ataollah Rabiee1, Amir Hossein Kamalinia, Alireza Atf
Abstract:
One of the most important issues in the design of nuclear fusion power plants is the heat removal from the hottest region at the diverter. Various methods could be employed in order to improve the heat transfer efficiency, such as generating turbulent flow and injection of nanoparticles in the host fluid. In the current study, Water/AL₂O₃ nanofluid forced swirl flow boiling has been investigated by using a homogeneous thermophysical model within the Eulerian-Eulerian framework through a twisted tape tube, and the boiling phenomenon was modeled using the Rensselaer Polytechnic Institute (RPI) approach. In addition to comparing the results with the experimental data and their reasonable agreement, it was evidenced that higher flow mixing results in more uniform bulk temperature and lower wall temperature along the twisted tape tube. The presence of AL₂O₃ nanoparticles in the boiling flow field showed that increasing the nanoparticle concentration leads to a reduced vapor volume fraction and wall temperature. The Computational fluid dynamics (CFD) results show that the average heat transfer coefficient in the tube increases both by increasing the nanoparticle concentration and the insertion of twisted tape, which significantly affects the thermal field of the boiling flow.Keywords: nanoparticle, boiling, CFD, two phase flow, alumina, ITER
Procedia PDF Downloads 12525167 Geochemistry and Petrogenesis of High-K Calc-Alkaline Granitic Rocks of Song, Hawal Massif, N. E. Nigeria
Authors: Ismaila Haruna
Abstract:
The global downfall in fossil energy prices and dwindling oil reserves in Nigeria has ignited interest in the search for alternative sources of foreign income for the country. Solid minerals, particularly Uranium and other base metals like Lead and Zinc have been considered as potentially good options. Several occurrences of this mineral have been discovered in both the sedimentary and granitic rocks of the Hawal and Adamawa Massifs as well as in the adjoining Benue Trough in northeastern Nigeria. However, the paucity of geochemical data and consequent poor petrogenetic knowledge of the granitoids in this region has made exploration works difficult. Song, a small area within the Hawal Massif, was mapped and the collected samples chemically determined in Activation Laboratory, Canada through fusion dissolution technique of Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Field mapping results show that the area is underlain by Granites, diorites with pockets of gneisses and pegmatites and that these rocks consists of microcline, quartz, plagioclase, biotite, hornblende, pyroxene and accessory apatite, zircon, sphene, magnetite and opaques in various proportions. Geochemical data show continous compositional variation from diorite to granites within silica range of 52.69 to 76.04 wt %. Plot of the data on various Harker variation diagrams show distinct evolutionary trends from diorites to granites indicated by decreasing CaO, Fe2O3, MnO, MgO, Ti2O, and increasing K2O with increasing silica. This pattern is reflected in trace elements data which, in general, decrease from diorite to the granites with rising Rb and K. Tectonic, triangular and other diagrams, indicate high-K calc-alkaline trends, syn-collisional granite signatures, I-type characteristics, with CNK/A of less than 1.1 (minimum of 0.58 and maximum of 0.94) and strong potassic character (K2O/Na2O˃1). However, only the granites are slightly peraluminous containing high silica percentage (68.46 to 76.04), K2O (2.71 to 6.16 wt %) with low CaO (1.88 on the average). Chondrite normalised rare earth elements trends indicate strongly fractionated REEs and enriched LREEs with slightly increasing negative Eu anomaly from the diorite to the granite. On the basis of field and geochemical data, the granitoids are interpreted to be high-K calc-alkaline, I-type, formed as a result of hybridization between mantle-derived magma and continental source materials (probably older meta-sediments) in a syn-collisional tectonic setting.Keywords: geochemistry, granite, Hawal Massif, Nigeria, petrogenesis, song
Procedia PDF Downloads 23525166 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 48325165 Imputation Technique for Feature Selection in Microarray Data Set
Authors: Younies Saeed Hassan Mahmoud, Mai Mabrouk, Elsayed Sallam
Abstract:
Analysing DNA microarray data sets is a great challenge, which faces the bioinformaticians due to the complication of using statistical and machine learning techniques. The challenge will be doubled if the microarray data sets contain missing data, which happens regularly because these techniques cannot deal with missing data. One of the most important data analysis process on the microarray data set is feature selection. This process finds the most important genes that affect certain disease. In this paper, we introduce a technique for imputing the missing data in microarray data sets while performing feature selection.Keywords: DNA microarray, feature selection, missing data, bioinformatics
Procedia PDF Downloads 57425164 PDDA: Priority-Based, Dynamic Data Aggregation Approach for Sensor-Based Big Data Framework
Authors: Lutful Karim, Mohammed S. Al-kahtani
Abstract:
Sensors are being used in various applications such as agriculture, health monitoring, air and water pollution monitoring, traffic monitoring and control and hence, play the vital role in the growth of big data. However, sensors collect redundant data. Thus, aggregating and filtering sensors data are significantly important to design an efficient big data framework. Current researches do not focus on aggregating and filtering data at multiple layers of sensor-based big data framework. Thus, this paper introduces (i) three layers data aggregation and framework for big data and (ii) a priority-based, dynamic data aggregation scheme (PDDA) for the lowest layer at sensors. Simulation results show that the PDDA outperforms existing tree and cluster-based data aggregation scheme in terms of overall network energy consumptions and end-to-end data transmission delay.Keywords: big data, clustering, tree topology, data aggregation, sensor networks
Procedia PDF Downloads 34525163 Unbranched, Saturated, Carboxylic Esters as Phase-Change Materials
Authors: Anastasia Stamatiou, Melissa Obermeyer, Ludger J. Fischer, Philipp Schuetz, Jörg Worlitschek
Abstract:
This study evaluates unbranched, saturated carboxylic esters with respect to their suitability to be used as storage media for latent heat storage applications. Important thermophysical properties are gathered both by means of literature research as well as by experimental measurements. Additionally, esters are critically evaluated against other common phase-change materials in terms of their environmental impact and their economic potential. The experimental investigations are performed for eleven selected ester samples with a focus on the determination of their melting temperature and their enthalpy of fusion using differential scanning calorimetry. Transient Hot Bridge was used to determine the thermal conductivity of the liquid samples while thermogravimetric analysis was employed for the evaluation of the 5% weight loss temperature as well as of the decomposition temperature of the non-volatile samples. Both experimental results and literature data reveal the high potential of esters as phase-change materials. Their good thermal and environmental properties as well as the possibility for production from natural sources (e.g. vegetable oils) render esters as very promising for future storage applications. A particularly high short term application potential of esters could lie in low temperature storage applications where the main alternative is using salt hydrates as phase-change material.Keywords: esters, phase-change materials, thermal properties, latent heat storage
Procedia PDF Downloads 41525162 The Path to Ruthium: Insights into the Creation of a New Element
Authors: Goodluck Akaoma Ordu
Abstract:
Ruthium (Rth) represents a theoretical superheavy element with an atomic number of 119, proposed within the context of advanced materials science and nuclear physics. The conceptualization of Rth involves theoretical frameworks that anticipate its atomic structure, including a hypothesized stable isotope, Rth-320, characterized by 119 protons and 201 neutrons. The synthesis of Ruthium (Rth) hinges on intricate nuclear fusion processes conducted in state-of-the-art particle accelerators, notably utilizing Calcium-48 (Ca-48) as a projectile nucleus and Einsteinium-253 (Es-253) as a target nucleus. These experiments aim to induce fusion reactions that yield Ruthium isotopes, such as Rth-301, accompanied by neutron emission. Theoretical predictions outline various physical and chemical properties attributed to Ruthium (Rth). It is envisaged to possess a high density, estimated at around 25 g/cm³, with melting and boiling points anticipated to be exceptionally high, approximately 4000 K and 6000 K, respectively. Chemical studies suggest potential oxidation states of +2, +3, and +4, indicating a versatile reactivity, particularly with halogens and chalcogens. The atomic structure of Ruthium (Rth) is postulated to feature an electron configuration of [Rn] 5f^14 6d^10 7s^2 7p^2, reflecting its position in the periodic table as a superheavy element. However, the creation and study of superheavy elements like Ruthium (Rth) pose significant challenges. These elements typically exhibit very short half-lives, posing difficulties in their stabilization and detection. Research efforts are focused on identifying the most stable isotopes of Ruthium (Rth) and developing advanced detection methodologies to confirm their existence and properties. Specialized detectors are essential in observing decay patterns unique to Ruthium (Rth), such as alpha decay or fission signatures, which serve as key indicators of its presence and characteristics. The potential applications of Ruthium (Rth) span across diverse technological domains, promising innovations in energy production, material strength enhancement, and sensor technology. Incorporating Ruthium (Rth) into advanced energy systems, such as the Arc Reactor concept, could potentially amplify energy output efficiencies. Similarly, integrating Ruthium (Rth) into structural materials, exemplified by projects like the NanoArc gauntlet, could bolster mechanical properties and resilience. Furthermore, Ruthium (Rth)--based sensors hold promise for achieving heightened sensitivity and performance in various sensing applications. Looking ahead, the study of Ruthium (Rth) represents a frontier in both fundamental science and applied research. It underscores the quest to expand the periodic table and explore the limits of atomic stability and reactivity. Future research directions aim to delve deeper into Ruthium (Rth)'s atomic properties under varying conditions, paving the way for innovations in nanotechnology, quantum materials, and beyond. The synthesis and characterization of Ruthium (Rth) stand as a testament to human ingenuity and technological advancement, pushing the boundaries of scientific understanding and engineering capabilities. In conclusion, Ruthium (Rth) embodies the intersection of theoretical speculation and experimental pursuit in the realm of superheavy elements. It symbolizes the relentless pursuit of scientific excellence and the potential for transformative technological breakthroughs. As research continues to unravel the mysteries of Ruthium (Rth), it holds the promise of reshaping materials science and opening new frontiers in technological innovation.Keywords: superheavy element, nuclear fusion, bombardment, particle accelerator, nuclear physics, particle physics
Procedia PDF Downloads 3625161 Comprehensive Evaluation of COVID-19 Through Chest Images
Authors: Parisa Mansour
Abstract:
The coronavirus disease 2019 (COVID-19) was discovered and rapidly spread to various countries around the world since the end of 2019. Computed tomography (CT) images have been used as an important alternative to the time-consuming RT. PCR test. However, manual segmentation of CT images alone is a major challenge as the number of suspected cases increases. Thus, accurate and automatic segmentation of COVID-19 infections is urgently needed. Because the imaging features of the COVID-19 infection are different and similar to the background, existing medical image segmentation methods cannot achieve satisfactory performance. In this work, we try to build a deep convolutional neural network adapted for the segmentation of chest CT images with COVID-19 infections. First, we maintain a large and novel chest CT image database containing 165,667 annotated chest CT images from 861 patients with confirmed COVID-19. Inspired by the observation that the boundary of an infected lung can be improved by global intensity adjustment, we introduce a feature variable block into the proposed deep CNN, which adjusts the global features of features to segment the COVID-19 infection. The proposed PV array can effectively and adaptively improve the performance of functions in different cases. We combine features of different scales by proposing a progressive atrocious space pyramid fusion scheme to deal with advanced infection regions with various aspects and shapes. We conducted experiments on data collected in China and Germany and showed that the proposed deep CNN can effectively produce impressive performance.Keywords: chest, COVID-19, chest Image, coronavirus, CT image, chest CT
Procedia PDF Downloads 5725160 Control the Flow of Big Data
Authors: Shizra Waris, Saleem Akhtar
Abstract:
Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.Keywords: computer, it community, industry, big data
Procedia PDF Downloads 19425159 Investigation on the Acoustical Transmission Path of Additive Printed Metals
Authors: Raphael Rehmet, Armin Lohrengel, Prof Dr-Ing
Abstract:
In terms of making machines more silent and convenient, it is necessary to analyze the transmission path of mechanical vibrations and structure-bone noise. A typical solution for the elimination of structure-bone noise would be to simply add stiffeners or additional masses to change the transmission behavior and, thereby, avoid the propagation of vibrations. Another solution could be to use materials with a different damping behavior, such as elastomers, to isolate the machine dynamically. This research approach investigates the damping behavior of additive printed components made from structural steel or titanium, which have been manufactured in the “Laser Powder Bed Fusion“-process. By using the design flexibility which this process comes with, it will be investigated how a local impedance difference will affect the transmission behavior of the specimens.Keywords: 3D-printed, acoustics, dynamics, impedance
Procedia PDF Downloads 20725158 High Performance Computing and Big Data Analytics
Authors: Branci Sarra, Branci Saadia
Abstract:
Because of the multiplied data growth, many computer science tools have been developed to process and analyze these Big Data. High-performance computing architectures have been designed to meet the treatment needs of Big Data (view transaction processing standpoint, strategic, and tactical analytics). The purpose of this article is to provide a historical and global perspective on the recent trend of high-performance computing architectures especially what has a relation with Analytics and Data Mining.Keywords: high performance computing, HPC, big data, data analysis
Procedia PDF Downloads 52025157 A Landscape of Research Data Repositories in Re3data.org Registry: A Case Study of Indian Repositories
Authors: Prashant Shrivastava
Abstract:
The purpose of this study is to explore re3dat.org registry to identify research data repositories registration workflow process. Further objective is to depict a graph for present development of research data repositories in India. Preliminarily with an approach to understand re3data.org registry framework and schema design then further proceed to explore the status of research data repositories of India in re3data.org registry. Research data repositories are getting wider relevance due to e-research concepts. Now available registry re3data.org is a good tool for users and researchers to identify appropriate research data repositories as per their research requirements. In Indian environment, a compatible National Research Data Policy is the need of the time to boost the management of research data. Registry for Research Data Repositories is a crucial tool to discover specific information in specific domain. Also, Research Data Repositories in India have not been studied. Re3data.org registry and status of Indian research data repositories both discussed in this study.Keywords: research data, research data repositories, research data registry, re3data.org
Procedia PDF Downloads 32425156 Kannada HandWritten Character Recognition by Edge Hinge and Edge Distribution Techniques Using Manhatan and Minimum Distance Classifiers
Authors: C. V. Aravinda, H. N. Prakash
Abstract:
In this paper, we tried to convey fusion and state of art pertaining to SIL character recognition systems. In the first step, the text is preprocessed and normalized to perform the text identification correctly. The second step involves extracting relevant and informative features. The third step implements the classification decision. The three stages which involved are Data acquisition and preprocessing, Feature extraction, and Classification. Here we concentrated on two techniques to obtain features, Feature Extraction & Feature Selection. Edge-hinge distribution is a feature that characterizes the changes in direction of a script stroke in handwritten text. The edge-hinge distribution is extracted by means of a windowpane that is slid over an edge-detected binary handwriting image. Whenever the mid pixel of the window is on, the two edge fragments (i.e. connected sequences of pixels) emerging from this mid pixel are measured. Their directions are measured and stored as pairs. A joint probability distribution is obtained from a large sample of such pairs. Despite continuous effort, handwriting identification remains a challenging issue, due to different approaches use different varieties of features, having different. Therefore, our study will focus on handwriting recognition based on feature selection to simplify features extracting task, optimize classification system complexity, reduce running time and improve the classification accuracy.Keywords: word segmentation and recognition, character recognition, optical character recognition, hand written character recognition, South Indian languages
Procedia PDF Downloads 49425155 A Study of Cloud Computing Solution for Transportation Big Data Processing
Authors: Ilgin Gökaşar, Saman Ghaffarian
Abstract:
The need for fast processed big data of transportation ridership (eg., smartcard data) and traffic operation (e.g., traffic detectors data) which requires a lot of computational power is incontrovertible in Intelligent Transportation Systems. Nowadays cloud computing is one of the important subjects and popular information technology solution for data processing. It enables users to process enormous measure of data without having their own particular computing power. Thus, it can also be a good selection for transportation big data processing as well. This paper intends to examine how the cloud computing can enhance transportation big data process with contrasting its advantages and disadvantages, and discussing cloud computing features.Keywords: big data, cloud computing, Intelligent Transportation Systems, ITS, traffic data processing
Procedia PDF Downloads 46725154 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 24725153 Linguistic Summarization of Structured Patent Data
Authors: E. Y. Igde, S. Aydogan, F. E. Boran, D. Akay
Abstract:
Patent data have an increasingly important role in economic growth, innovation, technical advantages and business strategies and even in countries competitions. Analyzing of patent data is crucial since patents cover large part of all technological information of the world. In this paper, we have used the linguistic summarization technique to prove the validity of the hypotheses related to patent data stated in the literature.Keywords: data mining, fuzzy sets, linguistic summarization, patent data
Procedia PDF Downloads 27225152 Proposal of Data Collection from Probes
Authors: M. Kebisek, L. Spendla, M. Kopcek, T. Skulavik
Abstract:
In our paper we describe the security capabilities of data collection. Data are collected with probes located in the near and distant surroundings of the company. Considering the numerous obstacles e.g. forests, hills, urban areas, the data collection is realized in several ways. The collection of data uses connection via wireless communication, LAN network, GSM network and in certain areas data are collected by using vehicles. In order to ensure the connection to the server most of the probes have ability to communicate in several ways. Collected data are archived and subsequently used in supervisory applications. To ensure the collection of the required data, it is necessary to propose algorithms that will allow the probes to select suitable communication channel.Keywords: communication, computer network, data collection, probe
Procedia PDF Downloads 36025151 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors
Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi
Abstract:
In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment
Procedia PDF Downloads 22925150 Decision Support: How Explainable A.I. Can Improve Transparency and Trust with Human Users
Authors: Devon Brown, Liu Chunmei
Abstract:
This paper will present an analysis as part of the researchers dissertation topic focusing on the intersection of affective and analytical directed acyclic graphs (DAGs) in the context of Decision Support Systems (DSS). The researcher’s work involves analyzing decision theory models like Affective and Bayesian Decision theory models and how they could be implemented under an Affective Computing Framework using Information Fusion and Human-Centered Design. Additionally, the researcher is beginning research on an Affective-Analytic Decision Framework (AADF) model for their dissertation research and are looking to merge logic and analytic models with empathetic insights into affective DAGs. Data-collection efforts begin Fall 2024 and in preparation for the efforts this paper looks to analyze previous research in this area and introduce the AADF framework and propose conceptual models for consideration. For this paper, the research emphasis is placed on analyzing Bayesian networks and Markov models which offer probabilistic techniques during uncertainty in decision-making. Ideally, including affect into analytic models will ensure algorithms can increase user trust with algorithms by including emotional states and the user’s experience with the goal of developing emotionally intelligent A.I. systems that can start to navigate the complex fabric of human emotion during decision-making.Keywords: decision support systems, explainable AI, HCAI techniques, affective-analytical decision framework
Procedia PDF Downloads 2025149 A Quantitative Plan for Drawing Down Emissions to Attenuate Climate Change
Authors: Terry Lucas
Abstract:
Calculations are performed to quantify the potential contribution of each greenhouse gas emission reduction strategy. This approach facilitates the visualisation of the relative benefits of each, and it provides a potential baseline for the development of a plan of action that is rooted in quantitative evaluation. Emissions reductions are converted to potential de-escalation of global average temperature. A comprehensive plan is then presented which shows the potential benefits all the way out to year 2100. A target temperature de-escalation of 2oC was selected, but the plan shows a benefit of only 1.225oC. This latter disappointing result is in spite of new and powerful technologies introduced into the equation. These include nuclear fusion and alternative nuclear fission processes. Current technologies such as wind, solar and electric vehicles show surprisingly small constributions to the whole.Keywords: climate change, emissions, drawdown, energy
Procedia PDF Downloads 13125148 A Review on Big Data Movement with Different Approaches
Authors: Nay Myo Sandar
Abstract:
With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques
Procedia PDF Downloads 8625147 Optimized Approach for Secure Data Sharing in Distributed Database
Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal
Abstract:
In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.Keywords: ER-schema, electronic record, P2P framework, API, query formulation
Procedia PDF Downloads 33325146 Analysis of Nonlinear and Non-Stationary Signal to Extract the Features Using Hilbert Huang Transform
Authors: A. N. Paithane, D. S. Bormane, S. D. Shirbahadurkar
Abstract:
It has been seen that emotion recognition is an important research topic in the field of Human and computer interface. A novel technique for Feature Extraction (FE) has been presented here, further a new method has been used for human emotion recognition which is based on HHT method. This method is feasible for analyzing the nonlinear and non-stationary signals. Each signal has been decomposed into the IMF using the EMD. These functions are used to extract the features using fission and fusion process. The decomposition technique which we adopt is a new technique for adaptively decomposing signals. In this perspective, we have reported here potential usefulness of EMD based techniques.We evaluated the algorithm on Augsburg University Database; the manually annotated database.Keywords: intrinsic mode function (IMF), Hilbert-Huang transform (HHT), empirical mode decomposition (EMD), emotion detection, electrocardiogram (ECG)
Procedia PDF Downloads 58025145 Heterotopic Ossification: DISH and Myositis Ossificans in Human Remains Identification
Authors: Patricia Shirley Almeida Prado, Liz Brito, Selma Paixão Argollo, Gracie Moreira, Leticia Matos Sobrinho
Abstract:
Diffuse idiopathic skeletal hyperostosis (DISH) is a degenerative bone disease also known as Forestier´s disease and ankylosing hyperostosis of the spine is characterized by a tendency toward ossification of half the anterior longitudinal spinal ligament without intervertebral disc disease. DISH is not considered to be osteoarthritis, although the two conditions commonly occur together. Diagnostic criteria include fusion of at least four vertebrae by bony bridges arising from the anterolateral aspect of the vertebral bodies. These vertebral bodies have a 'dripping candle wax' appearance, also can be seen periosteal new bone formation on the anterior surface of the vertebral bodies and there is no ankylosis at zygoapophyseal facet joint. Clinically, patients with DISH tend to be asymptomatic some patients mention moderate pain and stiffness in upper back. This disease is more common in man, uncommon in patients younger than 50 years and rare in patients under 40 years old. In modern populations, DISH is found in association with obesity, (type II) diabetes; abnormal vitamin A metabolism and also associated with higher levels of serum uric acid. There is also some association between the increase of risk of stroke or other cerebrovascular disease. The DISH condition can be confused with Heterotopic Ossification, what is the bone formation in the soft tissues as the result of trauma, wounding, surgery, burnings, prolonged immobility and some central nervous system disorder. All these conditions have been described extensively as myositis ossificans which can be confused with the fibrodysplasia (myositis) ossificans progressive. As in the DISH symptomatology it can be asymptomatic or extensive enough to impair joint function. A third confusion osteoarthritis disease that can bring confusion are the enthesopathies that occur in the entire skeleton being common on the ischial tuberosities, iliac crests, patellae, and calcaneus. Ankylosis of the sacroiliac joint by bony bridges may also be found. CASE 1: this case is skeletal remains presenting skull, some vertebrae and scapulae. This case remains unidentified and due to lack of bone remains. Sex, age and ancestry profile was compromised, however the DISH pathognomonic findings and diagnostic helps to estimate sex and age characteristics. Moreover to presenting DISH these skeletal remains also showed some bone alterations and non-metrics as fusion of the first vertebrae with occipital bone, maxillae and palatine torus and scapular foramen on the right scapulae. CASE 2: this skeleton remains shows an extensive bone heterotopic ossification on the great trochanter area of left femur, right fibula showed a healed fracture in its body however in its inteosseous crest there is an extensive bone growth, also in the Ilium at the region of inferior gluteal line can be observed some pronounced bone growth and the skull presented a pronounced mandibular, maxillary and palatine torus. Despite all these pronounced heterotopic ossification the whole skeleton presents moderate bone overgrowth that is not linked with aging, since the skeleton belongs to a young unidentified individual. The appropriate osteopathological diagnosis support the human identification process through medical reports and also assist with epidemiological data that can strengthen vulnerable anthropological estimates.Keywords: bone disease, DISH, human identification, human remains
Procedia PDF Downloads 33325144 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands
Authors: Julio Albuja, David Zaldumbide
Abstract:
Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.Keywords: algorithms, data, decision tree, transformation
Procedia PDF Downloads 37425143 Cognition of Driving Context for Driving Assistance
Authors: Manolo Dulva Hina, Clement Thierry, Assia Soukane, Amar Ramdane-Cherif
Abstract:
In this paper, we presented our innovative way of determining the driving context for a driving assistance system. We invoke the fusion of all parameters that describe the context of the environment, the vehicle and the driver to obtain the driving context. We created a training set that stores driving situation patterns and from which the system consults to determine the driving situation. A machine-learning algorithm predicts the driving situation. The driving situation is an input to the fission process that yields the action that must be implemented when the driver needs to be informed or assisted from the given the driving situation. The action may be directed towards the driver, the vehicle or both. This is an ongoing work whose goal is to offer an alternative driving assistance system for safe driving, green driving and comfortable driving. Here, ontologies are used for knowledge representation.Keywords: cognitive driving, intelligent transportation system, multimodal system, ontology, machine learning
Procedia PDF Downloads 36725142 Application of Blockchain Technology in Geological Field
Authors: Mengdi Zhang, Zhenji Gao, Ning Kang, Rongmei Liu
Abstract:
Management and application of geological big data is an important part of China's national big data strategy. With the implementation of a national big data strategy, geological big data management becomes more and more critical. At present, there are still a lot of technology barriers as well as cognition chaos in many aspects of geological big data management and application, such as data sharing, intellectual property protection, and application technology. Therefore, it’s a key task to make better use of new technologies for deeper delving and wider application of geological big data. In this paper, we briefly introduce the basic principle of blockchain technology at the beginning and then make an analysis of the application dilemma of geological data. Based on the current analysis, we bring forward some feasible patterns and scenarios for the blockchain application in geological big data and put forward serval suggestions for future work in geological big data management.Keywords: blockchain, intellectual property protection, geological data, big data management
Procedia PDF Downloads 8825141 Face Recognition Using Discrete Orthogonal Hahn Moments
Authors: Fatima Akhmedova, Simon Liao
Abstract:
One of the most critical decision points in the design of a face recognition system is the choice of an appropriate face representation. Effective feature descriptors are expected to convey sufficient, invariant and non-redundant facial information. In this work, we propose a set of Hahn moments as a new approach for feature description. Hahn moments have been widely used in image analysis due to their invariance, non-redundancy and the ability to extract features either globally and locally. To assess the applicability of Hahn moments to Face Recognition we conduct two experiments on the Olivetti Research Laboratory (ORL) database and University of Notre-Dame (UND) X1 biometric collection. Fusion of the global features along with the features from local facial regions are used as an input for the conventional k-NN classifier. The method reaches an accuracy of 93% of correctly recognized subjects for the ORL database and 94% for the UND database.Keywords: face recognition, Hahn moments, recognition-by-parts, time-lapse
Procedia PDF Downloads 375