Search results for: discriminate accuracy
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3888

Search results for: discriminate accuracy

3888 Reliability of Diffusion Tensor Imaging in Differentiation of Salivary Gland Tumors

Authors: Sally Salah El Menshawy, Ghada M. Ahmed GabAllah, Doaa Khedr M. Khedr

Abstract:

Background: Our study aims to detect the diagnostic role of DTI in the differentiation of salivary glands benign and malignant lesions. Results: Our study included 50 patients (25males and 25 females) divided into 4 groups (benign lesions n=20, malignant tumors n=13, post-operative changes n=10 and normal n=7). 28 patients were with parotid gland lesions, 4 patients were with submandibular gland lesions and only 1 case with sublingual gland affection. The mean fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of malignant salivary gland tumors (n = 13) (0.380±0.082 and 0.877±0.234× 10⁻³ mm² s⁻¹) were significantly different (P<0.001) than that of benign tumors (n = 20) (0.147±0.03 and 1.47±0.605 × 10⁻³ mm² s⁻¹), respectively. The mean FA and ADC of post-operative changes (n = 10) were (0.211±0.069 and 1.63±0.20× 10⁻³ mm² s⁻¹) while that of normal glands (n =7) was (0.251±0.034and 1.54±0.29× 10⁻³ mm² s⁻¹), respectively. Using ADC to differentiate malignant lesions from benign lesions has an (AUC) of 0.810, with an accuracy of 69.7%. ADC used to differentiate malignant lesions from post-operative changes has (AUC) of 1.0, and an accuracy of 95.7%. FA used to discriminate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 93.9%. FA used to differentiate malignant from post-operative changes has (AUC) of 0.923, and an accuracy of 95.7%. Combined FA and ADC used to differentiate malignant from benign lesions has (AUC) of 1.0, and an accuracy of 100%. Combined FA and ADC used to differentiate malignant from post-operative changes has (AUC) of 1.0, and an accuracy of 100%. Conclusion: Combined FA and ADC can differentiate malignant tumors from benign salivary gland lesions.

Keywords: diffusion tensor imaging, MRI, salivary gland, tumors

Procedia PDF Downloads 114
3887 Accuracy of Trauma on Scene Triage Screen Tool (Shock Index, Reverse Shock Index Glasgow Coma Scale, and National Early Warning Score) to Predict the Severity of Emergency Department Triage

Authors: Chaiyaporn Yuksen, Tapanawat Chaiwan

Abstract:

Introduction: Emergency medical service (EMS) care for trauma patients must be provided on-scene assessment and essential treatment and have appropriate transporting to the trauma center. The shock index (SI), reverse shock index Glasgow Coma Scale (rSIG), and National Early Warning Score (NEWS) triage tools are easy to use in a prehospital setting. There is no standardized on-scene triage protocol in prehospital care. The primary objective was to determine the accuracy of SI, rSIG, and NEWS to predict the severity of trauma patients in the emergency department (ED). Methods: This was a retrospective cross-sectional and diagnostic research conducted on trauma patients transported by EMS to the ED of Ramathibodi Hospital, a university-affiliated super tertiary care hospital in Bangkok, Thailand, from January 2015 to September 2022. We included the injured patients receiving prehospital care and transport to the ED of Ramathibodi Hospital by the EMS team from January 2015 to September 2022. We compared the on-scene parameter (SI, rSIG, and NEWS) and ED (Emergency Severity Index) with the area under ROC. Results: 218 patients were traumatic patients transported by EMS to the ED. 161 was ESI level 1-2, and 57 was level 3-5. NEWS was a more accurate triage tool to discriminate the severity of trauma patients than rSIG and SI. The area under the ROC was 0.743 (95%CI 0.70-0.79), 0.649 (95%CI 0.59-0.70), and 0.582 (95%CI 0.52-0.65), respectively (P-value <0.001). The cut point of NEWS to discriminate was 6 points. Conclusions: The NEWs was the most accurate triage tool in prehospital seeing in trauma patients.

Keywords: on-scene triage, trauma patient, ED triage, accuracy, NEWS

Procedia PDF Downloads 130
3886 Applying Unmanned Aerial Vehicle on Agricultural Damage: A Case Study of the Meteorological Disaster on Taiwan Paddy Rice

Authors: Chiling Chen, Chiaoying Chou, Siyang Wu

Abstract:

Taiwan locates at the west of Pacific Ocean and intersects between continental and marine climate. Typhoons frequently strike Taiwan and come with meteorological disasters, i.e., heavy flooding, landslides, loss of life and properties, etc. Global climate change brings more extremely meteorological disasters. So, develop techniques to improve disaster prevention and mitigation is needed, to improve rescue processes and rehabilitations is important as well. In this study, UAVs (Unmanned Aerial Vehicles) are applied to take instant images for improving the disaster investigation and rescue processes. Paddy rice fields in the central Taiwan are the study area. There have been attacked by heavy rain during the monsoon season in June 2016. UAV images provide the high ground resolution (3.5cm) with 3D Point Clouds to develop image discrimination techniques and digital surface model (DSM) on rice lodging. Firstly, image supervised classification with Maximum Likelihood Method (MLD) is used to delineate the area of rice lodging. Secondly, 3D point clouds generated by Pix4D Mapper are used to develop DSM for classifying the lodging levels of paddy rice. As results, discriminate accuracy of rice lodging is 85% by image supervised classification, and the classification accuracy of lodging level is 87% by DSM. Therefore, UAVs not only provide instant images of agricultural damage after the meteorological disaster, but the image discriminations on rice lodging also reach acceptable accuracy (>85%). In the future, technologies of UAVs and image discrimination will be applied to different crop fields. The results of image discrimination will be overlapped with administrative boundaries of paddy rice, to establish GIS-based assist system on agricultural damage discrimination. Therefore, the time and labor would be greatly reduced on damage detection and monitoring.

Keywords: Monsoon, supervised classification, Pix4D, 3D point clouds, discriminate accuracy

Procedia PDF Downloads 303
3885 An Approach to Make an Adaptive Immunoassay to Detect an Unknown Disease

Authors: Josselyn Mata Calidonio, Arianna I. Maddox, Kimberly Hamad-Schifferli

Abstract:

Rapid diagnostics are critical infectious disease tools that are designed to detect a known biomarker using antibodies specific to that biomarker. However, a way to detect unknown viruses has not yet been achieved in a paper test format. We describe here a route to make an adaptable paper immunoassay that can detect an unknown biomarker, demonstrating it on SARS-CoV-2 variants. The immunoassay repurposes cross-reactive antibodies raised against the alpha variant. Gold nanoparticles of two different colors conjugated to two different antibodies create a colorimetric signal, and machine learning of the resulting colorimetric pattern is used to train the assay to discriminate between variants of alpha and Omicron BA.5. By using principal component analysis, the colorimetric test patterns can pick up and discriminate an unknown that it has not encountered before, Omicron BA.1. The test has an accuracy of 100% and a potential calculated discriminatory power of 900. We show that it can be used adaptively and that it can be used to pick up emerging variants without the need to raise new antibodies.

Keywords: adaptive immunoassay, detecting unknown viruses, gold nanoparticles, paper immunoassay, repurposing antibodies

Procedia PDF Downloads 118
3884 Spectrogram Pre-Processing to Improve Isotopic Identification to Discriminate Gamma and Neutrons Sources

Authors: Mustafa Alhamdi

Abstract:

Industrial application to classify gamma rays and neutron events is investigated in this study using deep machine learning. The identification using a convolutional neural network and recursive neural network showed a significant improvement in predication accuracy in a variety of applications. The ability to identify the isotope type and activity from spectral information depends on feature extraction methods, followed by classification. The features extracted from the spectrum profiles try to find patterns and relationships to present the actual spectrum energy in low dimensional space. Increasing the level of separation between classes in feature space improves the possibility to enhance classification accuracy. The nonlinear nature to extract features by neural network contains a variety of transformation and mathematical optimization, while principal component analysis depends on linear transformations to extract features and subsequently improve the classification accuracy. In this paper, the isotope spectrum information has been preprocessed by finding the frequencies components relative to time and using them as a training dataset. Fourier transform implementation to extract frequencies component has been optimized by a suitable windowing function. Training and validation samples of different isotope profiles interacted with CdTe crystal have been simulated using Geant4. The readout electronic noise has been simulated by optimizing the mean and variance of normal distribution. Ensemble learning by combing voting of many models managed to improve the classification accuracy of neural networks. The ability to discriminate gamma and neutron events in a single predication approach using deep machine learning has shown high accuracy using deep learning. The paper findings show the ability to improve the classification accuracy by applying the spectrogram preprocessing stage to the gamma and neutron spectrums of different isotopes. Tuning deep machine learning models by hyperparameter optimization of neural network models enhanced the separation in the latent space and provided the ability to extend the number of detected isotopes in the training database. Ensemble learning contributed significantly to improve the final prediction.

Keywords: machine learning, nuclear physics, Monte Carlo simulation, noise estimation, feature extraction, classification

Procedia PDF Downloads 153
3883 Clean Energy and Free Trade: Redefining 'Like Products' to Account for Climate Change

Authors: M. Barsa

Abstract:

This paper argues that current jurisprudence under the Dormant Commerce Clause of the United States Constitution and the WTO should be altered to allow states to more freely foster clean energy production. In particular, free trade regimes typically prevent states from discriminating against 'like' products, and whether these products are considered 'like' is typically measured by how they appear to the consumer. This makes it challenging for states to discriminate in favor of clean energy, such as low-carbon fuels. However, this paper points out that certain courts in the US—and decisions of the WTO—have already begun taking into account how a product is manufactured in order to determine whether a state may discriminate against it. There are also compelling reasons for states to discriminate against energy sources with high carbon footprints in order to allow those states to protect themselves against climate change. In other words, fuel sources with high and low carbon footprints are not, in fact, 'like' products, and courts should more freely recognize this in order to foster clean energy production.

Keywords: clean energy, climate change, discrimination, free trade

Procedia PDF Downloads 123
3882 Pathological Gambling and Impulsivity: Comparison of the Eight Laboratory Measures of Inhibition Capacities

Authors: Semion Kertzman, Pinhas Dannon

Abstract:

Impulsive behaviour and the underlying brain processes are hypothesized to be central in the development and maintenance of pathological gambling. Inhibition ability can be differentially impaired in pathological gamblers (PGs). Aims: This study aimed to compare the ability of eight widely used inhibition measures to discriminate between PGs and healthy controls (HCs). Methods: PGs (N=51) and demographically matched HCs (N=51) performed cognitive inhibition (the Stroop), motor inhibition (the Go/NoGo) and reflective inhibition (the Matching Familiar Figures (MFFT)) tasks. Results: An augmented total interference response time in the Stroop task (η² =0.054), a large number of commission errors (η² =0.053) in the Go/NoGo task, and the total number of errors in the MFFT (η² =0.05) can discriminate PGs from HCs. Other measures are unable to differentiate between PGs and HCs. No significant correlations were observed between inhibition measures. Conclusion: Inhibition measures varied in the ability to discriminate PGs from HCs. Most inhibition measures were not relevant to gambling behaviour. PGs do not express rash, impulsive behaviour, such as quickly choosing an answer without thinking. In contrast, in PGs, inhibition impairment was related to slow-inaccurate performance.

Keywords: pathological gambling, impulsivity, neurocognition, addiction

Procedia PDF Downloads 304
3881 Improved Accuracy of Ratio Multiple Valuation

Authors: Julianto Agung Saputro, Jogiyanto Hartono

Abstract:

Multiple valuation is widely used by investors and practitioners but its accuracy is questionable. Multiple valuation inaccuracies are due to the unreliability of information used in valuation, inaccuracies comparison group selection, and use of individual multiple values. This study investigated the accuracy of valuation to examine factors that can increase the accuracy of the valuation of multiple ratios, that are discretionary accruals, the comparison group, and the composite of multiple valuation. These results indicate that multiple value adjustment method with discretionary accruals provides better accuracy, the industry comparator group method combined with the size and growth of companies also provide better accuracy. Composite of individual multiple valuation gives the best accuracy. If all of these factors combined, the accuracy of valuation of multiple ratios will give the best results.

Keywords: multiple, valuation, composite, accuracy

Procedia PDF Downloads 284
3880 Measuring Energy Efficiency Performance of Mena Countries

Authors: Azam Mohammadbagheri, Bahram Fathi

Abstract:

DEA has become a very popular method of performance measure, but it still suffers from some shortcomings. One of these shortcomings is the issue of having multiple optimal solutions to weights for efficient DMUs. The cross efficiency evaluation as an extension of DEA is proposed to avoid this problem. Lam (2010) is also proposed a mixed-integer linear programming formulation based on linear discriminate analysis and super efficiency method (MILP model) to avoid having multiple optimal solutions to weights. In this study, we modified MILP model to determine more suitable weight sets and also evaluate the energy efficiency of MENA countries as an application of the proposed model.

Keywords: data envelopment analysis, discriminate analysis, cross efficiency, MILP model

Procedia PDF Downloads 688
3879 Classification of Germinatable Mung Bean by Near Infrared Hyperspectral Imaging

Authors: Kaewkarn Phuangsombat, Arthit Phuangsombat, Anupun Terdwongworakul

Abstract:

Hard seeds will not grow and can cause mold in sprouting process. Thus, the hard seeds need to be separated from the normal seeds. Near infrared hyperspectral imaging in a range of 900 to 1700 nm was implemented to develop a model by partial least squares discriminant analysis to discriminate the hard seeds from the normal seeds. The orientation of the seeds was also studied to compare the performance of the models. The model based on hilum-up orientation achieved the best result giving the coefficient of determination of 0.98, and root mean square error of prediction of 0.07 with classification accuracy was equal to 100%.

Keywords: mung bean, near infrared, germinatability, hard seed

Procedia PDF Downloads 307
3878 Propagation of DEM Varying Accuracy into Terrain-Based Analysis

Authors: Wassim Katerji, Mercedes Farjas, Carmen Morillo

Abstract:

Terrain-Based Analysis results in derived products from an input DEM and these products are needed to perform various analyses. To efficiently use these products in decision-making, their accuracies must be estimated systematically. This paper proposes a procedure to assess the accuracy of these derived products, by calculating the accuracy of the slope dataset and its significance, taking as an input the accuracy of the DEM. Based on the output of previously published research on modeling the relative accuracy of a DEM, specifically ASTER and SRTM DEMs with Lebanon coverage as the area of study, analysis have showed that ASTER has a low significance in the majority of the area where only 2% of the modeled terrain has 50% or more significance. On the other hand, SRTM showed a better significance, where 37% of the modeled terrain has 50% or more significance. Statistical analysis deduced that the accuracy of the slope dataset, calculated on a cell-by-cell basis, is highly correlated to the accuracy of the input DEM. However, this correlation becomes lower between the slope accuracy and the slope significance, whereas it becomes much higher between the modeled slope and the slope significance.

Keywords: terrain-based analysis, slope, accuracy assessment, Digital Elevation Model (DEM)

Procedia PDF Downloads 449
3877 Normal and Peaberry Coffee Beans Classification from Green Coffee Bean Images Using Convolutional Neural Networks and Support Vector Machine

Authors: Hira Lal Gope, Hidekazu Fukai

Abstract:

The aim of this study is to develop a system which can identify and sort peaberries automatically at low cost for coffee producers in developing countries. In this paper, the focus is on the classification of peaberries and normal coffee beans using image processing and machine learning techniques. The peaberry is not bad and not a normal bean. The peaberry is born in an only single seed, relatively round seed from a coffee cherry instead of the usual flat-sided pair of beans. It has another value and flavor. To make the taste of the coffee better, it is necessary to separate the peaberry and normal bean before green coffee beans roasting. Otherwise, the taste of total beans will be mixed, and it will be bad. In roaster procedure time, all the beans shape, size, and weight must be unique; otherwise, the larger bean will take more time for roasting inside. The peaberry has a different size and different shape even though they have the same weight as normal beans. The peaberry roasts slower than other normal beans. Therefore, neither technique provides a good option to select the peaberries. Defect beans, e.g., sour, broken, black, and fade bean, are easy to check and pick up manually by hand. On the other hand, the peaberry pick up is very difficult even for trained specialists because the shape and color of the peaberry are similar to normal beans. In this study, we use image processing and machine learning techniques to discriminate the normal and peaberry bean as a part of the sorting system. As the first step, we applied Deep Convolutional Neural Networks (CNN) and Support Vector Machine (SVM) as machine learning techniques to discriminate the peaberry and normal bean. As a result, better performance was obtained with CNN than with SVM for the discrimination of the peaberry. The trained artificial neural network with high performance CPU and GPU in this work will be simply installed into the inexpensive and low in calculation Raspberry Pi system. We assume that this system will be used in under developed countries. The study evaluates and compares the feasibility of the methods in terms of accuracy of classification and processing speed.

Keywords: convolutional neural networks, coffee bean, peaberry, sorting, support vector machine

Procedia PDF Downloads 146
3876 Anthraquinone Labelled DNA for Direct Detection and Discrimination of Closely Related DNA Targets

Authors: Sarah A. Goodchild, Rachel Gao, Philip N. Bartlett

Abstract:

A novel detection approach using immobilized DNA probes labeled with Anthraquinone (AQ) as an electrochemically active reporter moiety has been successfully developed as a new, simple, reliable method for the detection of DNA. This method represents a step forward in DNA detection as it can discriminate between multiple nucleotide polymorphisms within target DNA strands without the need for any additional reagents, reporters or processes such as melting of DNA strands. The detection approach utilizes single-stranded DNA probes immobilized on gold surfaces labeled at the distal terminus with AQ. The effective immobilization has been monitored using techniques such as AC impedance and Raman spectroscopy. Simple voltammetry techniques (Differential Pulse Voltammetry, Cyclic Voltammetry) are then used to monitor the reduction potential of the AQ before and after the addition of complementary strand of target DNA. A reliable relationship between the shift in reduction potential and the number of base pair mismatch has been established and can be used to discriminate between DNA from highly related pathogenic organisms of clinical importance. This indicates that this approach may have great potential to be exploited within biosensor kits for detection and diagnosis of pathogenic organisms in Point of Care devices.

Keywords: Anthraquinone, discrimination, DNA detection, electrochemical biosensor

Procedia PDF Downloads 396
3875 Perception of Greek Vowels by Arabic-Greek Bilinguals: An Experimental Study

Authors: Georgios P. Georgiou

Abstract:

Infants are able to discriminate a number of sound contrasts in most languages. However, this ability is not available in adults who might face difficulties in discriminating accurately second language sound contrasts as they filter second language speech through the phonological categories of their native language. For example, Spanish speakers often struggle to perceive the difference between the English /ε/ and /æ/ because both vowels do not exist in their native language; so they assimilate these vowels to the closest phonological category of their first language. The present study aims to uncover the perceptual patterns of Arabic adult speakers in regard to the vowels of their second language (Greek). Still, there is not any study that investigates the perception of Greek vowels by Arabic speakers and, thus, the present study would contribute to the enrichment of the literature with cross-linguistic research in new languages. To the purpose of the present study, 15 native speakers of Egyptian Arabic who permanently live in Cyprus and have adequate knowledge of Greek as a second language passed through vowel assimilation and vowel contrast discrimination tests (AXB) in their second language. The perceptual stimuli included non-sense words that contained vowels in both stressed and unstressed positions. The second language listeners’ patterns were analyzed through the Perceptual Assimilation Model which makes testable hypotheses about the assimilation of second language sounds to the speakers’ native phonological categories and the discrimination accuracy over second language sound contrasts. The results indicated that second language listeners assimilated pairs of Greek vowels in a single phonological category of their native language resulting in a Category Goodness difference assimilation type for the Greek stressed /i/-/e/ and the Greek stressed-unstressed /o/-/u/ vowel contrasts. On the contrary, the members of the Greek unstressed /i/-/e/ vowel contrast were assimilated to two different categories resulting in a Two Category assimilation type. Furthermore, they could discriminate the Greek stressed /i/-/e/ and the Greek stressed-unstressed /o/-/u/ contrasts only in a moderate degree while the Greek unstressed /i/-/e/ contrast could be discriminated in an excellent degree. Two main implications emerge from the results. First, there is a strong influence of the listeners’ native language on the perception of the second language vowels. In Egyptian Arabic, contiguous vowel categories such as [i]-[e] and [u]-[o] do not have phonemic difference but they are subject to allophonic variation; by contrast, the vowel contrasts /i/-/e/ and /o/-/u/ are phonemic in Greek. Second, the role of stress is significant for second language perception since stressed vs. unstressed vowel contrasts were perceived in a different manner by the Greek listeners.

Keywords: Arabic, bilingual, Greek, vowel perception

Procedia PDF Downloads 141
3874 Smoker Recognition from Lung X-Ray Images Using Convolutional Neural Network

Authors: Moumita Chanda, Md. Fazlul Karim Patwary

Abstract:

Smoking is one of the most popular recreational drug use behaviors, and it contributes to birth defects, COPD, heart attacks, and erectile dysfunction. To completely eradicate this disease, it is imperative that it be identified and treated. Numerous smoking cessation programs have been created, and they demonstrate how beneficial it may be to help someone stop smoking at the ideal time. A tomography meter is an effective smoking detector. Other wearables, such as RF-based proximity sensors worn on the collar and wrist to detect when the hand is close to the mouth, have been proposed in the past, but they are not impervious to deceptive variables. In this study, we create a machine that can discriminate between smokers and non-smokers in real-time with high sensitivity and specificity by watching and collecting the human lung and analyzing the X-ray data using machine learning. If it has the highest accuracy, this machine could be utilized in a hospital, in the selection of candidates for the army or police, or in university entrance.

Keywords: CNN, smoker detection, non-smoker detection, OpenCV, artificial Intelligence, X-ray Image detection

Procedia PDF Downloads 85
3873 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation

Authors: Carl van Walraven, Meltem Tuna

Abstract:

Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.

Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation

Procedia PDF Downloads 239
3872 Does sustainability disclosure improve analysts’ forecast accuracy Evidence from European banks

Authors: Albert Acheampong, Tamer Elshandidy

Abstract:

We investigate the extent to which sustainability disclosure from the narrative section of European banks’ annual reports improves analyst forecast accuracy. We capture sustainability disclosure using a machine learning approach and use forecast error to proxy analyst forecast accuracy. Our results suggest that sustainability disclosure significantly improves analyst forecast accuracy by reducing the forecast error. In a further analysis, we also find that the induction of Directive 2014/95/European Union (EU) is associated with increased disclosure content, which then reduces forecast error. Collectively, our results suggest that sustainability disclosure improves forecast accuracy, and the induction of the new EU directive strengthens this improvement. These results hold after several further and robustness analyses. Our findings have implications for market participants and policymakers.

Keywords: sustainability disclosure, machine learning, analyst forecast accuracy, forecast error, European banks, EU directive

Procedia PDF Downloads 81
3871 Contributing to Accuracy of Bid Cost Estimate in Construction Projects

Authors: Abdullah Alhomidan

Abstract:

This study is conducted to identify the main factors affecting accuracy of pretender cost estimate in building construction projects in Saudi Arabia from owners’ perspective. 44 factors affecting pretender cost estimate were identified through literature review and discussion with some construction experts. The results show that the top important factors affecting pretender cost estimate accuracy are: level of competitors in the tendering, material price changes, communications with suppliers, communications with client, and estimating method used.

Keywords: cost estimate, accuracy, pretender, estimating, bid estimate

Procedia PDF Downloads 559
3870 Satellite Image Classification Using Firefly Algorithm

Authors: Paramjit Kaur, Harish Kundra

Abstract:

In the recent years, swarm intelligence based firefly algorithm has become a great focus for the researchers to solve the real time optimization problems. Here, firefly algorithm is used for the application of satellite image classification. For experimentation, Alwar area is considered to multiple land features like vegetation, barren, hilly, residential and water surface. Alwar dataset is considered with seven band satellite images. Firefly Algorithm is based on the attraction of less bright fireflies towards more brightener one. For the evaluation of proposed concept accuracy assessment parameters are calculated using error matrix. With the help of Error matrix, parameters of Kappa Coefficient, Overall Accuracy and feature wise accuracy parameters of user’s accuracy & producer’s accuracy can be calculated. Overall results are compared with BBO, PSO, Hybrid FPAB/BBO, Hybrid ACO/SOFM and Hybrid ACO/BBO based on the kappa coefficient and overall accuracy parameters.

Keywords: image classification, firefly algorithm, satellite image classification, terrain classification

Procedia PDF Downloads 404
3869 Using Motives of Sports Consumption to Explain Team Identity: A Comparison between Football Fans across the Pond

Authors: G. Scremin, I. Y. Suh, S. Doukas

Abstract:

Spectators follow their favorite sports teams for different reasons. While some attend a sporting event simply for its entertainment value, others do so because of the personal sense of achievement and accomplishment their connection with a sports team creates. Moreover, the level of identity spectators feel toward their favorite sports team falls in a broad continuum. Some are mere spectators. For those spectators, their association to a sports team has little impact on their self-image. Others are die-hard fans who are proud of their association with their team and whose connection with that team is an important reflection of who they are. Several motives for sports consumption can be used to explain the level of spectator support in a variety of sports. Those motives can also be used to explain the variance in the identification, attachment, and loyalty spectators feel toward their favorite sports team. Motives for sports consumption can be used to discriminate the degree of identification spectators have with their favorite sports team. In this study, motives for sports consumption was used to discriminate the level of identity spectators feel toward their sports team. It was hypothesized that spectators with a strong level of team identity would report higher rates of interest in player, interest in sports, and interest in team than spectators with a low level of team identity. And spectators with a low level of team identity would report higher rates for entertainment value, bonding with friends or family, and wholesome environment. Football spectators in the United States and England were surveyed about their motives for football consumption and their level of identification with their favorite football team. To assess if the motives of sports fans differed by level of team identity and allegiance to an American or English football team, a Multivariate Analysis of Variance (MANOVA) under the General Linear Model (GLM) procedure found in SPSS was performed. The independent variables were level of team identity and allegiance to an American or English football team, and the dependent variables were the sport fan motives. A tripartite split (low, moderate, high) was used on a composite measure for team identity. Preliminary results show that effect of team identity is statistically significant (p < .001) for at least nine of the 17 motives for sports consumption assessed in this investigation. These results indicate that the motives of spectators with a strong level of team identity differ significantly from spectators with a low level of team identity. Those differences can be used to discriminate the degree of identification spectators have with their favorite sports team. Sports marketers can use these methods and results to develop identity profiles of spectators and create marketing strategies specifically designed to attract those spectators based on their unique motives for consumption and their level of team identification.

Keywords: fan identification, market segmentation of sports fans, motives for sports consumption, team identity

Procedia PDF Downloads 171
3868 Comparative Study of Accuracy of Land Cover/Land Use Mapping Using Medium Resolution Satellite Imagery: A Case Study

Authors: M. C. Paliwal, A. K. Jain, S. K. Katiyar

Abstract:

Classification of satellite imagery is very important for the assessment of its accuracy. In order to determine the accuracy of the classified image, usually the assumed-true data are derived from ground truth data using Global Positioning System. The data collected from satellite imagery and ground truth data is then compared to find out the accuracy of data and error matrices are prepared. Overall and individual accuracies are calculated using different methods. The study illustrates advanced classification and accuracy assessment of land use/land cover mapping using satellite imagery. IRS-1C-LISS IV data were used for classification of satellite imagery. The satellite image was classified using the software in fourteen classes namely water bodies, agricultural fields, forest land, urban settlement, barren land and unclassified area etc. Classification of satellite imagery and calculation of accuracy was done by using ERDAS-Imagine software to find out the best method. This study is based on the data collected for Bhopal city boundaries of Madhya Pradesh State of India.

Keywords: resolution, accuracy assessment, land use mapping, satellite imagery, ground truth data, error matrices

Procedia PDF Downloads 511
3867 Analysis Customer Loyalty Characteristic and Segmentation Analysis in Mobile Phone Category in Indonesia

Authors: A. B. Robert, Adam Pramadia, Calvin Andika

Abstract:

The main purpose of this study is to explore consumer loyalty characteristic of mobile phone category in Indonesia. Second, this research attempts to identify consumer segment and to explore their profile in each segment as the basis of marketing strategy formulation. This study used some tools of multivariate analysis such as discriminant analysis and cluster analysis. Discriminate analysis used to discriminate consumer loyal and not loyal by using particular variables. Cluster analysis used to reveal various segment in mobile phone category. In addition to having better customer understanding in each segment, this study used descriptive analysis and cross tab analysis in each segment defined by cluster analysis. This study expected several findings. First, consumer can be divided into two large group of loyal versus not loyal by set of variables. Second, this study identifies customer segment in mobile phone category. Third, exploring customer profile in each segment that has been identified. This study answer a call for additional empirical research into different product categories. Therefore, a replication research is advisable. By knowing the customer loyalty characteristic, and deep analysis of their consumption behavior and profile for each segment, this study is very advisable for high impact marketing strategy development. This study contributes body of knowledge by adding empirical study of consumer loyalty, segmentation analysis in mobile phone category by multiple brand analysis.

Keywords: customer loyalty, segmentation, marketing strategy, discriminant analysis, cluster analysis, mobile phone

Procedia PDF Downloads 598
3866 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of the present work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. Based on feature selection in different phases, in this research, we design a neural network system that has optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each ROI, 6 distinct set of texture features are extracted such as first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. We show that with the injection of liquid and the analysis of more phases the high relevant features in each region changed. Our results show that for detecting HCC tumor phase3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between these two classes according to our method, relates to first order histogram parameters with the accuracy of 85% in phase 1, 95% phase 2, and 95% in phase 3.

Keywords: multi-phasic liver images, texture analysis, neural network, hidden layer

Procedia PDF Downloads 264
3865 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.

Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble

Procedia PDF Downloads 496
3864 Electroencephalography-Based Intention Recognition and Consensus Assessment during Emergency Response

Authors: Siyao Zhu, Yifang Xu

Abstract:

After natural and man-made disasters, robots can bypass the danger, expedite the search, and acquire unprecedented situational awareness to design rescue plans. The hands-free requirement from the first responders excludes the use of tedious manual control and operation. In unknown, unstructured, and obstructed environments, natural-language-based supervision is not amenable for first responders to formulate, and is difficult for robots to understand. Brain-computer interface is a promising option to overcome the limitations. This study aims to test the feasibility of using electroencephalography (EEG) signals to decode human intentions and detect the level of consensus on robot-provided information. EEG signals were classified using machine-learning and deep-learning methods to discriminate search intentions and agreement perceptions. The results show that the average classification accuracy for intention recognition and consensus assessment is 67% and 72%, respectively, proving the potential of incorporating recognizable users’ bioelectrical responses into advanced robot-assisted systems for emergency response.

Keywords: consensus assessment, electroencephalogram, emergency response, human-robot collaboration, intention recognition, search and rescue

Procedia PDF Downloads 95
3863 Offline Signature Verification Using Minutiae and Curvature Orientation

Authors: Khaled Nagaty, Heba Nagaty, Gerard McKee

Abstract:

A signature is a behavioral biometric that is used for authenticating users in most financial and legal transactions. Signatures can be easily forged by skilled forgers. Therefore, it is essential to verify whether a signature is genuine or forged. The aim of any signature verification algorithm is to accommodate the differences between signatures of the same person and increase the ability to discriminate between signatures of different persons. This work presented in this paper proposes an automatic signature verification system to indicate whether a signature is genuine or not. The system comprises four phases: (1) The pre-processing phase in which image scaling, binarization, image rotation, dilation, thinning, and connecting ridge breaks are applied. (2) The feature extraction phase in which global and local features are extracted. The local features are minutiae points, curvature orientation, and curve plateau. The global features are signature area, signature aspect ratio, and Hu moments. (3) The post-processing phase, in which false minutiae are removed. (4) The classification phase in which features are enhanced before feeding it into the classifier. k-nearest neighbors and support vector machines are used. The classifier was trained on a benchmark dataset to compare the performance of the proposed offline signature verification system against the state-of-the-art. The accuracy of the proposed system is 92.3%.

Keywords: signature, ridge breaks, minutiae, orientation

Procedia PDF Downloads 150
3862 EEG-Based Classification of Psychiatric Disorders: Bipolar Mood Disorder vs. Schizophrenia

Authors: Han-Jeong Hwang, Jae-Hyun Jo, Fatemeh Alimardani

Abstract:

An accurate diagnosis of psychiatric diseases is a challenging issue, in particular when distinct symptoms for different diseases are overlapped, such as delusions appeared in bipolar mood disorder (BMD) and schizophrenia (SCH). In the present study, we propose a useful way to discriminate BMD and SCH using electroencephalography (EEG). A total of thirty BMD and SCH patients (15 vs. 15) took part in our experiment. EEG signals were measured with nineteen electrodes attached on the scalp using the international 10-20 system, while they were exposed to a visual stimulus flickering at 16 Hz for 95 s. The flickering visual stimulus induces a certain brain signal, known as steady-state visual evoked potential (SSVEP), which is differently observed in patients with BMD and SCH, respectively, in terms of SSVEP amplitude because they process the same visual information in own unique way. For classifying BDM and SCH patients, machine learning technique was employed in which leave-one-out-cross validation was performed. The SSVEPs induced at the fundamental (16 Hz) and second harmonic (32 Hz) stimulation frequencies were extracted using fast Fourier transformation (FFT), and they were used as features. The most discriminative feature was selected using the Fisher score, and support vector machine (SVM) was used as a classifier. From the analysis, we could obtain a classification accuracy of 83.33 %, showing the feasibility of discriminating patients with BMD and SCH using EEG. We expect that our approach can be utilized for psychiatrists to more accurately diagnose the psychiatric disorders, BMD and SCH.

Keywords: bipolar mood disorder, electroencephalography, schizophrenia, machine learning

Procedia PDF Downloads 427
3861 Using Greywolf Optimized Machine Learning Algorithms to Improve Accuracy for Predicting Hospital Readmission for Diabetes

Authors: Vincent Liu

Abstract:

Machine learning algorithms (ML) can achieve high accuracy in predicting outcomes compared to classical models. Metaheuristic, nature-inspired algorithms can enhance traditional ML algorithms by optimizing them such as by performing feature selection. We compare ten ML algorithms to predict 30-day hospital readmission rates for diabetes patients in the US using a dataset from UCI Machine Learning Repository with feature selection performed by Greywolf nature-inspired algorithm. The baseline accuracy for the initial random forest model was 65%. After performing feature engineering, SMOTE for class balancing, and Greywolf optimization, the machine learning algorithms showed better metrics, including F1 scores, accuracy, and confusion matrix with improvements ranging in 10%-30%, and a best model of XGBoost with an accuracy of 95%. Applying machine learning this way can improve patient outcomes as unnecessary rehospitalizations can be prevented by focusing on patients that are at a higher risk of readmission.

Keywords: diabetes, machine learning, 30-day readmission, metaheuristic

Procedia PDF Downloads 64
3860 The Impact of Major Accounting Events on Managerial Ability and the Accuracy of Environmental Capital Expenditure Projections of the Environmentally Sensitive Industries

Authors: Jason Chen, Jennifer Chen, Shiyu Li

Abstract:

We examine whether managerial ability (MA), the passing of Sarbanes-Oxley in 2002 (SOX), and corporate operational complexity affect the accuracy of environmental capital expenditure projections of the environmentally sensitive industries (ESI). Prior studies found that firms in the ESI manipulated their projected environmental capital expenditures as a tool to achieve corporate legitimation and suggested that human factors must be examined to determine whether they are part of the determinants. We use MA to proxy for the latent human factors to examine whether MA affects the accuracy of financial disclosures in the ESI. To expand Chen and Chen (2020), we further investigate whether (1) SOX and (2) firms with complex operations and financial reporting in conjunction with MA affect firms’ projection accuracy. We find, overall, that MA is positively correlated with firm’s projection accuracy in the annual 10-Ks. Furthermore, results suggest that SOX has a positive, yet temporary, effect on MA, and that leads to better accuracy. Finally, MA matters for firms with more complex operations and financial reporting to make less projection errors than their less-complex counterparts. These results suggest that MA is a determinant that affects the accuracy of environmental capital expenditure projections for the firms in the ESI.

Keywords: managerial ability, environmentally sensitive industries, sox, corporate operational complexity

Procedia PDF Downloads 149
3859 Phenotype Prediction of DNA Sequence Data: A Machine and Statistical Learning Approach

Authors: Mpho Mokoatle, Darlington Mapiye, James Mashiyane, Stephanie Muller, Gciniwe Dlamini

Abstract:

Great advances in high-throughput sequencing technologies have resulted in availability of huge amounts of sequencing data in public and private repositories, enabling a holistic understanding of complex biological phenomena. Sequence data are used for a wide range of applications such as gene annotations, expression studies, personalized treatment and precision medicine. However, this rapid growth in sequence data poses a great challenge which calls for novel data processing and analytic methods, as well as huge computing resources. In this work, a machine and statistical learning approach for DNA sequence classification based on $k$-mer representation of sequence data is proposed. The approach is tested using whole genome sequences of Mycobacterium tuberculosis (MTB) isolates to (i) reduce the size of genomic sequence data, (ii) identify an optimum size of k-mers and utilize it to build classification models, (iii) predict the phenotype from whole genome sequence data of a given bacterial isolate, and (iv) demonstrate computing challenges associated with the analysis of whole genome sequence data in producing interpretable and explainable insights. The classification models were trained on 104 whole genome sequences of MTB isoloates. Cluster analysis showed that k-mers maybe used to discriminate phenotypes and the discrimination becomes more concise as the size of k-mers increase. The best performing classification model had a k-mer size of 10 (longest k-mer) an accuracy, recall, precision, specificity, and Matthews Correlation coeffient of 72.0%, 80.5%, 80.5%, 63.6%, and 0.4 respectively. This study provides a comprehensive approach for resampling whole genome sequencing data, objectively selecting a k-mer size, and performing classification for phenotype prediction. The analysis also highlights the importance of increasing the k-mer size to produce more biological explainable results, which brings to the fore the interplay that exists amongst accuracy, computing resources and explainability of classification results. However, the analysis provides a new way to elucidate genetic information from genomic data, and identify phenotype relationships which are important especially in explaining complex biological mechanisms.

Keywords: AWD-LSTM, bootstrapping, k-mers, next generation sequencing

Procedia PDF Downloads 171