Search results for: bivariate spatial association statistic
4970 Investigating Spatial Disparities in Health Status and Access to Health-Related Interventions among Tribals in Jharkhand
Authors: Parul Suraia, Harshit Sosan Lakra
Abstract:
Indigenous communities represent some of the most marginalized populations globally, with India labeled as tribals, experiencing particularly pronounced marginalization and a concerning decline in their numbers. These communities often inhabit geographically challenging regions characterized by low population densities, posing significant challenges to providing essential infrastructure services. Jharkhand, a Schedule 5 state, is infamous for its low-level health status due to disparities in access to health care. The primary objective of this study is to investigate the spatial inequalities in healthcare accessibility among tribal populations within the state and pinpoint critical areas requiring immediate attention. Health indicators were selected based on the tribal perspective and association of Sustainable Goal 3 (Good Health and Wellbeing) with other SDGs. Focused group discussions in which tribal people and tribal experts were done in order to finalize the indicators. Employing Principal Component Analysis, two essential indices were constructed: the Tribal Health Index (THI) and the Tribal Health Intervention Index (THII). Index values were calculated based on the district-wise secondary data for Jharkhand. The bivariate spatial association technique, Moran’s I was used to assess the spatial pattern of the variables to determine if there is any clustering (positive spatial autocorrelation) or dispersion (negative spatial autocorrelation) of values across Jharkhand. The results helped in facilitating targeting policy interventions in deprived areas of Jharkhand.Keywords: tribal health, health spatial disparities, health status, Jharkhand
Procedia PDF Downloads 964969 Bivariate Time-to-Event Analysis with Copula-Based Cox Regression
Authors: Duhania O. Mahara, Santi W. Purnami, Aulia N. Fitria, Merissa N. Z. Wirontono, Revina Musfiroh, Shofi Andari, Sagiran Sagiran, Estiana Khoirunnisa, Wahyudi Widada
Abstract:
For assessing interventions in numerous disease areas, the use of multiple time-to-event outcomes is common. An individual might experience two different events called bivariate time-to-event data, the events may be correlated because it come from the same subject and also influenced by individual characteristics. The bivariate time-to-event case can be applied by copula-based bivariate Cox survival model, using the Clayton and Frank copulas to analyze the dependence structure of each event and also the covariates effect. By applying this method to modeling the recurrent event infection of hemodialysis insertion on chronic kidney disease (CKD) patients, from the AIC and BIC values we find that the Clayton copula model was the best model with Kendall’s Tau is (τ=0,02).Keywords: bivariate cox, bivariate event, copula function, survival copula
Procedia PDF Downloads 824968 A Bivariate Inverse Generalized Exponential Distribution and Its Applications in Dependent Competing Risks Model
Authors: Fatemah A. Alqallaf, Debasis Kundu
Abstract:
The aim of this paper is to introduce a bivariate inverse generalized exponential distribution which has a singular component. The proposed bivariate distribution can be used when the marginals have heavy-tailed distributions, and they have non-monotone hazard functions. Due to the presence of the singular component, it can be used quite effectively when there are ties in the data. Since it has four parameters, it is a very flexible bivariate distribution, and it can be used quite effectively for analyzing various bivariate data sets. Several dependency properties and dependency measures have been obtained. The maximum likelihood estimators cannot be obtained in closed form, and it involves solving a four-dimensional optimization problem. To avoid that, we have proposed to use an EM algorithm, and it involves solving only one non-linear equation at each `E'-step. Hence, the implementation of the proposed EM algorithm is very straight forward in practice. Extensive simulation experiments and the analysis of one data set have been performed. We have observed that the proposed bivariate inverse generalized exponential distribution can be used for modeling dependent competing risks data. One data set has been analyzed to show the effectiveness of the proposed model.Keywords: Block and Basu bivariate distributions, competing risks, EM algorithm, Marshall-Olkin bivariate exponential distribution, maximum likelihood estimators
Procedia PDF Downloads 1434967 Detecting Local Clusters of Childhood Malnutrition in the Island Province of Marinduque, Philippines Using Spatial Scan Statistic
Authors: Novee Lor C. Leyso, Maylin C. Palatino
Abstract:
Under-five malnutrition continues to persist in the Philippines, particularly in the island Province of Marinduque, with prevalence of some forms of malnutrition even worsening in recent years. Local spatial cluster detection provides a spatial perspective in understanding this phenomenon as key in analyzing patterns of geographic variation, identification of community-appropriate programs and interventions, and focused targeting on high-risk areas. Using data from a province-wide household-based census conducted in 2014–2016, this study aimed to determine and evaluate spatial clusters of under-five malnutrition, across the province and within each municipality at the individual level using household location. Malnutrition was defined as weight-for-age z-score that fall outside the 2 standard deviations from the median of the WHO reference population. The Kulldorff’s elliptical spatial scan statistic in binomial model was used to locate clusters with high-risk of malnutrition, while adjusting for age and membership to government conditional cash transfer program as proxy for socio-economic status. One large significant cluster of under-five malnutrition was found southwest of the province, in which living in these areas at least doubles the risk of malnutrition. Additionally, at least one significant cluster were identified within each municipality—mostly located along the coastal areas. All these indicate apparent geographical variations across and within municipalities in the province. There were also similarities and disparities in the patterns of risk of malnutrition in each cluster across municipalities, and even within municipality, suggesting underlying causes at work that warrants further investigation. Therefore, community-appropriate programs and interventions should be identified and should be focused on high-risk areas to maximize limited government resources. Further studies are also recommended to determine factors affecting variations in childhood malnutrition considering the evidence of spatial clustering found in this study.Keywords: Binomial model, Kulldorff’s elliptical spatial scan statistic, Philippines, under-five malnutrition
Procedia PDF Downloads 1404966 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado
Authors: Ana Paula Camelo, Keila Sanches
Abstract:
The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.Keywords: deforestation, geographically weighted regression, land use, spatial analysis
Procedia PDF Downloads 3634965 Water Resources Green Efficiency in China: Evaluation, Spatial Association Network Structure Analysis, and Influencing Factors
Authors: Tingyu Zhang
Abstract:
This paper utilizes the Super-SBM model to assess water resources green efficiency (WRGE) among provinces in China and investigate its spatial and temporal features, based on the characteristic framework of “economy-environment-society.” The social network analysis is employed to examine the network pattern and spatial interaction of WRGE. Further, the quadratic assignment procedure method is utilized for examining the influencing factors of the spatial association of WRGE regarding “relationship.” The study reveals that: (1) the spatial distribution of WRGE demonstrates a distribution pattern of Eastern>Western>Central; (2) a remarkable spatial association exists among provinces; however, no strict hierarchical structure is observed. The internal structure of the WRGE network is characterized by the feature of "Eastern strong and Western weak". The block model analysis discovers that the members of the “net spillover” and “two-way spillover” blocks are mostly in the eastern and central provinces; “broker” block, which plays an intermediary role, is mostly in the central provinces; and members of the “net beneficiary” block are mostly in the western region. (3) Differences in economic development, degree of urbanization, water use environment, and water management have significant impacts on the spatial connection of WRGE. This study is dedicated to the realization of regional linkages and synergistic enhancement of WRGE, which provides a meaningful basis for building a harmonious society of human and water coexistence.Keywords: water resources green efficiency, super-SBM model, social network analysis, quadratic assignment procedure
Procedia PDF Downloads 614964 Bivariate Generalization of q-α-Bernstein Polynomials
Authors: Tarul Garg, P. N. Agrawal
Abstract:
We propose to define the q-analogue of the α-Bernstein Kantorovich operators and then introduce the q-bivariate generalization of these operators to study the approximation of functions of two variables. We obtain the rate of convergence of these bivariate operators by means of the total modulus of continuity, partial modulus of continuity and the Peetre’s K-functional for continuous functions. Further, in order to study the approximation of functions of two variables in a space bigger than the space of continuous functions, i.e. Bögel space; the GBS (Generalized Boolean Sum) of the q-bivariate operators is considered and degree of approximation is discussed for the Bögel continuous and Bögel differentiable functions with the aid of the Lipschitz class and the mixed modulus of smoothness.Keywords: Bögel continuous, Bögel differentiable, generalized Boolean sum, K-functional, mixed modulus of smoothness
Procedia PDF Downloads 3794963 Exploring Coexisting Opportunity of Earthquake Risk and Urban Growth
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience, and further increase vulnerability. Due to earthquakes do not kill people, buildings do. When buildings located nearby earthquake-prone areas and constructed upon poorer soil areas might result in earthquake-induced ground damage. In addition, many existing buildings built before any improved seismic provisions began to be required in building codes and inappropriate land usage with highly dense population might result in much serious earthquake disaster. Indeed, not only do earthquake disaster impact seriously on urban environment, but urban growth might increase the vulnerability. Since 1980s, ‘Cutting down risks and vulnerability’ has been brought up in both urban planning and architecture and such concept has way beyond retrofitting of seismic damages, seismic resistance, and better anti-seismic structures, and become the key action on disaster mitigation. Land use planning and zoning are two critical non-structural measures on controlling physical development while it is difficult for zoning boards and governing bodies restrict development of questionable lands to uses compatible with the hazard without credible earthquake loss projection. Therefore, identifying potential earthquake exposure, vulnerability people and places, and urban development areas might become strongly supported information for decision makers. Taiwan locates on the Pacific Ring of Fire where a seismically active zone is. Some of the active faults have been found close by densely populated and highly developed built environment in the cities. Therefore, this study attempts to base on the perspective of carrying capacity and draft out micro-zonation according to both vulnerability index and urban growth index while considering spatial variances of multi factors via geographical weighted principle components (GWPCA). The purpose in this study is to construct supported information for decision makers on revising existing zoning in high-risk areas for a more compatible use and the public on managing risks.Keywords: earthquake disaster, vulnerability, urban growth, carrying capacity, /geographical weighted principle components (GWPCA), bivariate spatial association statistic
Procedia PDF Downloads 2564962 Analysis of Factors Affecting the Number of Infant and Maternal Mortality in East Java with Geographically Weighted Bivariate Generalized Poisson Regression Method
Authors: Luh Eka Suryani, Purhadi
Abstract:
Poisson regression is a non-linear regression model with response variable in the form of count data that follows Poisson distribution. Modeling for a pair of count data that show high correlation can be analyzed by Poisson Bivariate Regression. Data, the number of infant mortality and maternal mortality, are count data that can be analyzed by Poisson Bivariate Regression. The Poisson regression assumption is an equidispersion where the mean and variance values are equal. However, the actual count data has a variance value which can be greater or less than the mean value (overdispersion and underdispersion). Violations of this assumption can be overcome by applying Generalized Poisson Regression. Characteristics of each regency can affect the number of cases occurred. This issue can be overcome by spatial analysis called geographically weighted regression. This study analyzes the number of infant mortality and maternal mortality based on conditions in East Java in 2016 using Geographically Weighted Bivariate Generalized Poisson Regression (GWBGPR) method. Modeling is done with adaptive bisquare Kernel weighting which produces 3 regency groups based on infant mortality rate and 5 regency groups based on maternal mortality rate. Variables that significantly influence the number of infant and maternal mortality are the percentages of pregnant women visit health workers at least 4 times during pregnancy, pregnant women get Fe3 tablets, obstetric complication handled, clean household and healthy behavior, and married women with the first marriage age under 18 years.Keywords: adaptive bisquare kernel, GWBGPR, infant mortality, maternal mortality, overdispersion
Procedia PDF Downloads 1604961 Spatial Interpolation Technique for the Optimisation of Geometric Programming Problems
Authors: Debjani Chakraborty, Abhijit Chatterjee, Aishwaryaprajna
Abstract:
Posynomials, a special type of polynomials, having singularities, pose difficulties while solving geometric programming problems. In this paper, a methodology has been proposed and used to obtain extreme values for geometric programming problems by nth degree polynomial interpolation technique. Here the main idea to optimise the posynomial is to fit a best polynomial which has continuous gradient values throughout the range of the function. The approximating polynomial is smoothened to remove the discontinuities present in the feasible region and the objective function. This spatial interpolation method is capable to optimise univariate and multivariate geometric programming problems. An example is solved to explain the robustness of the methodology by considering a bivariate nonlinear geometric programming problem. This method is also applicable for signomial programming problem.Keywords: geometric programming problem, multivariate optimisation technique, posynomial, spatial interpolation
Procedia PDF Downloads 3714960 Using Emerging Hot Spot Analysis to Analyze Overall Effectiveness of Policing Policy and Strategy in Chicago
Authors: Tyler Gill, Sophia Daniels
Abstract:
The paper examines how accessing the spatial-temporal constrains of data will help inform policymakers and law enforcement officials. The authors utilize Chicago crime data from 2006-2016 to demonstrate how the Emerging Hot Spot Tool is an ideal hot spot clustering approach to analyze crime data. Traditional approaches include density maps or creating a spatial weights matrix to include the spatial-temporal constrains. This new approach utilizes a space-time implementation of the Getis-Ord Gi* statistic to visualize the data more quickly to make better decisions. The research will help complement socio-cultural research to find key patterns to help frame future policies and evaluate the implementation of prior strategies. Through this analysis, homicide trends and patterns are found more effectively and recommendations for use by non-traditional users of GIS are offered for real life implementation.Keywords: crime mapping, emerging hot spot analysis, Getis-Ord Gi*, spatial-temporal analysis
Procedia PDF Downloads 2444959 An Information Matrix Goodness-of-Fit Test of the Conditional Logistic Model for Matched Case-Control Studies
Authors: Li-Ching Chen
Abstract:
The case-control design has been widely applied in clinical and epidemiological studies to investigate the association between risk factors and a given disease. The retrospective design can be easily implemented and is more economical over prospective studies. To adjust effects for confounding factors, methods such as stratification at the design stage and may be adopted. When some major confounding factors are difficult to be quantified, a matching design provides an opportunity for researchers to control the confounding effects. The matching effects can be parameterized by the intercepts of logistic models and the conditional logistic regression analysis is then adopted. This study demonstrates an information-matrix-based goodness-of-fit statistic to test the validity of the logistic regression model for matched case-control data. The asymptotic null distribution of this proposed test statistic is inferred. It needs neither to employ a simulation to evaluate its critical values nor to partition covariate space. The asymptotic power of this test statistic is also derived. The performance of the proposed method is assessed through simulation studies. An example of the real data set is applied to illustrate the implementation of the proposed method as well.Keywords: conditional logistic model, goodness-of-fit, information matrix, matched case-control studies
Procedia PDF Downloads 2924958 A Study on Spatial Morphological Cognitive Features of Lidukou Village Based on Space Syntax
Authors: Man Guo, Wenyong Tan
Abstract:
By combining spatial syntax with data obtained from field visits, this paper interprets the internal relationship between spatial morphology and spatial cognition in Lidukou Village. By comparing the obtained data, it is recognized that the spatial integration degree of Lidukou Village is positively correlated with the spatial cognitive intention of local villagers. The part with a higher spatial cognitive degree within the village is distributed along the axis mainly composed of Shuxiang Road. And the accessibility of historical relics is weak, and there is no systematic relationship between them. Aiming at the morphological problem of Lidukou Village, optimization strategies have been proposed from multiple perspectives, such as optimizing spatial mechanisms and shaping spatial nodes.Keywords: traditional villages, spatial syntax, spatial integration degree, morphological problem
Procedia PDF Downloads 524957 Remittances and Water Access: A Cross-Sectional Study of Sub Saharan Africa Countries
Authors: Narges Ebadi, Davod Ahmadi, Hiliary Monteith, Hugo Melgar-Quinonez
Abstract:
Migration cannot necessarily relieve pressure on water resources in origin communities, and male out-migration can increase the water management burden of women. However, inflows of financial remittances seem to offer possibilities of investing in improving drinking-water access. Therefore, remittances may be an important pathway for migrants to support water security. This paper explores the association between water access and the receipt of remittances in households in sub-Saharan Africa. Data from round 6 of the 'Afrobarometer' surveys in 2016 were used (n= 49,137). Descriptive, bivariate and multivariate statistical analyses were carried out in this study. Regardless of country, findings from descriptive analyses showed that approximately 80% of the respondents never received remittance, and 52% had enough clean water. Only one-fifth of the respondents had piped water supply inside the house (19.9%), and approximately 25% had access to a toilet inside the house. Bivariate analyses revealed that even though receiving remittances was significantly associated with water supply, the strength of association was very weak. However, other factors such as the area of residence (rural vs. urban), cash income frequencies, electricity access, and asset ownership were strongly associated with water access. Results from unadjusted multinomial logistic regression revealed that the probability of having no access to piped water increased among remittance recipients who received financial support at least once a month (OR=1.324) (p < 0.001). In contrast, those not receiving remittances were more likely to regularly have a water access concern (OR=1.294) (p < 0.001), and not have access to a latrine (OR=1.665) (p < 0.001). In conclusion, receiving remittances is significantly related to water access as the strength of odds ratios for socio-demographic factors was stronger.Keywords: remittances, water access, SSA, migration
Procedia PDF Downloads 1794956 Transformations between Bivariate Polynomial Bases
Authors: Dimitris Varsamis, Nicholas Karampetakis
Abstract:
It is well known that any interpolating polynomial P(x,y) on the vector space Pn,m of two-variable polynomials with degree less than n in terms of x and less than m in terms of y has various representations that depends on the basis of Pn,m that we select i.e. monomial, Newton and Lagrange basis etc. The aim of this paper is twofold: a) to present transformations between the coordinates of the polynomial P(x,y) in the aforementioned basis and b) to present transformations between these bases.Keywords: bivariate interpolation polynomial, polynomial basis, transformations, interpolating polynomial
Procedia PDF Downloads 4054955 Polynomially Adjusted Bivariate Density Estimates Based on the Saddlepoint Approximation
Authors: S. B. Provost, Susan Sheng
Abstract:
An alternative bivariate density estimation methodology is introduced in this presentation. The proposed approach involves estimating the density function associated with the marginal distribution of each of the two variables by means of the saddlepoint approximation technique and applying a bivariate polynomial adjustment to the product of these density estimates. Since the saddlepoint approximation is utilized in the context of density estimation, such estimates are determined from empirical cumulant-generating functions. In the univariate case, the saddlepoint density estimate is itself adjusted by a polynomial. Given a set of observations, the coefficients of the polynomial adjustments are obtained from the sample moments. Several illustrative applications of the proposed methodology shall be presented. Since this approach relies essentially on a determinate number of sample moments, it is particularly well suited for modeling massive data sets.Keywords: density estimation, empirical cumulant-generating function, moments, saddlepoint approximation
Procedia PDF Downloads 2804954 A Review of Spatial Analysis as a Geographic Information Management Tool
Authors: Chidiebere C. Agoha, Armstong C. Awuzie, Chukwuebuka N. Onwubuariri, Joy O. Njoku
Abstract:
Spatial analysis is a field of study that utilizes geographic or spatial information to understand and analyze patterns, relationships, and trends in data. It is characterized by the use of geographic or spatial information, which allows for the analysis of data in the context of its location and surroundings. It is different from non-spatial or aspatial techniques, which do not consider the geographic context and may not provide as complete of an understanding of the data. Spatial analysis is applied in a variety of fields, which includes urban planning, environmental science, geosciences, epidemiology, marketing, to gain insights and make decisions about complex spatial problems. This review paper explores definitions of spatial analysis from various sources, including examples of its application and different analysis techniques such as Buffer analysis, interpolation, and Kernel density analysis (multi-distance spatial cluster analysis). It also contrasts spatial analysis with non-spatial analysis.Keywords: aspatial technique, buffer analysis, epidemiology, interpolation
Procedia PDF Downloads 3194953 A Spatial Autocorrelation Analysis of Women’s Mental Health and Walkability Index in Mashhad City, Iran, and Recommendations to Improve It
Authors: Mohammad Rahim Rahnama, Lia Shaddel
Abstract:
Today, along with the development of urbanism, its negative consequences on the health of citizens are emerging. Mental disorders are common in the big cities, while mental health enables individuals to become active citizens. Meanwhile, women have a larger share of mental problems. Depression and anxiety disorders have a higher prevalence rate among women and these disorders affect the health of future generations, too. Therefore, improving women’s mental health through the potentials offered by urban spaces are of paramount importance. The present study aims to first, evaluate the spatial autocorrelation of women’s mental health and walkable spaces and then present solutions, based on the findings, to improve the walkability index. To determine the spatial distribution of women’s mental health in Mashhad, Moran's I was used and 1000 questionnaire were handed out in various sub-districts of Mashhad. Moran's I was calculated to be 0.18 which indicates a cluster distribution pattern. The walkability index was calculated using the four variables pertaining to the length of walkable routes, mixed land use, retail floor area ratio, and household density. To determine spatial autocorrelation of mental health and the walkability index, bivariate Moran’s I was calculated. Moran's I was determined to be 0.37 which shows a direct spatial relationship between variables; 4 clusters in 9 sub-districts of Mashhad were created. In High-Low cluster, there was a negative spatial relationship and hence, to identify factors affecting walkability in urban spaces semi-structures interviews were conducted with 21 women in this cluster. The findings revealed that security is the major factor influencing women’s walking behavior in this cluster. In accordance with the findings, some suggestions are offered to improve the presence of women in this sub-district.Keywords: Mashhad, spatial autocorrelation, women’s mental health, walkability index
Procedia PDF Downloads 1344952 Prevalence and Risk Factors of Diabetes and Its Association with Com-Morbidities among South Indian Women
Authors: Balasaheb Bansode
Abstract:
Diabetes is a very important component in non-communicable diseases. Diabetes ailment is a route of the multi-morbidities ailments. The South Indian states are almost completing the demographic transition in India. The study objectives present the prevalence of diabetes and its association with co-morbidities among the south Indian women. The study based on National Family Health Survey fourth round (NFHS) 4 conducted in 2015-16. The univariate, bivariate and multivariate analyses techniques have been used to find the association of risk factors and comorbidities with diabetics. The result reveals that the prevalence of diabetes is high among South Indian women. The study shows the women with diabetics have more chances to diagnose with hypertension and anemia comorbidities. The factors responsible for co-morbidities are changing the demographic situation, socioeconomic status, overweight and addict with substance use in South India. The awareness about diabetes prevention and management should be increased through health education, disease management programmes, trained peers and community health workers and community-based programmes.Keywords: diabetes, risk factors, comorbidities, women
Procedia PDF Downloads 1854951 Modeling of System Availability and Bayesian Analysis of Bivariate Distribution
Authors: Muhammad Farooq, Ahtasham Gul
Abstract:
To meet the desired standard, it is important to monitor and analyze different engineering processes to get desired output. The bivariate distributions got a lot of attention in recent years to describe the randomness of natural as well as artificial mechanisms. In this article, a bivariate model is constructed using two independent models developed by the nesting approach to study the effect of each component on reliability for better understanding. Further, the Bayes analysis of system availability is studied by considering prior parametric variations in the failure time and repair time distributions. Basic statistical characteristics of marginal distribution, like mean median and quantile function, are discussed. We use inverse Gamma prior to study its frequentist properties by conducting Monte Carlo Markov Chain (MCMC) sampling scheme.Keywords: reliability, system availability Weibull, inverse Lomax, Monte Carlo Markov Chain, Bayesian
Procedia PDF Downloads 724950 Enhanced Analysis of Spatial Morphological Cognitive Traits in Lidukou Village through the Application of Space Syntax
Authors: Man Guo
Abstract:
This paper delves into the intricate interplay between spatial morphology and spatial cognition in Lidukou Village, utilizing a combined approach of spatial syntax and field data. Through a comparative analysis of the gathered data, it emerges that the spatial integration level of Lidukou Village exhibits a direct positive correlation with the spatial cognitive preferences of its inhabitants. Specifically, the areas within the village that exhibit a higher degree of spatial cognition are predominantly distributed along the axis primarily defined by Shuxiang Road. However, the accessibility to historical relics remains limited, lacking a coherent systemic relationship. To address the morphological challenges faced by Lidukou Village, this study proposes optimization strategies that encompass diverse perspectives, including the refinement of spatial mechanisms and the shaping of strategic spatial nodes.Keywords: traditional villages, spatial syntax, spatial integration degree, morphological problem
Procedia PDF Downloads 434949 Spatial Econometric Approaches for Count Data: An Overview and New Directions
Authors: Paula Simões, Isabel Natário
Abstract:
This paper reviews a number of theoretical aspects for implementing an explicit spatial perspective in econometrics for modelling non-continuous data, in general, and count data, in particular. It provides an overview of the several spatial econometric approaches that are available to model data that are collected with reference to location in space, from the classical spatial econometrics approaches to the recent developments on spatial econometrics to model count data, in a Bayesian hierarchical setting. Considerable attention is paid to the inferential framework, necessary for structural consistent spatial econometric count models, incorporating spatial lag autocorrelation, to the corresponding estimation and testing procedures for different assumptions, to the constrains and implications embedded in the various specifications in the literature. This review combines insights from the classical spatial econometrics literature as well as from hierarchical modeling and analysis of spatial data, in order to look for new possible directions on the processing of count data, in a spatial hierarchical Bayesian econometric context.Keywords: spatial data analysis, spatial econometrics, Bayesian hierarchical models, count data
Procedia PDF Downloads 5944948 Geo-spatial Analysis: The Impact of Drought and Productivity to the Poverty in East Java, Indonesia
Authors: Yessi Rahmawati, Andiga Kusuma Nur Ichsan, Fitria Nur Anggraeni
Abstract:
Climate change is one of the focus studies that many researchers focus on in the present world, either in the emerging countries or developed countries which is one of the main pillars on Sustainable Development Goals (SDGs). There is on-going discussion that climate change can affect natural disaster, namely drought, storm, flood, and many others; and also the impact on human life. East Java is the best performances and has economic potential that should be utilized. Despite the economic performance and high agriculture productivity, East Java has the highest number of people under the poverty line. The present study is to measuring the contribution of drought and productivity of agriculture to the poverty in East Java, Indonesia, using spatial econometrics analysis. The authors collect data from 2008 – 2015 from Indonesia’s Ministry of Agriculture, Natural Disaster Management Agency (BNPB), and Official Statistic (BPS). First, the result shows the existence of spatial autocorrelation between drought and poverty. Second, the present research confirms that there is strong relationship between drought and poverty. the majority of farmer in East Java are still relies on the rainfall and traditional irrigation system. When the drought strikes, mostly the farmer will lose their income; make them become more vulnerable household, and trap them into poverty line. The present research will give empirical studies regarding drought and poverty in the academics world.Keywords: SDGs, drought, poverty, Indonesia, spatial econometrics, spatial autocorrelation
Procedia PDF Downloads 1544947 The Temporal Implications of Spatial Prospects
Authors: Zhuo Job Chen, Kevin Nute
Abstract:
The work reported examines potential linkages between spatial and temporal prospects, and more specifically, between variations in the spatial depth and foreground obstruction of window views, and observers’ sense of connection to the future. It was found that external views from indoor spaces were strongly associated with a sense of the future, that partially obstructing such a view with foreground objects significantly reduced its association with the future, and replacing it with a pictorial representation of the same scene (with no real actual depth) removed most of its temporal association. A lesser change in the spatial depth of the view, however, had no apparent effect on association with the future. While the role of spatial depth has still to be confirmed, the results suggest that spatial prospects directly affect temporal ones. The word “prospect” typifies the overlapping of the spatial and temporal in most human languages. It originated in classical times as a purely spatial term, but in the 16th century took on the additional temporal implication of an imagined view ahead, of the future. The psychological notion of prospection, then, has its distant origins in a spatial analogue. While it is not yet proven that space directly structures our processing of time at a physiological level, it is generally agreed that it commonly does so conceptually. The mental representation of possible futures has been a central part of human survival as a species (Boyer, 2008; Suddendorf & Corballis, 2007). A sense of the future seems critical not only practically, but also psychologically. It has been suggested, for example, that lack of a positive image of the future may be an important contributing cause of depression (Beck, 1974; Seligman, 2016). Most people in the developed world now spend more than 90% of their lives indoors. So any direct link between external views and temporal prospects could have important implications for both human well-being and building design. We found that the ability to see what lies in front of us spatially was strongly associated with a sense of what lies ahead temporally. Partial obstruction of a view was found to significantly reduce that sense connection to the future. Replacing a view with a flat pictorial representation of the same scene removed almost all of its connection with the future, but changing the spatial depth of a real view appeared to have no significant effect. While foreground obstructions were found to reduce subjects’ sense of connection to the future, they increased their sense of refuge and security. Consistent with Prospect and Refuge theory, an ideal environment, then, would seem to be one in which we can “see without being seen” (Lorenz, 1952), specifically one that conceals us frontally from others, without restricting our own view. It is suggested that these optimal conditions might be translated architecturally as screens, the apertures of which are large enough for a building occupant to see through unobstructed from close by, but small enough to conceal them from the view of someone looking from a distance outside.Keywords: foreground obstructions, prospection, spatial depth, window views
Procedia PDF Downloads 1244946 Exploring the Physical Environment and Building Features in Earthquake Disaster Areas
Authors: Chang Hsueh-Sheng, Chen Tzu-Ling
Abstract:
Earthquake is an unpredictable natural disaster and intensive earthquakes have caused serious impacts on social-economic system, environmental and social resilience. Conventional ways to mitigate earthquake disaster are to enhance building codes and advance structural engineering measures. However, earthquake-induced ground damage such as liquefaction, land subsidence, landslide happen on places nearby earthquake prone or poor soil condition areas. Therefore, this study uses spatial statistical analysis to explore the spatial pattern of damaged buildings. Afterwards, principle components analysis (PCA) is applied to categorize the similar features in different kinds of clustered patterns. The results show that serious landslide prone area, close to fault, vegetated ground surface and mudslide prone area are common in those highly damaged buildings. In addition, the oldest building might not be directly referred to the most vulnerable one. In fact, it seems that buildings built between 1974 and 1989 become more fragile during the earthquake. The incorporation of both spatial statistical analyses and PCA can provide more accurate information to subsidize retrofit programs to enhance earthquake resistance in particular areas.Keywords: earthquake disaster, spatial statistic analysis, principle components analysis (pca), clustered patterns
Procedia PDF Downloads 3134945 Estimation of Missing Values in Aggregate Level Spatial Data
Authors: Amitha Puranik, V. S. Binu, Seena Biju
Abstract:
Missing data is a common problem in spatial analysis especially at the aggregate level. Missing can either occur in covariate or in response variable or in both in a given location. Many missing data techniques are available to estimate the missing data values but not all of these methods can be applied on spatial data since the data are autocorrelated. Hence there is a need to develop a method that estimates the missing values in both response variable and covariates in spatial data by taking account of the spatial autocorrelation. The present study aims to develop a model to estimate the missing data points at the aggregate level in spatial data by accounting for (a) Spatial autocorrelation of the response variable (b) Spatial autocorrelation of covariates and (c) Correlation between covariates and the response variable. Estimating the missing values of spatial data requires a model that explicitly account for the spatial autocorrelation. The proposed model not only accounts for spatial autocorrelation but also utilizes the correlation that exists between covariates, within covariates and between a response variable and covariates. The precise estimation of the missing data points in spatial data will result in an increased precision of the estimated effects of independent variables on the response variable in spatial regression analysis.Keywords: spatial regression, missing data estimation, spatial autocorrelation, simulation analysis
Procedia PDF Downloads 3824944 Determining the Causality Variables in Female Genital Mutilation: A Factor Screening Approach
Authors: Ekele Alih, Enejo Jalija
Abstract:
Female Genital Mutilation (FGM) is made up of three types namely: Clitoridectomy, Excision and Infibulation. In this study, we examine the factors responsible for FGM in order to identify the causality variables in a logistic regression approach. From the result of the survey conducted by the Public Health Division, Nigeria Institute of Medical Research, Yaba, Lagos State, the tau statistic, τ was used to screen 9 factors that causes FGM in order to select few of the predictors before multiple regression equation is obtained. The need for this may be that the sample size may not be able to sustain having a regression with all the predictors or to avoid multi-collinearity. A total of 300 respondents, comprising 150 adult males and 150 adult females were selected for the household survey based on the multi-stage sampling procedure. The tau statistic,Keywords: female genital mutilation, logistic regression, tau statistic, African society
Procedia PDF Downloads 2614943 A Meta-Analysis of Handwriting and Visual-Motor Integration (VMI): The Moderating Effect of Handwriting Dimensions
Authors: Hong Lu, Xin Chen, Zhengcheng Fan
Abstract:
Prior research has claimed a close association between handwriting and mathematics attainment with the help of spatial cognition. However, the exact mechanism behind this relationship remains un-investigated. Focusing on visual-motor integration (VMI), one critical spatial skill, this meta-analysis aims to estimate the size of the handwriting- visual-motor integration relationship and examine the moderating effect of handwriting dimensions on the link. With a random effect model, a medium relation (r=.26, 95%CI [.22, .30]) between handwriting and VMI was summarized in 38 studies with 55 unique samples and 141 effect sizes. Findings suggested handwriting dimensions significantly moderated the handwriting- VMI relationship, with handwriting legibility showing a substantial correlation with VMI, but neither handwriting speed nor pressure. Identifying the essential relationship between handwriting legibility and VMI, this study adds to the literature about the key cognitive processing needs underlying handwriting, and spatial cognition thus highlights the cognitive mechanism regarding handwriting, spatial cognition, and mathematics performances.Keywords: handwriting, visual-motor integration, legibility, meta-analysis
Procedia PDF Downloads 1094942 Failure Inference and Optimization for Step Stress Model Based on Bivariate Wiener Model
Authors: Soudabeh Shemehsavar
Abstract:
In this paper, we consider the situation under a life test, in which the failure time of the test units are not related deterministically to an observable stochastic time varying covariate. In such a case, the joint distribution of failure time and a marker value would be useful for modeling the step stress life test. The problem of accelerating such an experiment is considered as the main aim of this paper. We present a step stress accelerated model based on a bivariate Wiener process with one component as the latent (unobservable) degradation process, which determines the failure times and the other as a marker process, the degradation values of which are recorded at times of failure. Parametric inference based on the proposed model is discussed and the optimization procedure for obtaining the optimal time for changing the stress level is presented. The optimization criterion is to minimize the approximate variance of the maximum likelihood estimator of a percentile of the products’ lifetime distribution.Keywords: bivariate normal, Fisher information matrix, inverse Gaussian distribution, Wiener process
Procedia PDF Downloads 3174941 The Influence of 3D Printing Course on Middle School Students' Spatial Thinking Ability
Authors: Wang Xingjuan, Qian Dongming
Abstract:
As a common thinking ability, spatial thinking ability plays an increasingly important role in the information age. The key to cultivating students' spatial thinking ability is to cultivate students' ability to process and transform graphics. The 3D printing course enables students to constantly touch the rotation and movement of objects during the modeling process and to understand spatial graphics from different views. To this end, this article combines the classic PSVT: R test to explore the impact of 3D printing courses on the spatial thinking ability of middle school students. The results of the study found that: (1) Through the study of the 3D printing course, the students' spatial ability test scores have been significantly improved, which indirectly reflects the improvement of the spatial thinking ability level. (2) The student's spatial thinking ability test results are influenced by the parent's occupation.Keywords: 3D printing, middle school students, spatial thinking ability, influence
Procedia PDF Downloads 190