Search results for: Byung Sik Kim
46 Optimization of Digestive Conditions of Opuntia ficus-indica var. Saboten using Food-Grade Enzymes
Authors: Byung Wook Yang, Sae Kyul Kim, Seung Il Ahn, Jae Hee Choi, Heejung Jung, Yejin Choi, Byung Yong Kim, Young Tae Hahm
Abstract:
Opuntia ficus-indica is a member of the Cactaceae family that is widely grown in all the semiarid countries throughout the world. Opuntia ficus-indica var. Saboten (OFS), commonly known as prickly pear cactus, is commercially cultivated as a dietary foodstuffs and medicinal stuffs in Jeju Island, Korea. Owing to high viscosity of OFS’ pad, its application to the commercial field has been limited. When the low viscosity of OFS’s pad is obtained, it is useful for the manufacture of healthy food in the related field. This study was performed to obtain the optimal digestion conditions of food-grade enzymes (Pectinex, Viscozyme and Celluclast) with the powder of OFS stem. And also, the contents of water-soluble dietary fiber (WSDF) of the dried powder prepared by the extraction of OFS stem were monitored and optimized using the response surface methodology (RSM), which included 20 experimental points with 3 replicates for two independent variables (fermentation temperature and time). A central composite design was used to monitor the effect of fermentation temperature (30-90 °C, X1) and fermentation time (1-10h, X2) on dependent variables, such as viscosity (Y1), water-soluble dietary fiber (Y2) and dietary fiber yield (Y3). Estimated maximum values at predicted optimum conditions were in agreement with experimental values. Optimum temperature and duration were 50°C and 12 hours, respectively. Viscosity value reached 3.4 poise. Yield of water-soluble dietary fiber is determined in progress.Keywords: Opuntia ficus-indica var. saboten, enzymatic fermentation, response surface methodology, water-soluble dietary fiber, viscosity
Procedia PDF Downloads 34645 Modeling and Shape Prediction for Elastic Kinematic Chains
Authors: Jiun Jeon, Byung-Ju Yi
Abstract:
This paper investigates modeling and shape prediction of elastic kinematic chains such as colonoscopy. 2D and 3D models of elastic kinematic chains are suggested and their behaviors are demonstrated through simulation. To corroborate the effectiveness of those models, experimental work is performed using a magnetic sensor system.Keywords: elastic kinematic chain, shape prediction, colonoscopy, modeling
Procedia PDF Downloads 60544 SCR-Based Advanced ESD Protection Device for Low Voltage Application
Authors: Bo Bae Song, Byung Seok Lee, Hyun young Kim, Chung Kwang Lee, Yong Seo Koo
Abstract:
This paper proposed a silicon controller rectifier (SCR) based ESD protection device to protect low voltage ESD for integrated circuit. The proposed ESD protection device has low trigger voltage and high holding voltage compared with conventional SCR-based ESD protection devices. The proposed ESD protection circuit is verified and compared by TCAD simulation. This paper verified effective low voltage ESD characteristics with low trigger voltage of 5.79V and high holding voltage of 3.5V through optimization depending on design variables (D1, D2, D3, and D4).Keywords: ESD, SCR, holding voltage, latch-up
Procedia PDF Downloads 57543 Comparison between FEM Simulation and Experiment of Temperature Rise in Power Transformer Inner Steel Plate
Authors: Byung hyun Bae
Abstract:
In power transformer, leakage magnetic flux generate temperature rise of inner steel plate. Sometimes, this temperature rise can be serious problem. If temperature of steel plate is over critical point, harmful gas will be generated in the tank. And this gas can be a reason of fire, explosion and life decrease. So, temperature rise forecasting of steel plate is very important at the design stage of power transformer. To improve accuracy of forecasting of temperature rise, comparison between simulation and experiment achieved in this paper.Keywords: power transformer, steel plate, temperature rise, experiment, simulation
Procedia PDF Downloads 49542 Big Data Analysis with RHadoop
Authors: Ji Eun Shin, Byung Ho Jung, Dong Hoon Lim
Abstract:
It is almost impossible to store or analyze big data increasing exponentially with traditional technologies. Hadoop is a new technology to make that possible. R programming language is by far the most popular statistical tool for big data analysis based on distributed processing with Hadoop technology. With RHadoop that integrates R and Hadoop environment, we implemented parallel multiple regression analysis with different sizes of actual data. Experimental results showed our RHadoop system was much faster as the number of data nodes increases. We also compared the performance of our RHadoop with lm function and big lm packages available on big memory. The results showed that our RHadoop was faster than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases.Keywords: big data, Hadoop, parallel regression analysis, R, RHadoop
Procedia PDF Downloads 43741 Improving Short-Term Forecast of Solar Irradiance
Authors: Kwa-Sur Tam, Byung O. Kang
Abstract:
By using different ranges of daily sky clearness index defined in this paper, any day can be classified as a clear sky day, a partly cloudy day or a cloudy day. This paper demonstrates how short-term forecasting of solar irradiation can be improved by taking into consideration the type of day so defined. The source of day type dependency has been identified. Forecasting methods that take into consideration of day type have been developed and their efficacy have been established. While all methods that implement some form of adjustment to the cloud cover forecast provided by the U.S. National Weather Service provide accuracy improvement, methods that incorporate day type dependency provides even further improvement in forecast accuracy.Keywords: day types, forecast methods, National Weather Service, sky cover, solar energy
Procedia PDF Downloads 46640 A Silicon Controlled Rectifier-Based ESD Protection Circuit with High Holding Voltage and High Robustness Characteristics
Authors: Kyoung-il Do, Byung-seok Lee, Hee-guk Chae, Jeong-yun Seo Yong-seo Koo
Abstract:
In this paper, a Silicon Controlled Rectifier (SCR)-based Electrostatic Discharge (ESD) protection circuit with high holding voltage and high robustness characteristics is proposed. Unlike conventional SCR, the proposed circuit has low trigger voltage and high holding voltage and provides effective ESD protection with latch-up immunity. In addition, the TCAD simulation results show that the proposed circuit has better electrical characteristics than the conventional SCR. A stack technology was used for voltage-specific applications. Consequentially, the proposed circuit has a trigger voltage of 17.60 V and a holding voltage of 3.64 V.Keywords: ESD, SCR, latch-up, power clamp, holding voltage
Procedia PDF Downloads 39739 Study on Network-Based Technology for Detecting Potentially Malicious Websites
Authors: Byung-Ik Kim, Hong-Koo Kang, Tae-Jin Lee, Hae-Ryong Park
Abstract:
Cyber terrors against specific enterprises or countries have been increasing recently. Such attacks against specific targets are called advanced persistent threat (APT), and they are giving rise to serious social problems. The malicious behaviors of APT attacks mostly affect websites and penetrate enterprise networks to perform malevolent acts. Although many enterprises invest heavily in security to defend against such APT threats, they recognize the APT attacks only after the latter are already in action. This paper discusses the characteristics of APT attacks at each step as well as the strengths and weaknesses of existing malicious code detection technologies to check their suitability for detecting APT attacks. It then proposes a network-based malicious behavior detection algorithm to protect the enterprise or national networks.Keywords: Advanced Persistent Threat (APT), malware, network security, network packet, exploit kits
Procedia PDF Downloads 36638 Combination Approach Using Experiments and Optimal Experimental Design to Optimize Chemical Concentration in Alkali-Surfactant-Polymer Process
Authors: H. Tai Pham, Bae Wisup, Sungmin Jung, Ivan Efriza, Ratna Widyaningsih, Byung Un Min
Abstract:
The middle-phase-microemulsion in Alkaline-Surfactant-Polymer (ASP) solution and oil play important roles in the success of an ASP flooding process. The high quality microemulsion phase has ultralow interfacial tensions and it can increase oil recovery. The research used optimal experimental design and response-surface-methodology to predict the optimum concentration of chemicals in ASP solution for maximum microemulsion quality. Secondly, this optimal ASP formulation was implemented in core flooding test to investigate the effective injection volume. As the results, the optimum concentration of surfactants in the ASP solution is 0.57 wt.% and the highest effective injection volume is 19.33% pore volume.Keywords: optimize, ASP, response surface methodology, solubilization ratio
Procedia PDF Downloads 34837 Big Data Analysis with Rhipe
Authors: Byung Ho Jung, Ji Eun Shin, Dong Hoon Lim
Abstract:
Rhipe that integrates R and Hadoop environment made it possible to process and analyze massive amounts of data using a distributed processing environment. In this paper, we implemented multiple regression analysis using Rhipe with various data sizes of actual data. Experimental results for comparing the performance of our Rhipe with stats and biglm packages available on bigmemory, showed that our Rhipe was more fast than other packages owing to paralleling processing with increasing the number of map tasks as the size of data increases. We also compared the computing speeds of pseudo-distributed and fully-distributed modes for configuring Hadoop cluster. The results showed that fully-distributed mode was faster than pseudo-distributed mode, and computing speeds of fully-distributed mode were faster as the number of data nodes increases.Keywords: big data, Hadoop, Parallel regression analysis, R, Rhipe
Procedia PDF Downloads 49736 Anti-Inflammatory Effect of Myristic Acid through Inhibiting NF-κB and MAPK Signaling Pathways in Lipopolysaccharide-Stimulated RAW 264.7 Macrophage Cells
Authors: Hyun Ji Hyun, Hyo Sun Suh, Min Kook Kim, Yong Chan Kwon, Byung-Mu Lee
Abstract:
Scope: This study is focused on the effect of myristic acid on LPS-induced inflammation in RAW 264.7 macrophage cells. Methods and results: For the experiment, RAW 264.7 mouse macrophage cell line was used. Results showed that treatment with myristic acid can attenuate LPS-induced inflammation. Moreover, myristic acid significantly suppressed expression of inflammatory mediators and down-regulating UVB-induced intracellular ROS generation. Furthermore, myristic acid reduced the expression of NF-κB by inhibiting degradation of IκB-α and ERK, JNK, and p38 pathways by inhibiting phosphorylation in RAW 264.7 macrophage cells. Conclusion: Overall, these data suggest that the myristic acid could reduce LPS-induced inflammation. Acknowledgment: This research was supported by the Ministry of Trade, Industry & Energy(MOTIE), Korea Institute for Advancement of Technology(KIAT) through the Encouragement Program for The Industries of Economic Cooperation RegionKeywords: anti-inflammation, myristic acid, ROS, ultraviolet light
Procedia PDF Downloads 20535 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 1834 Hybrid Fuzzy Weighted K-Nearest Neighbor to Predict Hospital Readmission for Diabetic Patients
Authors: Soha A. Bahanshal, Byung G. Kim
Abstract:
Identification of patients at high risk for hospital readmission is of crucial importance for quality health care and cost reduction. Predicting hospital readmissions among diabetic patients has been of great interest to many researchers and health decision makers. We build a prediction model to predict hospital readmission for diabetic patients within 30 days of discharge. The core of the prediction model is a modified k Nearest Neighbor called Hybrid Fuzzy Weighted k Nearest Neighbor algorithm. The prediction is performed on a patient dataset which consists of more than 70,000 patients with 50 attributes. We applied data preprocessing using different techniques in order to handle data imbalance and to fuzzify the data to suit the prediction algorithm. The model so far achieved classification accuracy of 80% compared to other models that only use k Nearest Neighbor.Keywords: machine learning, prediction, classification, hybrid fuzzy weighted k-nearest neighbor, diabetic hospital readmission
Procedia PDF Downloads 18633 A Study on How to Link BIM Services to Cloud Computing Architecture
Authors: Kim Young-Jin, Kim Byung-Kon
Abstract:
Although more efforts to expand the application of BIM (Building Information Modeling) technologies have be pursued in recent years than ever, it’s true that there have been various challenges in doing so, including a lack or absence of relevant institutions, lots of costs required to build BIM-related infrastructure, incompatible processes, etc. This, in turn, has led to a more prolonged delay in the expansion of their application than expected at an early stage. Especially, attempts to save costs for building BIM-related infrastructure and provide various BIM services compatible with domestic processes include studies to link between BIM and cloud computing technologies. Also in this study, the author attempted to develop a cloud BIM service operation model through analyzing the level of BIM applications for the construction sector and deriving relevant service areas, and find how to link BIM services to the cloud operation model, as through archiving BIM data and creating a revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources.Keywords: construction IT, BIM (building information modeling), cloud computing, BIM service based cloud computing
Procedia PDF Downloads 48732 The Effect of Floor Impact Sound Insulation Performance Using Scrambled Thermoplastic Poly Urethane and Ethylene Vinyl Acetate
Authors: Bonsoo Koo, Seong Shin Hong, Byung Kwon Lee
Abstract:
Most of apartments in Korea have wall type structure that present poor performance regarding floor impact sound insulation. In order to minimize the transmission of floor impact sound, flooring structures are used in which an insulating material, 30 mm thickness pad of EPS or EVA, is sandwiched between a concrete slab and the finished mortar. Generally, a single-material pad used for insulation has a heavyweight impact sound level of 44~47 dB with 210 mm thickness slab. This study provides an analysis of the floor impact sound insulation performance using thermoplastic poly urethane (TPU), ethylene vinyl acetate (EVA), and expanded polystyrene (EPS) materials with buffering performance. Following mock-up tests the effect of lightweight impact sound turned out to be similar but heavyweight impact sound was decreased by 3 dB compared to conventional single material insulation pad.Keywords: floor impact sound, thermoplastic poly urethane, ethylene vinyl acetate, heavyweight impact sound
Procedia PDF Downloads 40431 Beyond Classic Program Evaluation and Review Technique: A Generalized Model for Subjective Distributions with Flexible Variance
Authors: Byung Cheol Kim
Abstract:
The Program Evaluation and Review Technique (PERT) is widely used for project management, but it struggles with subjective distributions, particularly due to its assumptions of constant variance and light tails. To overcome these limitations, we propose the Generalized PERT (G-PERT) model, which enhances PERT by incorporating variability in three-point subjective estimates. Our methodology extends the original PERT model to cover the full range of unimodal beta distributions, enabling the model to handle thick-tailed distributions and offering formulas for computing mean and variance. This maintains the simplicity of PERT while providing a more accurate depiction of uncertainty. Our empirical analysis demonstrates that the G-PERT model significantly improves performance, particularly when dealing with heavy-tail subjective distributions. In comparative assessments with alternative models such as triangular and lognormal distributions, G-PERT shows superior accuracy and flexibility. These results suggest that G-PERT offers a more robust solution for project estimation while still retaining the user-friendliness of the classic PERT approach.Keywords: PERT, subjective distribution, project management, flexible variance
Procedia PDF Downloads 1830 Production of Ginseng Berry Wines and Analysis of Their Properties
Authors: Jae Hee Choi, Seung Il Ahn, Sae Kyul Kim, Byung Wook Yang, Bong Sun Park, Hwan Sup Kim, Young Tae Hahm
Abstract:
The root of Panax ginseng C. A. MEYER, commonly known as Korean ginseng, has several physiologic effects as a cure-all or a panacea. Among the ginseng, ginseng berry can be obtained from 3 or 4-year-old ginseng plant. Ginseng berry contains the high amount of ginsenoside Re, compared with other ginsenosides. Ginseng berry wine was manufactured with berry extract. The concentration of ginsenoside in ginseng berry extract obtained from Anseong Ginseng Nonghyup was 3.6 mg/g. Ethanol content of ginseng berry wine was 15.00±1.00%. Total polyphenol content was 1.62±0.12 mg/ml. In analysis of organic acids, acetic acid was high in ginseng berry extract whereas malic acid in ginseng berry wine was high.Ginseng berry rice wine was manufactured with berry extract with traditional nuruk (yeast). When the ginseng berry rice wine was manufactured, ginseng berry extract was diluted into 5% of total volume of wine. pH values and total acidity were 3.30±0.03 and 1.28±0.0 %, respectively. Residual sugar content was 8.8 ± 0.0 °Brix and ethanol content was 14.00 %. Any residual pesticides were not detected over acceptable range. Overall, the ginseng berry extract were valuable food stuffs for the manufacture of new ginseng product.Keywords: ginseng berry, ginseng berry wine, ginsenoside, panax ginseng
Procedia PDF Downloads 29729 MapReduce Logistic Regression Algorithms with RHadoop
Authors: Byung Ho Jung, Dong Hoon Lim
Abstract:
Logistic regression is a statistical method for analyzing a dataset in which there are one or more independent variables that determine an outcome. Logistic regression is used extensively in numerous disciplines, including the medical and social science fields. In this paper, we address the problem of estimating parameters in the logistic regression based on MapReduce framework with RHadoop that integrates R and Hadoop environment applicable to large scale data. There exist three learning algorithms for logistic regression, namely Gradient descent method, Cost minimization method and Newton-Rhapson's method. The Newton-Rhapson's method does not require a learning rate, while gradient descent and cost minimization methods need to manually pick a learning rate. The experimental results demonstrated that our learning algorithms using RHadoop can scale well and efficiently process large data sets on commodity hardware. We also compared the performance of our Newton-Rhapson's method with gradient descent and cost minimization methods. The results showed that our newton's method appeared to be the most robust to all data tested.Keywords: big data, logistic regression, MapReduce, RHadoop
Procedia PDF Downloads 28428 Numerical Study of Effects of Air Dam on the Flow Field and Pressure Distribution of a Passenger Car
Authors: Min Ye Koo, Ji Ho Ahn, Byung Il You, Gyo Woo Lee
Abstract:
Everything that is attached to the outside of the vehicle to improve the driving performance of the vehicle by changing the flow characteristics of the surrounding air or to pursue the external personality is called a tuning part. Typical tuning components include front or rear air dam, also known as spoilers, splitter, and side air dam. Particularly, the front air dam prevents the airflow flowing into the lower portion of the vehicle and increases the amount of air flow to the side and front of the vehicle body, thereby reducing lift force generation that lifts the vehicle body, and thus, improving the steering and driving performance of the vehicle. The purpose of this study was to investigate the role of anterior air dam in the flow around a sedan passenger car using computational fluid dynamics. The effects of flow velocity, trajectory of fluid particles on static pressure distribution and pressure distribution on body surface were investigated by varying flow velocity and size of air dam. As a result, it has been confirmed that the front air dam improves the flow characteristics, thereby reducing the generation of lift force of the vehicle, so it helps in steering and driving characteristics.Keywords: numerical study, air dam, flow field, pressure distribution
Procedia PDF Downloads 20727 Optimal Sensing Technique for Estimating Stress Distribution of 2-D Steel Frame Structure Using Genetic Algorithm
Authors: Jun Su Park, Byung Kwan Oh, Jin Woo Hwang, Yousok Kim, Hyo Seon Park
Abstract:
For the structural safety, the maximum stress calculated from the stress distribution of a structure is widely used. The stress distribution can be estimated by deformed shape of the structure obtained from measurement. Although the estimation of stress is strongly affected by the location and number of sensing points, most studies have conducted the stress estimation without reasonable basis on sensing plan such as the location and number of sensors. In this paper, an optimal sensing technique for estimating the stress distribution is proposed. This technique proposes the optimal location and number of sensing points for a 2-D frame structure while minimizing the error of stress distribution between analytical model and estimation by cubic smoothing splines using genetic algorithm. To verify the proposed method, the optimal sensor measurement technique is applied to simulation tests on 2-D steel frame structure. The simulation tests are performed under various loading scenarios. Through those tests, the optimal sensing plan for the structure is suggested and verified.Keywords: genetic algorithm, optimal sensing, optimizing sensor placements, steel frame structure
Procedia PDF Downloads 53126 Optimal Retrofit Design of Reinforced Concrete Frame with Infill Wall Using Fiber Reinforced Plastic Materials
Authors: Sang Wook Park, Se Woon Choi, Yousok Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
Various retrofit techniques for reinforced concrete frame with infill wall have been steadily developed. Among those techniques, strengthening methodology based on diagonal FRP strips (FRP bracings) has numerous advantages such as feasibility of implementing without interrupting the building under operation, reduction of cost and time, and easy application. Considering the safety of structure and retrofit cost, the most appropriate retrofit solution is needed. Thus, the objective of this study is to suggest pareto-optimal solution for existing building using FRP bracings. To find pareto-optimal solution analysis, NSGA-II is applied. Moreover, the seismic performance of retrofit building is evaluated. The example building is 5-storey, 3-bay RC frames with infill wall. Nonlinear static pushover analyses are performed with FEMA 356. The criterion of performance evaluation is inter-story drift ratio at the performance level IO, LS, CP. Optimal retrofit solutions is obtained for 32 individuals and 200 generations. Through the proposed optimal solutions, we confirm the improvement of seismic performance of the example building.Keywords: retrofit, FRP bracings, reinforced concrete frame with infill wall, seismic performance evaluation, NSGA-II
Procedia PDF Downloads 43725 A Study on Energy-Saving Modular Housing Units Considering Environmental and Aesthetic Aspects
Authors: Jae Hee Chung, Tae Uk Kang, Byung Seo Kim
Abstract:
This study aims to propose design technologies for the energy-saving modular housing units considering environmental and aesthetic aspects. Modular houses are environmentally friendly based on 3R (Reduce, Reuse, Recycle) because they can dramatically reduce carbon dioxide and construction wastes generated during the construction, use, and disposal process by the pre-fabrication at the factory and the recyclability of the unit, compared to the existing construction methods. The existing modular housing, however, tends to focus on quantitative aspects of energy reduction, such as windows, insulation, and introduction of renewable energy, and there is not much research on energy-saving type units considering the environmental aspects such as daylighting and ventilation, and the design that goes beyond the standardized appearance. Therefore, this study conducts theoretical investigation and analytical case studies on the energy-saving methods through various architectural planning elements as well as materials like insulation considering the environmental and aesthetic aspects in the modular housing. Then, comparative analysis on the energy efficiency through the energy simulation is conducted. As a conclusion, the energy-saving modular housing units considering environmental and aesthetics aspects are proposed. It is expected that this study will contribute to the supply and activation of modular housing through deriving design technologies for the energy-saving modular housing units that consider not only quantitative aspects but also qualitative aspects.Keywords: aesthetic aspects, energy-saving, environmental, modular housing
Procedia PDF Downloads 35724 Standardized Black Ginseng Extract Improving a Suppressed Immunomodulatory Effect Induced by Heat Stress
Authors: Byung Wook Yang, Jong Dae Park, Wang Soo Shin, Ji-Hyeon Song, Seo-Yun Choi, Boo-Yong Lee, Young Tae Hahm
Abstract:
Korean ginseng (Panax ginseng C. A. Meyer) is frequently taken orally as a traditional herbal medicine with ginsenosides as the main pharmacological component in Asian countries, and its use is increasing worldwide. Recently, the increase in global temperature has been reported to cause various kinds of biological disorders induced by heat stress in human. The standardized black ginseng extract (SBGE; KGR-BG1) was developed in our biological screening experiment on the thermo-regulation, whose chemical characteristics were evaluated as ginsenoside Rg1, Rb1, Rg3(S), as well as Re, Rf, Rg2(S), Rh1(S), Rh2(S), and Rg5+Rk1. Heat stress responses such as body weight, food intake, water consumption have been measured when treated with Standardized Black Ginseng Extract (SBGE) in the animal experiment and also, biomarkers. SBGE treated group has been found to inhibit a decrease in body weight, a decrease in food intake and an increase in the water consumption when compared with non-treated group against environmental heat stress. These results suggest that SBGE might have a protective effect against environmental heat stress. And also, the several factors of stress response on the immune system need to be done for further studies and its evaluation is in progress.Keywords: ginseng, ginsenoside, standardization, heat stress, immunomodulatory effect
Procedia PDF Downloads 29723 A Study on Effect of Dynamic Loading Speed on the Fracture Toughness of Equivalent Stress Gradient (ESG) Specimen
Authors: Moon Byung Woo, Seok Chang-Sung, Koo Jae-Mean, Kim Sang-Young, Choi Jae Gu, Huh Nam-Su
Abstract:
Recently, the occurrence of the earthquake has increased sharply and many of the casualties have occurred worldwide, due to the influence of earthquakes. Especially, the Fukushima nuclear power plant accident which was caused by the earthquake in 2011 has significantly increased the fear of people and the demand for the safety of the nuclear power plant. Thus, in order to prevent the earthquake accident at nuclear power plant, it is important to evaluate the fracture toughness considering the seismic loading rate. To obtain fracture toughness for the safety evaluation of nuclear power plant, it is desirable to perform experiments with a real scale pipe which is expensive and hard to perform. Therefore, many researchers have proposed various test specimens to replicate the fracture toughness of a real scale pipe. Since such specimens have several problems, the equivalent stress gradient (ESG) specimen has been recently suggested. In this study, in order to consider the effects of the dynamic loading speed on fracture toughness, the experiment was conducted by applying five different kinds of test speeds using an ESG specimen. In addition, after we performed the fracture toughness test under dynamic loading with different speeds using an ESG specimen and a standard specimen, we compared them with the test results under static loading.Keywords: dynamic loading speed, fracture toughness, load-ratio-method, equivalent stress gradient (ESG) specimen
Procedia PDF Downloads 30922 The Estimation Method of Inter-Story Drift for Buildings Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to reduce seismic damage. The inter-story drift ratio which is the major index of the seismic capacity assessment is employed for estimating the seismic damage of buildings. Meanwhile, seismic response analysis to estimate the structural responses of building demands significantly high computational cost due to increasing number of high-rise and large buildings. To estimate the inter-story drift ratio of buildings from the earthquake efficiently, this paper suggests the estimation method of inter-story drift for buildings using an artificial neural network (ANN). In the method, the radial basis function neural network (RBFNN) is integrated with optimization algorithm to optimize the variable through evolutionary learning that refers to evolutionary radial basis function neural network (ERBFNN). The estimation method estimates the inter-story drift without seismic response analysis when the new earthquakes are subjected to buildings. The effectiveness of the estimation method is verified through a simulation using multi-degree of freedom system.Keywords: structural health monitoring, inter-story drift ratio, artificial neural network, radial basis function neural network, genetic algorithm
Procedia PDF Downloads 32721 Prognostic and Predictive Value of Tumor: Infiltrating Lymphocytes in Triple Negative Breast Cancer
Authors: Wooseok Byon, Eunyoung Kim, Junseong Kwon, Byung Joo Song, Chan Heun Park
Abstract:
Background/Purpose: Previous preclinical and clinical data suggest that increased lymphocytic infiltration would be associated with good prognosis and benefit from immunogenic chemotherapy especially in triple-negative breast cancer (TNBC). We investigated a single-center experience of TNBC and relationship with lymphocytic infiltration. Methods: From January 2004 to December 2012, at the Department of Surgery, Kangbuk Samsung Hospital, Sungkyunkwan University, School of Medicine, we retrospectively reviewed 897 breast cancer patients-clinical outcomes, clinicopathological characteristics, breast cancer subtypes. And we reviewed lymphocytic infiltration of TNBC specimens by two pathologists. Statistical analysis of risk factors associated with recurrence was performed. Results: A total of 897 patients, 76 were TNBC (8.47%). Mean age of TNBC patients were 50.95 (SD10.42) years, mean follow-up periods was 40.06 months. We reviewed 49 slides, and there were 8 recurrent breast cancer patients (16.32%), and 4 patients were expired (8.16%). There were 9 lymphocytic predominant breast cancers (LPBC)-carcinomas with either intratumoral lymphocytes in >60% of tumor cell nests. 1 patient of LPBC was recurred and 8 were not. In multivariate logistic regression, the odds ratio of lymphocytic infiltration was 0.59 (p=0.643). Conclusion: In a single-center experience of TNBC, the lymphocytic infiltration in tumor cell nest might be a good trend on the prognosis but there was not statistically significant.Keywords: tumor-infiltrating lymphocytes, triple negative breast cancer, medical and health sciences
Procedia PDF Downloads 40720 A Study on How to Develop the Usage Metering Functions of BIM (Building Information Modeling) Software under Cloud Computing Environment
Authors: Kim Byung-Kon, Kim Young-Jin
Abstract:
As project opportunities for the Architecture, Engineering and Construction (AEC) industry have grown more complex and larger, the utilization of BIM (Building Information Modeling) technologies for 3D design and simulation practices has been increasing significantly; the typical applications of the BIM technologies include clash detection and design alternative based on 3D planning, which have been expanded over to the technology of construction management in the AEC industry for virtual design and construction. As for now, commercial BIM software has been operated under a single-user environment, which is why initial costs for its introduction are very high. Cloud computing, one of the most promising next-generation Internet technologies, enables simple Internet devices to use services and resources provided with BIM software. Recently in Korea, studies to link between BIM and cloud computing technologies have been directed toward saving costs to build BIM-related infrastructure, and providing various BIM services for small- and medium-sized enterprises (SMEs). This study addressed how to develop the usage metering functions of BIM software under cloud computing architecture in order to archive and use BIM data and create an optimal revenue structure so that the BIM services may grow spontaneously, considering a demand for cloud resources. To this end, the author surveyed relevant cases, and then analyzed needs and requirements from AEC industry. Based on the results & findings of the foregoing survey & analysis, the author proposed herein how to optimally develop the usage metering functions of cloud BIM software.Keywords: construction IT, BIM (Building Information Modeling), cloud computing, BIM-based cloud computing, 3D design, cloud BIM
Procedia PDF Downloads 50619 Evaluation of 18F Fluorodeoxyglucose Positron Emission Tomography, MRI, and Ultrasound in the Assessment of Axillary Lymph Node Metastases in Patients with Early Stage Breast Cancer
Authors: Wooseok Byon, Eunyoung Kim, Junseong Kwon, Byung Joo Song, Chan Heun Park
Abstract:
Purpose: 18F Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) is a noninvasive imaging modality that can identify nodal metastases in women with primary breast cancer. The aim of this study was to compare the accuracy of FDG-PET with MRI and sonography scanning to determine axillary lymph node status in patients with breast cancer undergoing sentinel lymph node biopsy or axillary lymph node dissection. Patients and Methods: Between January and December 2012, ninety-nine patients with breast cancer and clinically negative axillary nodes were evaluated. All patients underwent FDG-PET, MRI, ultrasound followed by sentinel lymph node biopsy (SLNB) or axillary lymph node dissection (ALND). Results: Using axillary lymph node assessment as the gold standard, the sensitivity and specificity of FDG-PET were 51.4% (95% CI, 41.3% to 65.6%) and 92.2% (95% CI, 82.7% to 97.4%) respectively. The sensitivity and specificity of MRI and ultrasound were 57.1% (95% CI, 39.4% to 73.7%), 67.2% (95% CI, 54.3% to 78.4%) and 42.86% (95% CI, 26.3% to 60.7%), 92.2% (95% CI, 82.7% to 97.4%). Stratification according to hormone receptor status showed an increase in specificity when negative (FDG-PET: 42.3% to 77.8%, MRI 50% to 77.8%, ultrasound 34.6% to 66.7%). Also, positive HER2 status was associated with an increase in specificity (FDG-PET: 42.9% to 85.7%, MRI 50% to 85.7%, ultrasound 35.7% to 71.4%). Conclusions: The sensitivity and specificity of FDG-PET compared with MRI and ultrasound was high. However, FDG-PET is not sufficiently accurate to appropriately identify lymph node metastases. This study suggests that FDG-PET scanning cannot replace histologic staging in early-stage breast cancer, but might have a role in evaluating axillary lymph node status in hormone receptor negative or HER-2 overexpressing subtypes.Keywords: axillary lymph node metastasis, FDG-PET, MRI, ultrasound
Procedia PDF Downloads 37618 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.Keywords: structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm
Procedia PDF Downloads 30417 Serum 25-Hydroxyvitamin D Levels in Korean Breast Cancer Patients
Authors: Sung Yong Kim, Byung Joo Song
Abstract:
Background: Circulating 25-hydroxyvitamin D (25(OH)D) levels has been considered to be inversely related to breast cancer development, recurrence risk, and mortality. Mean vitamin D levels in Korean population is lower than western countries due to higher incidence of lactose intolerance and lower exposure to sunlight. The purpose of this study was to assess incidence of 25(OH)D deficiency at diagnosis and after adjuvant chemotherapy and to investigate the correlation serum 25(OH)D levels with clinicopathologic features. Methods: From December 2011 to October 2012, 280 breast cancer patients seen at a single tertiary cancer center were enrolled. Serum 25(OH)D was measured at the time of surgery and after completion of adjuvant chemotherapy. Statistical analyses used chi-square test, Fisher's exact test, t-test, and ANOVA. Results: Mean serum 25(OH)D was 18.5 ng/ml. The 25(OH)D levels were deficient (<20 ng/ml) in 190 patients (67.9%), insufficient (20-29 ng/ml) in 51 patients(18.2%), and sufficient (30-150 ng/ml) in 39 patients(13.9%). A notable decrease in 25(OH)D concentration was observed(p<0.001) after chemotherapy but was not related to chemotherapy regimens. It was found significant lower 25(OH)D levels at winter season(from October to March, p=0.030). Subjects with invasive carcinoma (IDC or ILC) had significantly lower circulating levels of 25(OH)D than those with ductal carcinoma in situ(DCIS) (p=0.010). Patients with larger tumor size tends to have lower serum 25(OH)D but there were no statistical significance. Conclusions: Most of the breast cancer patients showed deficient or insufficient serum 25(OH)D concentration. Incidence of vitamin D deficiency was higher in invasive carcinoma than DCIS. Serum 25(OH)D levels were decreased after chemotherapy. Consideration should be given to the supplement of vitamin D to those patients.Keywords: breast neoplasms, vitamin D, Korean population, breast cancer
Procedia PDF Downloads 416