Search results for: noun based filtering
28391 Extraction of Compound Words in Malay Sentences Using Linguistic and Statistical Approaches
Authors: Zamri Abu Bakar Zamri, Normaly Kamal Ismail Normaly, Mohd Izani Mohamed Rawi Izani
Abstract:
Malay noun compound are phrases that consist of two or more nouns. The key characteristic behind noun compounds lies on its frequent occurrences within the text. Therefore, extracting these noun compounds is essential for several domains of research such as Information Retrieval, Sentiment Analysis and Question Answering. Many research efforts have been proposed in terms of extracting Malay noun compounds using linguistic and statistical approaches. Most of the existing methods have concentrated on the extraction of bi-gram noun+noun compound. However, extracting noun+verb, noun+adjective and noun+prepositional is challenging due to the difficulty of selecting an appropriate method with effective results. Thus, there is still room for improvement in terms of enhancing the effectiveness of compound word extraction. Therefore, this study proposed a combination of linguistic approach and statistical measures in order to enhance the extraction of compound words. Several preprocessing steps are involved including normalization, tokenization, and stemming. The linguistic approach that has been used in this study is Part-of-Speech (POS) tagging. In addition, a new linguistic pattern for named entities has been utilized using a list of Malays named entities in order to enhance the linguistic approach in terms of noun compound recognition. The proposed statistical measures consists of NC-value, NTC-value and NLC value.Keywords: Compound Word, Noun Compound, Linguistic Approach, Statistical Approach
Procedia PDF Downloads 35028390 Additive White Gaussian Noise Filtering from ECG by Wiener Filter and Median Filter: A Comparative Study
Authors: Hossein Javidnia, Salehe Taheri
Abstract:
The Electrocardiogram (ECG) is the recording of the heart’s electrical potential versus time. ECG signals are often contaminated with noise such as baseline wander and muscle noise. As these signals have been widely used in clinical studies to detect heart diseases, it is essential to filter these noises. In this paper we compare performance of Wiener Filtering and Median Filtering methods to filter Additive White Gaussian (AWG) noise with the determined signal to noise ratio (SNR) ranging from 3 to 5 dB applied to long-term ECG recordings samples. Root mean square error (RMSE) and coefficient of determination (R2) between the filtered ECG and original ECG was used as the filter performance indicator. Experimental results show that Wiener filter has better noise filtering performance than Median filter.Keywords: ECG noise filtering, Wiener filtering, median filtering, Gaussian noise, filtering performance
Procedia PDF Downloads 52928389 Image Enhancement Algorithm of Photoacoustic Tomography Using Active Contour Filtering
Authors: Prasannakumar Palaniappan, Dong Ho Shin, Chul Gyu Song
Abstract:
The photoacoustic images are obtained from a custom developed linear array photoacoustic tomography system. The biological specimens are imitated by conducting phantom tests in order to retrieve a fully functional photoacoustic image. The acquired image undergoes the active region based contour filtering to remove the noise and accurately segment the object area for further processing. The universal back projection method is used as the image reconstruction algorithm. The active contour filtering is analyzed by evaluating the signal to noise ratio and comparing it with the other filtering methods.Keywords: contour filtering, linear array, photoacoustic tomography, universal back projection
Procedia PDF Downloads 40028388 Real-Time Visualization Using GPU-Accelerated Filtering of LiDAR Data
Authors: Sašo Pečnik, Borut Žalik
Abstract:
This paper presents a real-time visualization technique and filtering of classified LiDAR point clouds. The visualization is capable of displaying filtered information organized in layers by the classification attribute saved within LiDAR data sets. We explain the used data structure and data management, which enables real-time presentation of layered LiDAR data. Real-time visualization is achieved with LOD optimization based on the distance from the observer without loss of quality. The filtering process is done in two steps and is entirely executed on the GPU and implemented using programmable shaders.Keywords: filtering, graphics, level-of-details, LiDAR, real-time visualization
Procedia PDF Downloads 30828387 A Study on the Acquisition of Chinese Classifiers by Vietnamese Learners
Authors: Quoc Hung Le Pham
Abstract:
In the field of language study, classifier is an interesting research feature. In the world’s languages, some languages have classifier system, some do not. Mandarin Chinese and Vietnamese languages are a rich classifier system, however, because of the language system, the cognitive, cultural differences, so that the syntactic structure of classifier of them also dissimilar. When using Mandarin Chinese classifiers must collocate with nouns or verbs, in the lexical category it is not like nouns or verbs, belong to the open class. But some scholars believe that Mandarin Chinese measure words are similar to English and other Indo European languages. The word hanging on the structure and word formation (suffix), is a closed class. Compared to other languages, such as Chinese, Vietnamese, Thai and other Asian languages are still belonging to the classifier language’s second type, this type of language is classifier, it is in the majority of quantity must exist, and following deictic, anaphoric or quantity appearing together, not separation between its modified noun, also known as numeral classifier language. Main syntactic structure of Chinese classifiers are as follows: ‘quantity+measure+noun’, ‘pronoun+measure+noun’, ‘pronoun+quantity+measure+noun’, ‘prefix+quantity+measure +noun’, ‘quantity +adjective + measure +noun’, ‘ quantity (above 10 whole number), + duo (多)measure +noun’, ‘ quantity (around 10) + measure + duo (多) +noun’. Main syntactic structure of Vietnamese classifiers are: ‘quantity+measure+noun’, ‘ measure+noun+pronoun’, ‘quantity+measure+noun+pronoun’, ‘measure+noun+prefix+ quantity’, ‘quantity+measure+noun+adjective', ‘duo (多) +quanlity+measure+noun’, ‘quantity+measure+adjective+pronoun (quantity word could not be 1)’, ‘measure+adjective+pronoun’, ‘measure+pronoun’. In daily life, classifiers are commonly used, if Chinese learners failed to standardize this using catergory, because the negative impact might occur on their verbal communication. The richness of the Chinese classifier system contributes to the complexity in the study of the system by foreign learners, especially in the inter language of Vietnamese learners. As above mentioned, Vietnamese language also has a rich system of classifiers, however, the basic structure order of two languages are similar but both still have differences. These similarities and dissimilarities between Chinese and Vietnamese classifier systems contribute significantly to the common errors made by Vietnamese students while they acquire Chinese, which are distinct from the errors made by students from the other language background. This article from a comparative perspective of language, has an orientation towards Chinese and Vietnamese languages commonly used in classifiers semantics and structural form two aspects. This comparative study aims to identity Vietnamese students while learning Chinese classifiers may face some negative transference of mother language, beside that through the analysis of the classifiers questionnaire, find out the causes and patterns of the errors they made. As the preliminary analysis shows, Vietnamese students while learning Chinese classifiers made some errors such as: overuse classifier ‘ge’(个); misuse the other classifiers ‘*yi zhang ri ji’(yi pian ri ji), ‘*yi zuo fang zi’(yi jian fang zi), ‘*si zhang jin pai’(si mei jin pai); homonym words ‘dui, shuang, fu, tao’ (对、双、副、套), ‘ke, li’ (颗、粒).Keywords: acquisition, classifiers, negative transfer, Vietnamse learners
Procedia PDF Downloads 45228386 The Noun-Phrase Elements on the Usage of the Zero Article
Authors: Wen Zhen
Abstract:
Compared to content words, function words have been relatively overlooked by English learners especially articles. The article system, to a certain extent, becomes a resistance to know English better, driven by different elements. Three principal factors can be summarized in term of the nature of the articles when referring to the difficulty of the English article system. However, making the article system more complex are difficulties in the second acquisition process, for [-ART] learners have to create another category, causing even most non-native speakers at proficiency level to make errors. According to the sequences of acquisition of the English article, it is showed that the zero article is first acquired and in high inaccuracy. The zero article is often overused in the early stages of L2 acquisition. Although learners at the intermediate level move to underuse the zero article for they realize that the zero article does not cover any case, overproduction of the zero article even occurs among advanced L2 learners. The aim of the study is to investigate noun-phrase factors which give rise to incorrect usage or overuse of the zero article, thus providing suggestions for L2 English acquisition. Moreover, it enables teachers to carry out effective instruction that activate conscious learning of students. The research question will be answered through a corpus-based, data- driven approach to analyze the noun-phrase elements from the semantic context and countability of noun-phrases. Based on the analysis of the International Thurber Thesis corpus, the results show that: (1) Although context of [-definite,-specific] favored the zero article, both[-definite,+specific] and [+definite,-specific] showed less influence. When we reflect on the frequency order of the zero article , prototypicality plays a vital role in it .(2)EFL learners in this study have trouble classifying abstract nouns as countable. We can find that it will bring about overuse of the zero article when learners can not make clear judgements on countability altered from (+definite ) to (-definite).Once a noun is perceived as uncountable by learners, the choice would fall back on the zero article. These findings suggest that learners should be engaged in recognition of the countability of new vocabulary by explaining nouns in lexical phrases and explore more complex aspects such as analysis dependent on discourse.Keywords: noun phrase, zero article, corpus, second language acquisition
Procedia PDF Downloads 25328385 Application of Artificial Immune Systems Combined with Collaborative Filtering in Movie Recommendation System
Authors: Pei-Chann Chang, Jhen-Fu Liao, Chin-Hung Teng, Meng-Hui Chen
Abstract:
This research combines artificial immune system with user and item based collaborative filtering to create an efficient and accurate recommendation system. By applying the characteristic of antibodies and antigens in the artificial immune system and using Pearson correlation coefficient as the affinity threshold to cluster the data, our collaborative filtering can effectively find useful users and items for rating prediction. This research uses MovieLens dataset as our testing target to evaluate the effectiveness of the algorithm developed in this study. The experimental results show that the algorithm can effectively and accurately predict the movie ratings. Compared to some state of the art collaborative filtering systems, our system outperforms them in terms of the mean absolute error on the MovieLens dataset.Keywords: artificial immune system, collaborative filtering, recommendation system, similarity
Procedia PDF Downloads 53528384 Collocation Errors Made by Saudi Learners of English
Authors: Pakenam Shiha, Nadine Lacsina
Abstract:
Systematic and in-depth analysis of ESL learners’ lexical errors, in general, and of collocation errors, in particular, are relatively rare. Analysis as such proves crucial in understanding how ESL learners construct and use these fixed expressions. Collocational competence of ESL learners is necessary for achieving a native-like proficiency level, which is one of the objectives of foundation programs. This study aims to examine the collocational competence of 50 Saudi foundation program students and identify the collocation errors that they often make. Furthermore, using a questionnaire, the challenges that students encounter in learning collocations and the ways in which their L1 affects their ability to recognize these expressions are identified. To identify the lexical errors and the collocational competence of the students a collocation test was administered. The 150-item lexical collocation test consists of verb-noun and adjective-noun structures. Results of the study reveal that there is a significant difference between the scores of students in the verb-noun and adjective-noun structures. The majority of errors were recorded in the adjective-noun structures due to the students’ L1 influence on the English collocations and the inability to distinguish between synonyms. Moreover, some challenges that students encountered were problems in translation, non-exposure to certain collocations, and degree of L1-L2 difference. All in all, the findings of this study can be interpreted in relation to the student's proficiency level and L2 instruction. Other findings of the study provide insights into language pedagogy—specifically strategies to help students learn collocations more effectively.Keywords: collocations, ESL, applied linguistics, lexical collocations
Procedia PDF Downloads 12228383 Localization of Buried People Using Received Signal Strength Indication Measurement of Wireless Sensor
Authors: Feng Tao, Han Ye, Shaoyi Liao
Abstract:
City constructions collapse after earthquake and people will be buried under ruins. Search and rescue should be conducted as soon as possible to save them. Therefore, according to the complicated environment, irregular aftershocks and rescue allow of no delay, a kind of target localization method based on RSSI (Received Signal Strength Indication) is proposed in this article. The target localization technology based on RSSI with the features of low cost and low complexity has been widely applied to nodes localization in WSN (Wireless Sensor Networks). Based on the theory of RSSI transmission and the environment impact to RSSI, this article conducts the experiments in five scenes, and multiple filtering algorithms are applied to original RSSI value in order to establish the signal propagation model with minimum test error respectively. Target location can be calculated from the distance, which can be estimated from signal propagation model, through improved centroid algorithm. Result shows that the localization technology based on RSSI is suitable for large-scale nodes localization. Among filtering algorithms, mixed filtering algorithm (average of average, median and Gaussian filtering) performs better than any other single filtering algorithm, and by using the signal propagation model, the minimum error of distance between known nodes and target node in the five scene is about 3.06m.Keywords: signal propagation model, centroid algorithm, localization, mixed filtering, RSSI
Procedia PDF Downloads 30028382 3D Guided Image Filtering to Improve Quality of Short-Time Binned Dynamic PET Images Using MRI Images
Authors: Tabassum Husain, Shen Peng Li, Zhaolin Chen
Abstract:
This paper evaluates the usability of 3D Guided Image Filtering to enhance the quality of short-time binned dynamic PET images by using MRI images. Guided image filtering is an edge-preserving filter proposed to enhance 2D images. The 3D filter is applied on 1 and 5-minute binned images. The results are compared with 15-minute binned images and the Gaussian filtering. The guided image filter enhances the quality of dynamic PET images while also preserving important information of the voxels.Keywords: dynamic PET images, guided image filter, image enhancement, information preservation filtering
Procedia PDF Downloads 13228381 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules
Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez
Abstract:
Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems
Procedia PDF Downloads 42128380 The Evaluation of the Performance of Different Filtering Approaches in Tracking Problem and the Effect of Noise Variance
Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri
Abstract:
Performance of different filtering approaches depends on modeling of dynamical system and algorithm structure. For modeling and smoothing the data the evaluation of posterior distribution in different filtering approach should be chosen carefully. In this paper different filtering approaches like filter KALMAN, EKF, UKF, EKS and smoother RTS is simulated in some trajectory tracking of path and accuracy and limitation of these approaches are explained. Then probability of model with different filters is compered and finally the effect of the noise variance to estimation is described with simulations results.Keywords: Gaussian approximation, Kalman smoother, parameter estimation, noise variance
Procedia PDF Downloads 43928379 EEG Signal Processing Methods to Differentiate Mental States
Authors: Sun H. Hwang, Young E. Lee, Yunhan Ga, Gilwon Yoon
Abstract:
EEG is a very complex signal with noises and other bio-potential interferences. EOG is the most distinct interfering signal when EEG signals are measured and analyzed. It is very important how to process raw EEG signals in order to obtain useful information. In this study, the EEG signal processing techniques such as EOG filtering and outlier removal were examined to minimize unwanted EOG signals and other noises. The two different mental states of resting and focusing were examined through EEG analysis. A focused state was induced by letting subjects to watch a red dot on the white screen. EEG data for 32 healthy subjects were measured. EEG data after 60-Hz notch filtering were processed by a commercially available EOG filtering and our presented algorithm based on the removal of outliers. The ratio of beta wave to theta wave was used as a parameter for determining the degree of focusing. The results show that our algorithm was more appropriate than the existing EOG filtering.Keywords: EEG, focus, mental state, outlier, signal processing
Procedia PDF Downloads 28328378 Tracking Filtering Algorithm Based on ConvLSTM
Authors: Ailing Yang, Penghan Song, Aihua Cai
Abstract:
The nonlinear maneuvering target tracking problem is mainly a state estimation problem when the target motion model is uncertain. Traditional solutions include Kalman filtering based on Bayesian filtering framework and extended Kalman filtering. However, these methods need prior knowledge such as kinematics model and state system distribution, and their performance is poor in state estimation of nonprior complex dynamic systems. Therefore, in view of the problems existing in traditional algorithms, a convolution LSTM target state estimation (SAConvLSTM-SE) algorithm based on Self-Attention memory (SAM) is proposed to learn the historical motion state of the target and the error distribution information measured at the current time. The measured track point data of airborne radar are processed into data sets. After supervised training, the data-driven deep neural network based on SAConvLSTM can directly obtain the target state at the next moment. Through experiments on two different maneuvering targets, we find that the network has stronger robustness and better tracking accuracy than the existing tracking methods.Keywords: maneuvering target, state estimation, Kalman filter, LSTM, self-attention
Procedia PDF Downloads 17628377 Efficient Filtering of Graph Based Data Using Graph Partitioning
Authors: Nileshkumar Vaishnav, Aditya Tatu
Abstract:
An algebraic framework for processing graph signals axiomatically designates the graph adjacency matrix as the shift operator. In this setup, we often encounter a problem wherein we know the filtered output and the filter coefficients, and need to find out the input graph signal. Solution to this problem using direct approach requires O(N3) operations, where N is the number of vertices in graph. In this paper, we adapt the spectral graph partitioning method for partitioning of graphs and use it to reduce the computational cost of the filtering problem. We use the example of denoising of the temperature data to illustrate the efficacy of the approach.Keywords: graph signal processing, graph partitioning, inverse filtering on graphs, algebraic signal processing
Procedia PDF Downloads 31128376 Speed up Vector Median Filtering by Quasi Euclidean Norm
Authors: Vinai K. Singh
Abstract:
For reducing impulsive noise without degrading image contours, median filtering is a powerful tool. In multiband images as for example colour images or vector fields obtained by optic flow computation, a vector median filter can be used. Vector median filters are defined on the basis of a suitable distance, the best performing distance being the Euclidean. Euclidean distance is evaluated by using the Euclidean norms which is quite demanding from the point of view of computation given that a square root is required. In this paper an optimal piece-wise linear approximation of the Euclidean norm is presented which is applied to vector median filtering.Keywords: euclidean norm, quasi euclidean norm, vector median filtering, applied mathematics
Procedia PDF Downloads 47428375 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: building detection, local maximum filtering, matched filtering, multiscale
Procedia PDF Downloads 32028374 Turkish University Level EFL Learners’ Collocational Knowledge at Receptive and Productive Levels
Authors: Nazife Duygu Bagci
Abstract:
Collocations are an important part of vocabulary knowledge, and it is a subject that has recently attracted attention, while still in need of more research. The aim of this study is to answer three research questions related to the collocational knowledge of Turkish university level EFL learners at different proficiency levels of English. The first research question aims to compare the pre-intermediate (PIN) and the advanced (ADV) level learners’ collocational knowledge at receptive and productive levels. The second one is to analyze the performance of the PIN and the ADV students in two main collocation categories; lexical and grammatical. Lastly, the performance of both groups are focused on to find the collocation type (among verb-noun, adjective- noun, adjective-preposition, noun-preposition collocation types) they show the best performance in. Two offline tests were used to answer these questions. The results show that there is a significant difference between the PIN and the ADV groups at both receptive and productive levels. It can be concluded that proficiency is an important criterion in collocational knowledge, and learners do not necessarily know the collocates of the vocabulary items that they know. Although there is no significant difference between the PIN group’s performance in lexical and grammatical collocations, the ADV group showed a better performance in lexical collocations. Lastly, the PIN group at receptive and the ADV group at both receptive and productive levels showed the best performance in verb-noun collocations, which is in line with the previous research focusing on different collocation types.Keywords: collocational knowledge, EFL, language proficiency, testing
Procedia PDF Downloads 38928373 Recommendations for Data Quality Filtering of Opportunistic Species Occurrence Data
Authors: Camille Van Eupen, Dirk Maes, Marc Herremans, Kristijn R. R. Swinnen, Ben Somers, Stijn Luca
Abstract:
In ecology, species distribution models are commonly implemented to study species-environment relationships. These models increasingly rely on opportunistic citizen science data when high-quality species records collected through standardized recording protocols are unavailable. While these opportunistic data are abundant, uncertainty is usually high, e.g., due to observer effects or a lack of metadata. Data quality filtering is often used to reduce these types of uncertainty in an attempt to increase the value of studies relying on opportunistic data. However, filtering should not be performed blindly. In this study, recommendations are built for data quality filtering of opportunistic species occurrence data that are used as input for species distribution models. Using an extensive database of 5.7 million citizen science records from 255 species in Flanders, the impact on model performance was quantified by applying three data quality filters, and these results were linked to species traits. More specifically, presence records were filtered based on record attributes that provide information on the observation process or post-entry data validation, and changes in the area under the receiver operating characteristic (AUC), sensitivity, and specificity were analyzed using the Maxent algorithm with and without filtering. Controlling for sample size enabled us to study the combined impact of data quality filtering, i.e., the simultaneous impact of an increase in data quality and a decrease in sample size. Further, the variation among species in their response to data quality filtering was explored by clustering species based on four traits often related to data quality: commonness, popularity, difficulty, and body size. Findings show that model performance is affected by i) the quality of the filtered data, ii) the proportional reduction in sample size caused by filtering and the remaining absolute sample size, and iii) a species ‘quality profile’, resulting from a species classification based on the four traits related to data quality. The findings resulted in recommendations on when and how to filter volunteer generated and opportunistically collected data. This study confirms that correctly processed citizen science data can make a valuable contribution to ecological research and species conservation.Keywords: citizen science, data quality filtering, species distribution models, trait profiles
Procedia PDF Downloads 20228372 Theater Metaphor in Event Quantification: A Corpus Study
Authors: Zhuo Jing-Schmidt, Jun Lang
Abstract:
Numeral classifiers are common in Asian languages. Research on numeral classifiers primarily focuses on noun classifiers that quantify and individuate nominal referents. There is a scarcity of research on event quantification using verb classifiers. This study aims to understand the semantic and conceptual basis of event quantification in Chinese. From a usage-based Construction Grammar perspective, this study presents a corpus analysis of event quantification in Chinese. Drawing on a large balanced corpus of contemporary Chinese, we analyze 667 NOUN col-lexemes totaling 31136 tokens of a productive numeral classifier construction in Chinese. Using collostructional analysis of the collexemes, the results show that the construction quantifies and classifies dramatic events using a theater-based conceptual metaphor. We argue that the usage patterns reflect the cultural entrenchment of theater as in Chinese conceptualization and the construal of theatricality in linguistic expression. The study has implications for cognitive semantics and construction grammar.Keywords: event quantification, classifier, corpus, metaphor
Procedia PDF Downloads 8528371 An Indoor Positioning System in Wireless Sensor Networks with Measurement Delay
Authors: Pyung Soo Kim, Eung Hyuk Lee, Mun Suck Jang
Abstract:
In the current paper, an indoor positioning system is proposed with consideration of measurement delay. Firstly, an estimation filter with a measurement delay is designed for the indoor positioning mechanism under a weighted least square criterion, which utilizes only finite measurements on the most recent window. The proposed estimation filtering based scheme gives the filtered estimates for position, velocity and acceleration of moving target in real-time, while removing undesired noisy effects and preserving desired moving positions. Secondly, the proposed scheme is shown to have good inherent properties such as unbiasedness, efficiency, time-invariance, deadbeat, and robustness due to the finite memory structure. Finally, computer simulations shows that the performance of the proposed estimation filtering based scheme can outperform to the existing infinite memory filtering based mechanism.Keywords: indoor positioning system, wireless sensor networks, measurement delay
Procedia PDF Downloads 48228370 E-Learning Recommender System Based on Collaborative Filtering and Ontology
Authors: John Tarus, Zhendong Niu, Bakhti Khadidja
Abstract:
In recent years, e-learning recommender systems has attracted great attention as a solution towards addressing the problem of information overload in e-learning environments and providing relevant recommendations to online learners. E-learning recommenders continue to play an increasing educational role in aiding learners to find appropriate learning materials to support the achievement of their learning goals. Although general recommender systems have recorded significant success in solving the problem of information overload in e-commerce domains and providing accurate recommendations, e-learning recommender systems on the other hand still face some issues arising from differences in learner characteristics such as learning style, skill level and study level. Conventional recommendation techniques such as collaborative filtering and content-based deal with only two types of entities namely users and items with their ratings. These conventional recommender systems do not take into account the learner characteristics in their recommendation process. Therefore, conventional recommendation techniques cannot make accurate and personalized recommendations in e-learning environment. In this paper, we propose a recommendation technique combining collaborative filtering and ontology to recommend personalized learning materials to online learners. Ontology is used to incorporate the learner characteristics into the recommendation process alongside the ratings while collaborate filtering predicts ratings and generate recommendations. Furthermore, ontological knowledge is used by the recommender system at the initial stages in the absence of ratings to alleviate the cold-start problem. Evaluation results show that our proposed recommendation technique outperforms collaborative filtering on its own in terms of personalization and recommendation accuracy.Keywords: collaborative filtering, e-learning, ontology, recommender system
Procedia PDF Downloads 37928369 A Reconfigurable Microstrip Patch Antenna with Polyphase Filter for Polarization Diversity and Cross Polarization Filtering Operation
Authors: Lakhdar Zaid, Albane Sangiovanni
Abstract:
A reconfigurable microstrip patch antenna with polyphase filter for polarization diversity and cross polarization filtering operation is presented in this paper. In our approach, a polyphase filter is used to obtain the four 90° phase shift outputs to feed a square microstrip patch antenna. The antenna can be switched between four states of polarization in transmission as well as in receiving mode. Switches are interconnected with the polyphase filter network to produce left-hand circular polarization, right-hand circular polarization, horizontal linear polarization, and vertical linear polarization. Additional advantage of using polyphase filter is its filtering capability for cross polarization filtering in right-hand circular polarization and left-hand circular polarization operation. The theoretical and simulated results demonstrated that polyphase filter is a good candidate to drive microstrip patch antenna to accomplish polarization diversity and cross polarization filtering operation.Keywords: active antenna, polarization diversity, patch antenna, polyphase filter
Procedia PDF Downloads 41128368 A Recommender System Fusing Collaborative Filtering and User’s Review Mining
Authors: Seulbi Choi, Hyunchul Ahn
Abstract:
Collaborative filtering (CF) algorithm has been popularly used for recommender systems in both academic and practical applications. It basically generates recommendation results using users’ numeric ratings. However, the additional use of the information other than user ratings may lead to better accuracy of CF. Considering that a lot of people are likely to share their honest opinion on the items they purchased recently due to the advent of the Web 2.0, user's review can be regarded as the new informative source for identifying user's preference with accuracy. Under this background, this study presents a hybrid recommender system that fuses CF and user's review mining. Our system adopts conventional memory-based CF, but it is designed to use both user’s numeric ratings and his/her text reviews on the items when calculating similarities between users.Keywords: Recommender system, Collaborative filtering, Text mining, Review mining
Procedia PDF Downloads 35628367 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 18228366 Articles, Delimitation of Speech and Perception
Authors: Nataliya L. Ogurechnikova
Abstract:
The paper aims to clarify the function of articles in the English speech and specify their place and role in the English language, taking into account the use of articles for delimitation of speech. A focus of the paper is the use of the definite and the indefinite articles with different types of noun phrases which comprise either one noun with or without attributes, such as the King, the Queen, the Lion, the Unicorn, a dimple, a smile, a new language, an unknown dialect, or several nouns with or without attributes, such as the King and Queen of Hearts, the Lion and Unicorn, a dimple or smile, a completely isolated language or dialect. It is stated that the function of delimitation is related to perception: the number of speech units in a text correlates with the way the speaker perceives and segments the denotation. The two following combinations of words the house and garden and the house and the garden contain different numbers of speech units, one and two respectively, and reveal two different perception modes which correspond to the use of the definite article in the examples given. Thus, the function of delimitation is twofold, it is related to perception and cognition, on the one hand, and, on the other hand, to grammar, if the subject of grammar is the structure of speech. Analysis of speech units in the paper is not limited by noun phrases and is amplified by discussion of peripheral phenomena which are nevertheless important because they enable to qualify articles as a syntactic phenomenon whereas they are not infrequently described in terms of noun morphology. With this regard attention is given to the history of linguistic studies, specifically to the description of English articles by Niels Haislund, a disciple of Otto Jespersen. A discrepancy is noted between the initial plan of Jespersen who intended to describe articles as a syntactic phenomenon in ‘A Modern English Grammar on Historical Principles’ and the interpretation of articles in terms of noun morphology, finally given by Haislund. Another issue of the paper is correlation between description and denotation, being a traditional aspect of linguistic studies focused on articles. An overview of relevant studies, given in the paper, goes back to the works of G. Frege, which gave rise to a series of scientific works where the meaning of articles was described within the scope of logical semantics. Correlation between denotation and description is treated in the paper as the meaning of article, i.e. a component in its semantic structure, which differs from the function of delimitation and is similar to the meaning of other quantifiers. The paper further explains why the relation between description and denotation, i.e. the meaning of English article, is irrelevant for noun morphology and has nothing to do with nominal categories of the English language.Keywords: delimitation of speech, denotation, description, perception, speech units, syntax
Procedia PDF Downloads 24028365 Performance Comparison of ADTree and Naive Bayes Algorithms for Spam Filtering
Authors: Thanh Nguyen, Andrei Doncescu, Pierre Siegel
Abstract:
Classification is an important data mining technique and could be used as data filtering in artificial intelligence. The broad application of classification for all kind of data leads to be used in nearly every field of our modern life. Classification helps us to put together different items according to the feature items decided as interesting and useful. In this paper, we compare two classification methods Naïve Bayes and ADTree use to detect spam e-mail. This choice is motivated by the fact that Naive Bayes algorithm is based on probability calculus while ADTree algorithm is based on decision tree. The parameter settings of the above classifiers use the maximization of true positive rate and minimization of false positive rate. The experiment results present classification accuracy and cost analysis in view of optimal classifier choice for Spam Detection. It is point out the number of attributes to obtain a tradeoff between number of them and the classification accuracy.Keywords: classification, data mining, spam filtering, naive bayes, decision tree
Procedia PDF Downloads 41128364 A Similar Image Retrieval System for Auroral All-Sky Images Based on Local Features and Color Filtering
Authors: Takanori Tanaka, Daisuke Kitao, Daisuke Ikeda
Abstract:
The aurora is an attractive phenomenon but it is difficult to understand the whole mechanism of it. An approach of data-intensive science might be an effective approach to elucidate such a difficult phenomenon. To do that we need labeled data, which shows when and what types of auroras, have appeared. In this paper, we propose an image retrieval system for auroral all-sky images, some of which include discrete and diffuse aurora, and the other do not any aurora. The proposed system retrieves images which are similar to the query image by using a popular image recognition method. Using 300 all-sky images obtained at Tromso Norway, we evaluate two methods of image recognition methods with or without our original color filtering method. The best performance is achieved when SIFT with the color filtering is used and its accuracy is 81.7% for discrete auroras and 86.7% for diffuse auroras.Keywords: data-intensive science, image classification, content-based image retrieval, aurora
Procedia PDF Downloads 44928363 Study of Adaptive Filtering Algorithms and the Equalization of Radio Mobile Channel
Authors: Said Elkassimi, Said Safi, B. Manaut
Abstract:
This paper presented a study of three algorithms, the equalization algorithm to equalize the transmission channel with ZF and MMSE criteria, application of channel Bran A, and adaptive filtering algorithms LMS and RLS to estimate the parameters of the equalizer filter, i.e. move to the channel estimation and therefore reflect the temporal variations of the channel, and reduce the error in the transmitted signal. So far the performance of the algorithm equalizer with ZF and MMSE criteria both in the case without noise, a comparison of performance of the LMS and RLS algorithm.Keywords: adaptive filtering second equalizer, LMS, RLS Bran A, Proakis (B) MMSE, ZF
Procedia PDF Downloads 31328362 Fano-Resonance-Based Wideband Acoustic Metamaterials with Highly Efficient Ventilation
Authors: Xi-Wen Xiao, Tzy-Rong Lin, Chien-Hao Liu
Abstract:
Ventilated acoustic metamaterials have attracted considerable research attention due to their low-frequency absorptions and efficient fluid ventilations. In this research, a wideband acoustic metamaterial with auditory filtering ability and efficient ventilation capacity were proposed. In contrast to a conventional Fano-like resonator, a Fano-like resonator composed of a resonant unit and two nonresonant units with a large opening area of 68% for fluid passages was developed. In addition, the coupling mechanism to improve the narrow bandwidths of conventional Fano-resonance-based meta-materials was included. With a suitable design, the output sound waves of the resonant and nonresonant states were out of phase to achieve sound absorptions in the far fields. Therefore, three-element and five-element coupled Fano-like metamaterials were designed and simulated with the help of the finite element software to obtain the filtering fractional bandwidths of 42.5% and 61.8%, respectively. The proposed approach can be extended to multiple coupled resonators for obtaining ultra-wide bandwidths and can be implemented with 3D printing for practical applications. The research results are expected to be beneficial for sound filtering or noise reductions in duct applications and limited-volume spaces.Keywords: fano resonance, noise reduction, resonant coupling, sound filtering, ventilated acoustic metamaterial
Procedia PDF Downloads 115