Search results for: sigmoid
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 37

Search results for: sigmoid

37 Congenital Positional Anomaly of Descending Colon and Sigmoid Colon: Its Embryological Basis and Clinical Implications

Authors: Dhivyalakshmi Gnanasekaran, Sonali Adole Prasante, Raveendranath Veeramamani, H. Y. Suma

Abstract:

A rare case of intestinal malrotation with midline descending colon and right sided sigmoid colon was observed in an adult male cadaver aged around 55 years during routine dissection. The descending colon began from the splenic flexure and gradually descended downwards to occupy the midline position and turned to the right side to be continued as sigmoid colon at the level of the fifth lumbar vertebra. In the right iliac fossa some part of loop of sigmoid colon displaced into the right lumbar region before entering into the true pelvis to continue as rectum. This anomalous descending and sigmoid colon was supplied by varying branching pattern of inferior mesenteric artery. It is extremely important to consider this embryological anomaly before any interventional diagnostic procedures like colonoscopy and to enhance the safety of colonic surgery.

Keywords: sigmoid colon, descending colon, hindgut, malrotation

Procedia PDF Downloads 251
36 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks

Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha

Abstract:

Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).

Keywords: activation function, universal approximation function, neural networks, convergence

Procedia PDF Downloads 158
35 Closed Loop Large Bowel Obstruction Due to Appendiceal Signet Cell Carcinoma

Authors: Joshua Teo, Leo Phan

Abstract:

Signet cell carcinoma of the appendix is the rarest and the most aggressive subtype of appendiceal malignancy, typically with non-specific presentations. We describe a case of a 62-year-old male with large bowel obstruction and CT demonstrating dilated large bowels from caecum to proximal sigmoid colon with pneumoperitoneum. Intra-operatively, closed-loop obstruction caused by dense adherence of sigmoid colon to caecum was noted, which had resulted in caecal perforation. Histopathology study indicated primary appendiceal malignancy of signet cell morphology with intra-peritoneal spread to the sigmoid colon. Large bowel obstruction from appendiceal malignancy has rarely been reported, and a similar presentation has not been described in the existing literature. When left-sided large bowel obstruction is suspected to be caused by a malignant stricture, it is essential to consider transperitoneal spread of appendiceal malignancy as potential aetiology, particularly in the elderly.

Keywords: appendiceal carcinoma, large bowel obstruction, signet ring cell cancer, caecal perforation

Procedia PDF Downloads 222
34 Mesenteric Vasculitis Causing Perforated Diverticulitis Mimicking Abdominal Sepsis

Authors: Christopher Leung, Assad Zahid

Abstract:

Mesenteric vasculitis can often mimic abdominal sepsis in a postoperative setting leading to a predicament where steroids could improve mesenteric vasculitis whilst worsening abdominal sepsis. Here this study presents a unique and rare case of perforated sigmoid diverticulitis secondary to systemic vasculitis. A 68-year-old gentleman presented with perforated sigmoid diverticulitis requiring an emergency Hartmann’s procedure. Early in his postoperative course, he had painful and asymmetrical neuropathy that, after a careful history and examination, revealed a patient with mono neuritis multiplex on a background history of longstanding rheumatoid arthritis. On day seven of his postoperative course, he had rising inflammatory markers and a CT abdomen and pelvis showing fluid around the mesentery. Whilst contamination from sigmoid perforation was somewhat congruent with these signs, a diagnosis of polyarteritis nodosa, a common cause of mononeuritis multiplex, is also possible, although involvement of the large bowel in polyarteritis nodosa is extremely rare. The histopathology from the initial Hartmann’s procedure was re-examined, showing medium vessel disease vasculitis. Given his lack of fevers, absence of abdominal pain, and worsening neurology, he was given a provisional diagnosis of polyarteritis nodosa and was treated successfully, not on IV antibiotics but on steroids. Large bowel involvement of polyarteritis nodosa is extremely rare and this is the first case of polyarteritis nodosa causing perforated diverticulitis. The learning point here is to obtain a good clinical picture of a patient to identify mesenteric vasculitis as compared to abdominal sepsis as the treatment of one worsens the other.

Keywords: abdominal sepsis, diverticulitis, mesenteric vasculitis, polyarteritis nodosa

Procedia PDF Downloads 252
33 Artificial Neural Network Modeling of a Closed Loop Pulsating Heat Pipe

Authors: Vipul M. Patel, Hemantkumar B. Mehta

Abstract:

Technological innovations in electronic world demand novel, compact, simple in design, less costly and effective heat transfer devices. Closed Loop Pulsating Heat Pipe (CLPHP) is a passive phase change heat transfer device and has potential to transfer heat quickly and efficiently from source to sink. Thermal performance of a CLPHP is governed by various parameters such as number of U-turns, orientations, input heat, working fluids and filling ratio. The present paper is an attempt to predict the thermal performance of a CLPHP using Artificial Neural Network (ANN). Filling ratio and heat input are considered as input parameters while thermal resistance is set as target parameter. Types of neural networks considered in the present paper are radial basis, generalized regression, linear layer, cascade forward back propagation, feed forward back propagation; feed forward distributed time delay, layer recurrent and Elman back propagation. Linear, logistic sigmoid, tangent sigmoid and Radial Basis Gaussian Function are used as transfer functions. Prediction accuracy is measured based on the experimental data reported by the researchers in open literature as a function of Mean Absolute Relative Deviation (MARD). The prediction of a generalized regression ANN model with spread constant of 4.8 is found in agreement with the experimental data for MARD in the range of ±1.81%.

Keywords: ANN models, CLPHP, filling ratio, generalized regression, spread constant

Procedia PDF Downloads 292
32 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework

Authors: Ma Cecilia Siva

Abstract:

This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.

Keywords: tokenized, sigmoid activation, transformer, multi category classification

Procedia PDF Downloads 8
31 The Technique of Mobilization of the Colon for Pull-Through Procedure in Hirschsprung's Disease

Authors: Medet K. Khamitov, Marat M. Ospanov, Vasiliy M. Lozovoy, Zhenis N. Sakuov, Dastan Z. Rustemov

Abstract:

With a high rectosigmoid transitional zone in children with Hirschsprung’s disease, the upper rectal, sigmoid, left colon arteries are ligated during the pull-through of the descending part of the colon. As a result, the inferior mesenteric artery ceases to participate in the blood supply to the descending part of the colon. As a result, the reduced colon is supplied with blood only by the middle colon artery, which originates from the superior mesenteric artery. Insufficiency of blood supply to the reduced colon is the cause of the development of chronic hypoxia of the intestinal wall or necrosis of the reduced descending colon. Some surgeons prefer to preserve the left colon artery. However, it is possible to stretch the mesentery, which can lead to bowel retraction to anastomotic leaks and stenosis. Chronic hypoxia of the reduced colon, in turn, is the cause of acquired (secondary) aganglionosis. The highest frequency of anastomotic leaks is observed in children older than five years. The purpose is to reduce the risk of complications in the pull-through procedure of the descending part of the colon in patients with Hirschsprung’s disease by ensuring its sufficient mobility and maintaining blood supply to the lower mesenteric artery. Methodology and events. Two children aged 5 and 7 years with Hirschsprung’s disease were operated under the conditions of the hospital in Nur-Sultan. The diagnosis was made using x-ray contrast enema and histological examination. Operational technique. After revision of the left part of the colon and assessment of the architectonics of its blood vessels, parietal mobilization of the affected sigmoid and rectum was performed on laparotomy access, while maintaining the arterial and venous terminal arcades of the sigmoid vessels. Then, the descending branch of the left colon artery was crossed (if there is an insufficient length of the reduced intestine, the left colonic artery itself may also be crossed). This manipulation provides additional mobility of the pull-through descending part of the colon. The resulting "windows" in the mesentery of the reduced intestine were sutured to prevent the development of an internal hernia. Formed a full-blooded, sufficiently long transplant from the transverse loops of the splenic angle and the descending parts of the colon with blood supply from the upper and lower mesenteric artery, freely, without tension, is reduced to the rectal zone with the coloanal anastomosis 1.5 cm above the dentate line. Results. The postoperative period was uneventful. Patients were discharged on the 7th day. The observation was carried out for six months. In no case, there was a bowel retraction, anastomotic leak, anastomotic stenosis, or other complications. Conclusion. The presented technique of mobilization of the colon for the pull-through procedure in a high transitional rectosigmoid zone of Hirschsprung’s disease allows to maintain normal blood supply to the distal part of the colon and to avoid the tension of the colon. The technique allows reducing the risk of anastomotic leak, bowel necrosis, chronic ischemia, to exclude colon retraction and anastomotic stenosis.

Keywords: blood supply, children, colon mobilization, Hirschsprung's disease, pull-through

Procedia PDF Downloads 147
30 Application of ANN and Fuzzy Logic Algorithms for Runoff and Sediment Yield Modelling of Kal River, India

Authors: Mahesh Kothari, K. D. Gharde

Abstract:

The ANN and fuzzy logic (FL) models were developed to predict the runoff and sediment yield for catchment of Kal river, India using 21 years (1991 to 2011) rainfall and other hydrological data (evaporation, temperature and streamflow lag by one and two day) and 7 years data for sediment yield modelling. The ANN model performance improved with increasing the input vectors. The fuzzy logic model was performing with R value more than 0.95 during developmental stage and validation stage. The comparatively FL model found to be performing well to ANN in prediction of runoff and sediment yield for Kal river.

Keywords: transferred function, sigmoid, backpropagation, membership function, defuzzification

Procedia PDF Downloads 568
29 Secure Multiparty Computations for Privacy Preserving Classifiers

Authors: M. Sumana, K. S. Hareesha

Abstract:

Secure computations are essential while performing privacy preserving data mining. Distributed privacy preserving data mining involve two to more sites that cannot pool in their data to a third party due to the violation of law regarding the individual. Hence in order to model the private data without compromising privacy and information loss, secure multiparty computations are used. Secure computations of product, mean, variance, dot product, sigmoid function using the additive and multiplicative homomorphic property is discussed. The computations are performed on vertically partitioned data with a single site holding the class value.

Keywords: homomorphic property, secure product, secure mean and variance, secure dot product, vertically partitioned data

Procedia PDF Downloads 412
28 Facial Emotion Recognition Using Deep Learning

Authors: Ashutosh Mishra, Nikhil Goyal

Abstract:

A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.

Keywords: facial recognition, computational intelligence, convolutional neural network, depth map

Procedia PDF Downloads 231
27 Prediction of Terrorist Activities in Nigeria using Bayesian Neural Network with Heterogeneous Transfer Functions

Authors: Tayo P. Ogundunmade, Adedayo A. Adepoju

Abstract:

Terrorist attacks in liberal democracies bring about a few pessimistic results, for example, sabotaged public support in the governments they target, disturbing the peace of a protected environment underwritten by the state, and a limitation of individuals from adding to the advancement of the country, among others. Hence, seeking for techniques to understand the different factors involved in terrorism and how to deal with those factors in order to completely stop or reduce terrorist activities is the topmost priority of the government in every country. This research aim is to develop an efficient deep learning-based predictive model for the prediction of future terrorist activities in Nigeria, addressing low-quality prediction accuracy problems associated with the existing solution methods. The proposed predictive AI-based model as a counterterrorism tool will be useful by governments and law enforcement agencies to protect the lives of individuals in society and to improve the quality of life in general. A Heterogeneous Bayesian Neural Network (HETBNN) model was derived with Gaussian error normal distribution. Three primary transfer functions (HOTTFs), as well as two derived transfer functions (HETTFs) arising from the convolution of the HOTTFs, are namely; Symmetric Saturated Linear transfer function (SATLINS ), Hyperbolic Tangent transfer function (TANH), Hyperbolic Tangent sigmoid transfer function (TANSIG), Symmetric Saturated Linear and Hyperbolic Tangent transfer function (SATLINS-TANH) and Symmetric Saturated Linear and Hyperbolic Tangent Sigmoid transfer function (SATLINS-TANSIG). Data on the Terrorist activities in Nigeria gathered through questionnaires for the purpose of this study were used. Mean Square Error (MSE), Mean Absolute Error (MAE) and Test Error are the forecast prediction criteria. The results showed that the HETFs performed better in terms of prediction and factors associated with terrorist activities in Nigeria were determined. The proposed predictive deep learning-based model will be useful to governments and law enforcement agencies as an effective counterterrorism mechanism to understand the parameters of terrorism and to design strategies to deal with terrorism before an incident actually happens and potentially causes the loss of precious lives. The proposed predictive AI-based model will reduce the chances of terrorist activities and is particularly helpful for security agencies to predict future terrorist activities.

Keywords: activation functions, Bayesian neural network, mean square error, test error, terrorism

Procedia PDF Downloads 165
26 Artificial Neural Network Speed Controller for Excited DC Motor

Authors: Elabed Saud

Abstract:

This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.

Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller

Procedia PDF Downloads 726
25 Paralysis from an Ear Infection: A Severe Case of Otitis Externa Leading to Acute Complete Cervical Cord Syndrome

Authors: Rachael Collins, George Lafford

Abstract:

We report a case of a generally fit and a well 54-year-old gentleman who presented with a two-day history of worsening left-sided otorrhea, headache, neck stiffness, vomiting and pyrexia on the background of a seven-week history of OE. His condition progressed dramatically as he developed symptoms consistent with acute complete cervical cord syndrome with radiological evidence of skull base osteomyelitis, parapharyngeal, retropharyngeal and paravertebral abscesses and sigmoid sinus thrombus. Ultimately he made a significant, although not complete, recovery. This case is unique in demonstrating how OE can develop into a potentially life-threatening condition. It emphasizes the importance of early diagnosis and treatment of OE, the recognition of ‘red flag’ symptoms and highlights the importance of a multi-disciplinary team (MDT) approach when managing complex complications of OE.

Keywords: ENT, neurology, otology, MDT

Procedia PDF Downloads 149
24 Simulation of Flow through Dam Foundation by FEM and ANN Methods Case Study: Shahid Abbaspour Dam

Authors: Mehrdad Shahrbanozadeh, Gholam Abbas Barani, Saeed Shojaee

Abstract:

In this study, a finite element (Seep3D model) and an artificial neural network (ANN) model were developed to simulate flow through dam foundation. Seep3D model is capable of simulating three-dimensional flow through a heterogeneous and anisotropic, saturated and unsaturated porous media. Flow through the Shahid Abbaspour dam foundation has been used as a case study. The FEM with 24960 triangular elements and 28707 nodes applied to model flow through foundation of this dam. The FEM being made denser in the neighborhood of the curtain screen. The ANN model developed for Shahid Abbaspour dam is a feedforward four layer network employing the sigmoid function as an activator and the back-propagation algorithm for the network learning. The water level elevations of the upstream and downstream of the dam have been used as input variables and the piezometric heads as the target outputs in the ANN model. The two models are calibrated and verified using the Shahid Abbaspour’s dam piezometric data. Results of the models were compared with those measured by the piezometers which are in good agreement. The model results also revealed that the ANN model performed as good as and in some cases better than the FEM.

Keywords: seepage, dam foundation, finite element method, neural network, seep 3D model

Procedia PDF Downloads 472
23 A Deep Learning Based Method for Faster 3D Structural Topology Optimization

Authors: Arya Prakash Padhi, Anupam Chakrabarti, Rajib Chowdhury

Abstract:

Topology or layout optimization often gives better performing economic structures and is very helpful in the conceptual design phase. But traditionally it is being done in finite element-based optimization schemes which, although gives a good result, is very time-consuming especially in 3D structures. Among other alternatives machine learning, especially deep learning-based methods, have a very good potential in resolving this computational issue. Here convolutional neural network (3D-CNN) based variational auto encoder (VAE) is trained using a dataset generated from commercially available topology optimization code ABAQUS Tosca using solid isotropic material with penalization (SIMP) method for compliance minimization. The encoded data in latent space is then fed to a 3D generative adversarial network (3D-GAN) to generate the outcome in 64x64x64 size. Here the network consists of 3D volumetric CNN with rectified linear unit (ReLU) activation in between and sigmoid activation in the end. The proposed network is seen to provide almost optimal results with significantly reduced computational time, as there is no iteration involved.

Keywords: 3D generative adversarial network, deep learning, structural topology optimization, variational auto encoder

Procedia PDF Downloads 174
22 Inventory Policy Above Country Level for Cooperating Countries for Vaccines

Authors: Aysun Pınarbaşı, Béla Vizvári

Abstract:

The countries are the units that procure the vaccines during the COVID-19 pandemic. The delivered quantities are huge. The countries must bear the inventory holding cost according to the variation of stock quantities. This cost depends on the speed of the vaccination in the country. This speed is time-dependent. The vaccinated portion of the population can be approximated by the cumulative distribution function of the Cauchy distribution. A model is provided for determining the minimal-cost inventory policy, and its optimality conditions are provided. The model is solved for 20 countries for different numbers of procurements. The results reveal the individual behavior of each country. We provide an inventory policy for the pandemic period for the countries. This paper presents a deterministic model for vaccines with a demand rate variable over time for the countries. It is aimed to provide an analytical model to deal with the minimization of holding cost and develop inventory policies regarding this aim to be used for a variety of perishable products such as vaccines. The saturation process is introduced, and an approximation of the vaccination curve of the countries has been discussed. According to this aspect, a deterministic model for inventory policy has been developed.

Keywords: covid-19, vaccination, inventory policy, bounded total demand, inventory holding cost, cauchy distribution, sigmoid function

Procedia PDF Downloads 75
21 Fecundity and Egg Laying in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Model Development and Field Validation

Authors: Muhammad Noor Ul Ane, Dong-Soon Kim, Myron P. Zalucki

Abstract:

Models can be useful to help understand population dynamics of insects under diverse environmental conditions and in developing strategies to manage pest species better. Adult longevity and fecundity of Helicoverpa armigera (Hübner) were evaluated against a wide range of constant temperatures (15, 20, 25, 30, 35 and 37.5ᵒC). The modified Sharpe and DeMichele model described adult aging rate and was used to estimate adult physiological age. Maximum fecundity of H. armigera was 973 egg/female at 25ᵒC decreasing to 72 eggs/female at 37.5ᵒC. The relationship between adult fecundity and temperature was well described by an extreme value function. Age-specific cumulative oviposition rate and age-specific survival rate were well described by a two-parameter Weibull function and sigmoid function, respectively. An oviposition model was developed using three temperature-dependent components: total fecundity, age-specific oviposition rate, and age-specific survival rate. The oviposition model was validated against independent field data and described the field occurrence pattern of egg population of H. armigera very well. Our model should be a useful component for population modeling of H. armigera and can be independently used for the timing of sprays in management programs of this key pest species.

Keywords: cotton bollworm, life table, temperature-dependent adult development, temperature-dependent fecundity

Procedia PDF Downloads 151
20 Dysbiosis of the Intestinal Microbiome in Colorectal Cancer Patients at Hospital of Amizour, Bejaia, Algeria

Authors: Adjebli Ahmed, Messis Abdelaziz, Ayeche Riad, Tighilet Karim, Talbi Melissa, Smaili Yanis, Lehri Mokrane, Louardiane Mustapha

Abstract:

Colorectal cancer is one of the most common types of cancer worldwide, and its incidence has been increasing in recent years. Data and fecal samples from colorectal cancer patients were collected at the Amizour Public Hospital's oncology department (Bejaia, Algeria). Microbiological and cohort study were conducted at the Biological Engineering of Cancers laboratory at the Faculty of Medicine of the University of Bejaia. All the data showed that patients aged between 50 and 70 years were the most affected by colorectal cancer, while the age categories of [30-40] and [40-50] were the least affected. Males were more likely to be at risk of contracting colorectal cancer than females. The most common types of colorectal cancer among the studied population were sigmoid cancer, rectal cancer, transverse colon cancer, and ascending colon cancer. The hereditary factor was found to be more dominant than other risk factors. Bacterial identification revealed the presence of certain pathogenic and opportunistic bacterial genera, such as E. coli, K. pneumoniae, Shigella sp, and Streptococcus group D. These results led us to conclude that dysbiosis of the intestinal microbiome is strongly present in colorectal cancer patients at the EPH of Amizour.

Keywords: microbiome, colorectal cancer, risk factors, bacterial identification

Procedia PDF Downloads 85
19 Production of Organic Solvent Tolerant Hydrolytic Enzymes (Amylase and Protease) by Bacteria Isolated from Soil of a Dairy Farm

Authors: Alok Kumar, Hari Ram, Lebin Thomas, Ved Pal Singh

Abstract:

Organic solvent tolerant amylases and proteases of microbial origin are in great demand for their application in transglycosylation of water-insoluble flavanoids and in peptide synthesizing reaction in organic media. Most of the amylases and proteases are unstable in presence of organic solvent. In the present work two different bacterial strains M-11 and VP-07 were isolated from the soil sample of a dairy farm in Delhi, India, for the efficient production of extracellular amylase and protease through their screening on starch agar (SA) and skimmed milk agar (SMA) plates, respectively. Both the strains (M-11 and VP-07) were identified based on morphological, biochemical and 16S rRNA gene sequencing methods. After analysis through Ez-Taxon software, the strains M-11 and VP-07 were found to have maximum pairwise similarity of 98.63% and 100% with Bacillus subtilis subsp. inaquosorum BGSC 3A28 and Bacillus anthracis ATCC 14578 and were therefore identified as Bacillus sp. UKS1 and Bacillus sp. UKS2, respectively. Time course study of enzyme activity and bacterial growth has shown that both strains exhibited typical sigmoid growth behavior and maximum production of amylase (180 U/ml) and protease (78 U/ml) by these strains (UKS1 and UKS2) was commenced during stationary phase of growth at 24 and 20 h, respectively. Thereafter, both amylase and protease were tested for their tolerance towards organic solvents and were found to be active as well stable in p-xylene (130% and 115%), chloroform (110% and 112%), isooctane (119% and 107%), benzene (121% and 104%), n-hexane (116% and 103%) and toluene (112% and 101%, respectively). Owing to such properties, these enzymes can be exploited for their potential application in industries for organic synthesis.

Keywords: amylase, enzyme activity, industrial applications, organic solvent tolerant, protease

Procedia PDF Downloads 343
18 Three-Dimensional Measurement and Analysis of Facial Nerve Recess

Authors: Kang Shuo-Shuo, Li Jian-Nan, Yang Shiming

Abstract:

Purpose: The three-dimensional anatomical structure of the facial nerve recess and its relationship were measured by high-resolution temporal bone CT to provide imaging reference for cochlear implant operation. Materials and Methods: By analyzing the high-resolution CT of 160 cases (320 pleural ears) of the temporal bone, the following parameters were measured at the axial window niche level: 1. The distance between the facial nerve and chordae tympani nerve d1; 2. Distance between the facial nerve and circular window niche d2; 3. The relative Angle between the facial nerve and the circular window niche a; 4. Distance between the middle point of the face recess and the circular window niche d3; 5. The relative angle between the middle point of the face recess and the circular window niche b. Factors that might influence the anatomy of the facial recess were recorded, including the patient's sex, age, and anatomical variation (e.g., vestibular duct dilation, mastoid gas type, mothoid sinus advancement, jugular bulbar elevation, etc.), and the correlation between these factors and the measured facial recess parameters was analyzed. Result: The mean value of face-drum distance d1 is (3.92 ± 0.26) mm, the mean value of face-niche distance d2 is (5.95 ± 0.62) mm, the mean value of face-niche Angle a is (94.61 ± 9.04) °, and the mean value of fossa - niche distance d3 is (6.46 ± 0.63) mm. The average fossa-niche Angle b was (113.47 ± 7.83) °. Gender, age, and anterior sigmoid sinus were the three factors affecting the width of the opposite recess d1, the Angle of the opposite nerve relative to the circular window niche a, and the Angle of the facial recess relative to the circular window niche b. Conclusion: High-resolution temporal bone CT before cochlear implantation can show the important anatomical relationship of the facial nerve recess, and the measurement results have clinical reference value for the operation of cochlear implantation.

Keywords: cochlear implantation, recess of facial nerve, temporal bone CT, three-dimensional measurement

Procedia PDF Downloads 16
17 Quantifying Late Cenozoic Out‐of‐Sequence Thrusting at Chaura, Sutlej Valley, Himachal Pradesh, India

Authors: Rajkumar Ghosh

Abstract:

Out-of-sequence thrusts (OOST) are reported at different geographic locations with various local names along Siwalik Himalaya (SH), Lesser Himalaya (LH), Higher Himalaya (HH) from Bhutan, India, Nepal, and Pakistan Himalayan range. Most of OOSTs have been identified within the upper LH, and the lower HH based on geochronological age jump across. These thrusts activated from Late Miocene to recent. The Chaura Thrust (CT) was deciphered from age jump of Apatite Fission Track (AFT) and considered as blind thrust base on variable exhumation rates in Chaura region, Satluj river valley, Himachal Pradesh. CT is located north of Jhakri Thrust (JhT) and is also differently identified as Sarahan thrust (ST). Structural documentation from the rocks near the OOST in Chaura was not so far done. Detail structural study of the Jeori Group of rocks was carried out in this study to understand the manifestation of the Chaura thrust and associated structures in meso- to micro-scale. Box fold, scar fold, kink fold, crenulation cleavages, and boudins are developed in the Chaura region. These structures usually do not indicate shear sense. When studied under an optical microscope, the Chaura samples reveal that the mica fish are usually lenticular with aspect ratio (R) varying from 6–11 and inclination angle (α) from 15–40°. According to ‘R’ and ‘α’, elongated sigmoid shaped mica fish and parallelogram shaped mica fish were also documented. Asymmetric mica fish demonstrate top-to-S/SW ductile shear, which is similar as that of Chaura thrust. Grain boundary migration (GBM) structures in quartzo-feldspathic grains from Jeori Group of rocks indicate deformation temperature ranging from 400 to 650°C. This can indicate that the OOST at Chaura, i.e., the Chaura Thrust, underwent thrusting in the ductile regime.

Keywords: out-of-sequence thrust, chaura thrust, sarahan thrust, jakhri thrust, higher himalaya, s/c- fabric

Procedia PDF Downloads 77
16 Intraoperative ICG-NIR Fluorescence Angiography Visualization of Intestinal Perfusion in Primary Pull-Through for Hirschsprung Disease

Authors: Mohammad Emran, Colton Wayne, Shannon M Koehler, P. Stephen Almond, Haroon Patel

Abstract:

Purpose: Assessment of anastomotic perfusion in Hirschsprung disease using Indocyanine Green (ICG)-near-infrared (NIR) fluorescence angiography. Introduction: Anastomotic stricture and leak are well-known complications of Hirschsprung pull-through procedures. Complications are due to tension, infection, and/or poor perfusion. While a surgeon can visually determine and control the amount of tension and contamination, assessment of perfusion is subject to surgeon determination. Intraoperative use of ICG-NIR enhances this decision-making process by illustrating perfusion intensity and adequacy in the pulled-through bowel segment. This technique, proven to reduce anastomotic stricture and leak in adults, has not been studied in children to our knowledge. ICG, an FDA approved, nontoxic, non-immunogenic, intravascular (IV) dye, has been used in adults and children for over 60 years, with few side effects. ICG-NIR was used in this report to demonstrate the adequacy of perfusion during transanal pullthrough for Hirschsprung’s disease. Method: 8 patients with Hirschsprung disease were evaluated with ICG-NIR technology. Levels of affected area ranged from sigmoid to total colonic Hirschsprung disease. After leveling, but prior to anastomosis, ICG was administered at 1.25 mg (< 2 mg/kg) and perfusion visualized using an NIR camera, before and during anastomosis. Video and photo imaging was performed and perfusion of the bowel was compared to surrounding tissues. This showed the degree of perfusion and demarcation of perfused and non-perfused bowel. The anastomosis was completed uneventfully and the patients all did well. Results: There were no complications of stricture or leak. 5 of 8 patients (62.5%) had modification of the plan based on ICG-NIR imaging. Conclusion: Technologies that enhance surgeons’ ability to visualize bowel perfusion prior to anastomosis in Hirschsprung’s patients may help reduce post-operative complications. Further studies are needed to assess the potential benefits.

Keywords: colonic anastomosis, fluorescence angiography, Hirschsprung disease, pediatric surgery, SPY

Procedia PDF Downloads 141
15 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 155
14 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 299
13 Extensive Cerebral Venous Thrombosis after Resection of Third Ventricle Colloid Cyst

Authors: Naim Izet Kajtazi

Abstract:

Context: The third ventricle colloid cyst (CC) is a benign growth usually located in the third ventricle and can cause various neurological symptoms, including sudden death. Modern surgical interventions may still result in a wide range of complications and cerebral venous thrombosis (CVT) is among them. Process: A 38-year-old female with an existing diagnosis of diabetes mellitus (DM) and hypothyroidism and a six-month history of headaches, blurred vision, and vomiting presented to our clinic three days after the headaches became excessively severe. Neurological examination on admission revealed bilateral papilledema without any associated focal neurological deficits. Brain computed tomography (CT) and magnetic resonance imaging (MRI) confirmed the presence of a third ventricle colloid cyst and associated non-communicating hydrocephalus involving the lateral ventricles. As a result, the patient underwent emergency bilateral external ventricular drainage (EVD) insertion followed by a third ventricular CC excision under neuronavigation through a right frontal craniotomy. Twelve days post-operatively, the patient developed further headaches, followed by a generalized tonic-clonic seizure that led to no postictal neurological deficits. Nonetheless, computed tomography venography of the brain revealed extensive thrombosis of the superior sagittal sinus, inferior sagittal sinus, right sigmoid sinus, and right internal jugular vein. A newly diagnosed CVT was treated with intravenous heparin. The patient was discharged with warfarin, which was discontinued after 12 months. Ten years after her illness, she remained stable and free from any neurological deficits but still suffered from mild chronic headaches. Outcome: Ten years after her illness, she remained stable and free from any neurological deficits but still suffered from mild chronic headaches. Relevance: A preoperative venous study should be performed in all cases to gain a better understanding of the venous anatomy. We advocate meticulous microsurgical techniques to protect the venous system surrounding the foramen of Monro and reduce the amount of retraction during surgery.

Keywords: CVT, seizures, third ventricle colloid cyst, MRI of brain

Procedia PDF Downloads 72
12 Unusual Presentation of Colorectal Cancer within Inguinal Hernia: A Systemic Review of Reported Cases

Authors: Sena Park

Abstract:

Background: The concurrent presentation with colorectal cancer in the inguinal hernia has been extremely rare. Due to its rarity, its presentation may lead to diagnostic and therapeutic dilemmas. We aim to review all the reported cases on colorectal cancer incarcerated in the inguinal hernia in the last 20 years, and discuss the operative approaches. Methods: We identified all case reports on colorectal cancer within inguinal hernia using PUBMED (2002-2022) and MEDLINE (2002-2022). The search strategy included the following keywords: colorectal cancer (title/abstract) AND inguinal hernia (title/abstract) OR incarceration (title/abstract). The search did not include letters, book chapters, systemic reviews, meta-analysis and editorials. Results: In the last 20 years, a total of 19 cases on colorectal cancer within the inguinal hernia were identified. The age of the patients ranged between 48 and 89. Majority of the patients were male (95%). Most commonly involved part of the large intestine was sigmoid colon (79%). Of all the cases, 79 percent of patients received open procedure and 21 percent had laparoscopic procedure. Discussion: Inguinal hernias are common with an incidence of approximately 1.7 percent. Colorectal cancer is the one of the leading causes of cancer-related mortality worldwide. However, their concurrent presentation has been extremely rare. In the last 20 years, 19 cases on concurrent presentation of colorectal cancer and inguinal hernia have been reported. Most patients who had open procedures had two incisions of groin incision and a midline laparotomy. There were 4 cases where the oncological resection was performed laparoscopically. The advantages of laparoscopic resection include reduced blood lost, reduced post-operative pain, reduced length of hospital stay and similar number of lymph nodes taken. From the review of the cases in the last 20 years, both open and laparoscopic approaches seemed to be safe and achieve adequate oncological resections. Conclusion: This is a brief overview of reported cases of colorectal cancer presenting with inguinal hernia concurrently. Due to its rarity, there are no current guidelines on operative approach in clinical practice. The experience in the last 20 years supports both open and laparoscopic approach.

Keywords: colorectal cancer, inguinal hernia, incarceration, operative approach

Procedia PDF Downloads 101
11 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms

Authors: Selim M. Khan

Abstract:

Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.

Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America

Procedia PDF Downloads 96
10 A Rare Case of Synchronous Colon Adenocarcinoma

Authors: Mohamed Shafi Bin Mahboob Ali

Abstract:

Introduction: Synchronous tumor is defined as the presence of more than one primary malignant lesion in the same patient at the indexed diagnosis. It is a rare occurrence, especially in the spectrum of colorectal cancer, which accounts for less than 4%. The underlying pathology of a synchronous tumor is thought to be due to a genomic factor, which is microsatellite instability (MIS) with the involvement of BRAF, KRAS, and the GSRM1 gene. There are no specific sites of occurrence for the synchronous colorectal tumor, but many studies have shown that a synchronous tumor has about 43% predominance in the ascending colon with rarity in the sigmoid colon. Case Report: We reported a case of a young lady in the middle of her 30's with no family history of colorectal cancer that was diagnosed with a synchronous adenocarcinoma at the descending colon and rectosigmoid region. The lady's presentation was quite perplexing as she presented to the district hospital initially with simple, uncomplicated hemorrhoids and constipation. She was then referred to our center for further management as she developed a 'football' sized right gluteal swelling with a complete intestinal obstruction and bilateral lower-limb paralysis. We performed a CT scan and biopsy of the lesion, which found that the tumor engulfed the sacrococcygeal region with more than one primary lesion in the colon as well as secondaries in the liver. The patient was operated on after a multidisciplinary meeting was held. Pelvic exenteration with tumor debulking and anterior resection were performed. Postoperatively, she was referred to the oncology team for chemotherapy. She had a tremendous recovery in eight months' time with a partial regain of her lower limb power. The patient is still under our follow-up with an improved quality of life post-intervention. Discussion: Synchronous colon cancer is rare, with an incidence of 2.4% to 12.4%. It has male predominance and is pathologically more advanced compared to a single colon lesion. Down staging the disease by means of chemoradiotherapy has shown to be effective in managing this tumor. It is seen commonly on the right colon, but in our case, we found it on the left colon and the rectosigmoid. Conclusion: Managing a synchronous colon tumor could be challenging to surgeons, especially in deciding the extent of resection and postoperative functional outcomes of the bowel; thus, individual treatment strategies are needed to tackle this pathology.

Keywords: synchronous, colon, tumor, adenocarcinoma

Procedia PDF Downloads 108
9 Comparison of the Dose Reached to the Rectum and Bladder in Two Treatment Methods by Tandem and Ovoid and Tandem and Ring in the High Dose Rate Brachytherapy of Cervical Cancer

Authors: Akbar Haghzadeh Saraskanroud, Amir Hossein Yahyavi Zanjani, Niloofar Kargar, Hanieh Ahrabi

Abstract:

Cervical cancer refers to an unusual growth of cells in the cervix. The cervix is the lower part of the uterus, which connects to the vagina. Various risk factors such as human papillomavirus (HPV), having a weakened immune system, smoking or breathing in secondhand smoke, reproductive factors, and obesity play important roles in causing most cervical cancers. When cervical cancer happens, surgery is often the first treatment option to remove it. Other treatments might include chemotherapy and targeted therapy medicines. Radiation therapy with high-energy photon beams also may be used. Sometimes combined treatment, including radiation with low-dose chemotherapy, was applied. Intracavitary brachytherapy is an integral part of radiotherapy for locally advanced gynecologic malignancies such as cervical cancer. In the treatment of cervical cancer, there are different tools for doing brachytherapy. Two combinations of different applicators for this purpose are Tandem and Ovoid and Tandem and Ring. This study evaluated the dose differences between these two methods in the organs at risk of the rectum, sigmoid, and bladder. In this study, the treatment planswere simulated by the Oncentra treatment planning system and Tandem, Ovid, and Rings of different sizes. CT scan images of 23 patients were treated with HDR_BT Elekta Flexitron system were used for this study. Contouring of HR-CTV, rectum and bladder was performed for all patients. Then, the received dose of 0.1 and 0.2cc volumes of organs at risk were obtained and compared for these two methods: T-Ovoid and T-Ring. By doing investigations and dose measurements of points A and B and the volumes specified by ICRU, it seems that when comparing ring and ovoid to tandem and ovoid, the total dose to the rectum was lower by about 11%, and the bladder was 7%. In the case of HR CTV, this comparison showed that this ratio is about 7% better. Figure 1 shows the amount of decrease in rectum dose in the T-Ring method compared to T-Ovoid. Figure 2 indicates the amount of decrease in bladder dose in the T-Ring method compared to T-Ovoid. Finally, figure 3 illustrates the amount of HR-CTV coverage in the T-Ring method compared to the T-Ovoid.

Keywords: cervical cancer, brachytherapy, rectum, tandem and ovoid, tandem and ring.

Procedia PDF Downloads 42
8 Aromatic Medicinal Plant Classification Using Deep Learning

Authors: Tsega Asresa Mengistu, Getahun Tigistu

Abstract:

Computer vision is an artificial intelligence subfield that allows computers and systems to retrieve meaning from digital images. It is applied in various fields of study self-driving cars, video surveillance, agriculture, Quality control, Health care, construction, military, and everyday life. Aromatic and medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, and other natural health products for therapeutic and Aromatic culinary purposes. Herbal industries depend on these special plants. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs, and going to export not only industrial raw materials but also valuable foreign exchange. There is a lack of technologies for the classification and identification of Aromatic and medicinal plants in Ethiopia. The manual identification system of plants is a tedious, time-consuming, labor, and lengthy process. For farmers, industry personnel, academics, and pharmacists, it is still difficult to identify parts and usage of plants before ingredient extraction. In order to solve this problem, the researcher uses a deep learning approach for the efficient identification of aromatic and medicinal plants by using a convolutional neural network. The objective of the proposed study is to identify the aromatic and medicinal plant Parts and usages using computer vision technology. Therefore, this research initiated a model for the automatic classification of aromatic and medicinal plants by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides the root, flower and fruit, latex, and barks. The study was conducted on aromatic and medicinal plants available in the Ethiopian Institute of Agricultural Research center. An experimental research design is proposed for this study. This is conducted in Convolutional neural networks and Transfer learning. The Researcher employs sigmoid Activation as the last layer and Rectifier liner unit in the hidden layers. Finally, the researcher got a classification accuracy of 66.4 in convolutional neural networks and 67.3 in mobile networks, and 64 in the Visual Geometry Group.

Keywords: aromatic and medicinal plants, computer vision, deep convolutional neural network

Procedia PDF Downloads 438