Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 283

World Academy of Science, Engineering and Technology

[Civil and Architectural Engineering]

Online ISSN : 1307-6892

283 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 3
282 Characterisation of Meteorological Drought at Sub-Catchment Scale in Afghanistan Using Time-Series Climate Data

Authors: Yun Chen, David Penton, Fazlul Karim, Santosh Aryal, Shahriar Wahid, Peter Taylor, Susan M. Cuddy

Abstract:

Droughts have severely affected Afghanistan over the last four decades, leading to critical food shortages where two-thirds of the country’s population are in a food crisis. Long years of conflict have lowered the country’s ability to deal with hazards such as drought, which can rapidly escalate into disasters. Understanding the spatial and temporal distribution of droughts is needed to be able to respond effectively to disasters and plan for future occurrences. This study used Standardized Precipitation Evapotranspiration Index (SPEI) at monthly, seasonal, and annual temporal scales to map the spatiotemporal change dynamics of drought characteristics (distribution, frequency, duration, and severity) in Afghanistan. SPEI indices were mapped for river basins, disaggregated into 189 sub-catchments, using monthly precipitation and potential evapotranspiration derived from temperature station observations from 1980 to 2017. The results show these multi-dimensional drought characteristics vary along different years, change among sub-catchments, and differ across temporal scales. During the 38 years, the driest decade and period are the 2000s and 1999–2022, respectively. The 2000–01 water year is the driest, with the whole country experiencing ‘severe’ to ‘extreme’ drought, more than 53% (87 sub-catchments) suffering the worst drought in history, and about 58% (94 sub-catchments) having ‘very frequent’ drought (7 to 8 months) or ‘extremely frequent’ drought (9 to 10 months). The estimated seasonal duration and severity present significant variations across the study area and throughout the study period. The nation also suffered from recurring droughts with varying length and intensity in 2004, 2006, 2008, and, most recently, 2011. There is a trend towards increasing drought with longer duration and higher severity extending all over sub-catchments from southeast to north and central regions. These datasets and maps help to fill the knowledge gap on detailed sub-catchment scale meteorological drought characteristics in Afghanistan. The study findings improve our understanding of the influences of climate change on drought dynamics and can guide catchment planning for reliable adaptation to and mitigation against future droughts.

Keywords: SPEI, precipitation, evapotranspiration, climate extremes

Procedia PDF Downloads 6
281 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 9
280 Counterurbanisation and Digital Nomads – Connections of the Two Phenomena and Infrastructure in Greece

Authors: Dimitrios Orfanos

Abstract:

Overconcentration of people in big cities (namely Athens and Thessaloniki) and the tendency to increase their density in the upcoming years, cause various problems on a personal, environmental and social level. During the COVID-19 pandemic, a reversal in urbanism was observed. The counterurbanization that took place, along with the steady growth of the Digital Nomad lifestyle, opens up new paths for policies that rejuvenate the non-urban regions in Greece and elsewhere. Promoting actions, either through incentives, or through creating organized structures, can transform the Greek rural regions to an attractive destination for those who want to avoid life in big cities permanently, or for a short period of time. Subsequently, the gain of the regions that will apply such policies will have a multiplier effect. Greece, being a country with great touristic interest from foreigners can use the infusion of long-stay visitors as a boost to give way to the Greek urban population that works remotely to move permanently to more rural regions and create the conditions for growth in those regions. The paper studies several cases of such policies, in combination with different options to be explored as to the methods that can be used to take better advantage of these policies. Examples from European and worldwide use cases are being presented, noting the parts that can be applied in a country like Greece. An example of an abandoned village is also presented that can be revived through the methods described in the paper. The next possible step in research could be a case study in one of the various locations to determine the level of maturity of the market to pursue such actions.

Keywords: counterurbanization, digital nomads, village revival, rural growth

Procedia PDF Downloads 5
279 Experimental and Theoretical Research on the Behavior of Circular Steel-Fiber-Reinforced-Concrete Columns Reinforced by Glass-Fiber-Reinforced-Polymer Longitudinal and Steel Transversal Bars

Authors: Iman Saffarian, Armin Saffarian

Abstract:

. In this research, the evaluation of axial compression tests and theoretical analysis on circular steel-fiber-reinforced-concrete (SFRC) columns reinforced by glass-fiber-reinforced-polymer (GFRP) bar was considered. Test programs were designed in order to inquire and compare the experimental results with new and conventional materials based on the structural behavior of reinforced concrete (RC) columns. The experimental variables were conventional concrete (CC), fiber concrete (FC), longitudinal steel/GFRP rebars, and the pitch of the steel spiral/hoop rebars. Therefore, a total of 16 specimens were fabricated in four groups called GRCC, GRFC, SRCC and SRFC. The results portrayed that failure modes of columns were similar together with a suitable agreement. The concentric compression strengths of GRCC and GRFC specimens were averagely 83.58% and 85.93% of their counterparts of SRCC and SRFC columns’ strengths, respectively. While the ductility index (DI) of GRCC and GRFC columns were averagely 7.34% and 13.04% higher than their counterpart specimens. Also, GRFC and SRFC columns had higher axial strains than GRCC and SRCC counterpart specimens by averagely 21% and 13% in maximum compression loads, respectively. Nevertheless, North American codes do not recommend using GFRP bar in RC as a compressive element and do not present any design guidelines, the currently proposed theoretical equation performed well over the test measurements of investigated compression columns by considering the axial involvement of GFRP longitudinal bars and some other parameters such as steel spiral/hoop bar, reinforcement volumetric ratio, and type of concrete, after spalling cover of concrete.

Keywords: GFRP rebars, steel spiral/hoop rebars, fiber concrete, axial compressive strength and ductility index, load-strain curves

Procedia PDF Downloads 13
278 Analysis of Sediment Distribution around Karang Sela Coral Reef Using Multibeam Backscatter

Authors: Razak Zakariya, Fazliana Mustajap, Lenny Sharinee Sakai

Abstract:

A sediment map is quite important in the marine environment. The sediment itself contains thousands of information that can be used for other research. This study was conducted by using a multibeam echo sounder Reson T20 on 15 August 2020 at the Karang Sela (coral reef area) at Pulau Bidong. The study aims to identify the sediment type around the coral reef by using bathymetry and backscatter data. The sediment in the study area was collected as ground truthing data to verify the classification of the seabed. A dry sieving method was used to analyze the sediment sample by using a sieve shaker. PDS 2000 software was used for data acquisition, and Qimera QPS version 2.4.5 was used for processing the bathymetry data. Meanwhile, FMGT QPS version 7.10 processes the backscatter data. Then, backscatter data were analyzed by using the maximum likelihood classification tool in ArcGIS version 10.8 software. The result identified three types of sediments around the coral which were very coarse sand, coarse sand, and medium sand.

Keywords: sediment type, MBES echo sounder, backscatter, ArcGIS

Procedia PDF Downloads 13
277 An Integrated Framework for Engaging Stakeholders in the Circular Economy Processes Using Building Information Modeling and Virtual Reality

Authors: Erisasadat Sahebzamani, Nuria Forcada

Abstract:

Over the past few decades, global climate change has become increasingly problematic. The construction industry has contributed to greenhouse gas emissions in recent decades. Considering these issues and the high demand for materials in the construction industry, Circular Economy (CE) is considered necessary for keeping materials in the loop and extending their useful lives. By providing tangible benefits, Construction 4.0 facilitates the adoption of CE by reducing waste, updating standard work, sharing knowledge, and increasing transparency and stability. This study aims to develop a framework for integrating CE and digital tools like Building Information Modeling (BIM) and Virtual Reality (VR) to examine the impact on the construction industry based on the perspectives of stakeholders and the phases of the construction life cycle. In addition, standardization methods such as Level(s) and the improvement of interoperability between systems and stakeholders are the backbone of the investigation.

Keywords: circular economy, building information modeling, virtual reality, level(s)

Procedia PDF Downloads 11
276 Features of Calculating Structures for Frequent Weak Earthquakes

Authors: M. S. Belashov, A. V. Benin, Lin Hong, Sh. Sh. Nazarova, O. B. Sabirova, A. M. Uzdin, Lin Hong

Abstract:

The features of calculating structures for the action of weak earthquakes are analyzed. Earthquakes with a recurrence of 30 years and 50 years are considered. In the first case, the structure is to operate normally without damage after the earthquake. In the second case, damages are allowed that do not affect the possibility of the structure operation. Three issues are emphasized: setting elastic and damping characteristics of reinforced concrete, formalization of limit states, and combinations of loads. The dependence of damping on the reinforcement coefficient is estimated. When evaluating limit states, in addition to calculations for crack resistance and strength, a human factor, i.e., the possibility of panic among people, was considered. To avoid it, it is proposed to limit a floor-by-floor speed level in certain octave ranges. Proposals have been developed for estimating the coefficients of the combination of various loads with the seismic one. As an example, coefficients of combinations of seismic and ice loads are estimated. It is shown that for strong actions, the combination coefficients for different regions turn out to be close, while for weak actions, they may differ.

Keywords: weak earthquake, frequent earthquake, damage, limit state, reinforcement, crack resistance, strength resistance, a floor-by-floor velocity, combination coefficients

Procedia PDF Downloads 11
275 Low Cost LiDAR-GNSS-UAV Technology Development for PT Garam’s Three Dimensional Stockpile Modeling Needs

Authors: Mohkammad Nur Cahyadi, Imam Wahyu Farid, Ronny Mardianto, Agung Budi Cahyono, Eko Yuli Handoko, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

Unmanned aerial vehicle (UAV) technology has cost efficiency and data retrieval time advantages. Using technologies such as UAV, GNSS, and LiDAR will later be combined into one of the newest technologies to cover each other's deficiencies. This integration system aims to increase the accuracy of calculating the volume of the land stockpile of PT. Garam (Salt Company). The use of UAV applications to obtain geometric data and capture textures that characterize the structure of objects. This study uses the Taror 650 Iron Man drone with four propellers, which can fly for 15 minutes. LiDAR can classify based on the number of image acquisitions processed in the software, utilizing photogrammetry and structural science principles from Motion point cloud technology. LiDAR can perform data acquisition that enables the creation of point clouds, three-dimensional models, Digital Surface Models, Contours, and orthomosaics with high accuracy. LiDAR has a drawback in the form of coordinate data positions that have local references. Therefore, researchers use GNSS, LiDAR, and drone multi-sensor technology to map the stockpile of salt on open land and warehouses every year, carried out by PT. Garam twice, where the previous process used terrestrial methods and manual calculations with sacks. Research with LiDAR needs to be combined with UAV to overcome data acquisition limitations because it only passes through the right and left sides of the object, mainly when applied to a salt stockpile. The UAV is flown to assist data acquisition with a wide coverage with the help of integration of the 200-gram LiDAR system so that the flying angle taken can be optimal during the flight process. Using LiDAR for low-cost mapping surveys will make it easier for surveyors and academics to obtain pretty accurate data at a more economical price. As a survey tool, LiDAR is included in a tool with a low price, around 999 USD; this device can produce detailed data. Therefore, to minimize the operational costs of using LiDAR, surveyors can use Low-Cost LiDAR, GNSS, and UAV at a price of around 638 USD. The data generated by this sensor is in the form of a visualization of an object shape made in three dimensions. This study aims to combine Low-Cost GPS measurements with Low-Cost LiDAR, which are processed using free user software. GPS Low Cost generates data in the form of position-determining latitude and longitude coordinates. The data generates X, Y, and Z values to help georeferencing process the detected object. This research will also produce LiDAR, which can detect objects, including the height of the entire environment in that location. The results of the data obtained are calibrated with pitch, roll, and yaw to get the vertical height of the existing contours. This study conducted an experimental process on the roof of a building with a radius of approximately 30 meters.

Keywords: LiDAR, unmanned aerial vehicle, low-cost GNSS, contour

Procedia PDF Downloads 3
274 Low Cost Webcam Camera and GNSS Integration for Updating Home Data Using AI Principles

Authors: Mohkammad Nur Cahyadi, Hepi Hapsari Handayani, Agus Budi Raharjo, Ronny Mardianto, Daud Wahyu Imani, Arizal Bawazir, Luki Adi Triawan

Abstract:

PDAM (local water company) determines customer charges by considering the customer's building or house. Charges determination significantly affects PDAM income and customer costs because the PDAM applies a subsidy policy for customers classified as small households. Periodic updates are needed so that pricing is in line with the target. A thorough customer survey in Surabaya is needed to update customer building data. However, the survey that has been carried out so far has been by deploying officers to conduct one-by-one surveys for each PDAM customer. Surveys with this method require a lot of effort and cost. For this reason, this research offers a technology called moblie mapping, a mapping method that is more efficient in terms of time and cost. The use of this tool is also quite simple, where the device will be installed in the car so that it can record the surrounding buildings while the car is running. Mobile mapping technology generally uses lidar sensors equipped with GNSS, but this technology requires high costs. In overcoming this problem, this research develops low-cost mobile mapping technology using a webcam camera sensor added to the GNSS and IMU sensors. The camera used has specifications of 3MP with a resolution of 720 and a diagonal field of view of 78⁰. The principle of this invention is to integrate four camera sensors, a GNSS webcam, and GPS to acquire photo data, which is equipped with location data (latitude, longitude) and IMU (roll, pitch, yaw). This device is also equipped with a tripod and a vacuum cleaner to attach to the car's roof so it doesn't fall off while running. The output data from this technology will be analyzed with artificial intelligence to reduce similar data (Cosine Similarity) and then classify building types. Data reduction is used to eliminate similar data and maintain the image that displays the complete house so that it can be processed for later classification of buildings. The AI method used is transfer learning by utilizing a trained model named VGG-16. From the analysis of similarity data, it was found that the data reduction reached 50%. Then georeferencing is done using the Google Maps API to get address information according to the coordinates in the data. After that, geographic join is done to link survey data with customer data already owned by PDAM Surya Sembada Surabaya.

Keywords: mobile mapping, GNSS, IMU, similarity, classification

Procedia PDF Downloads 13
273 Satellite Multispectral Remote Sensing of Ozone Pollution

Authors: Juan Cuesta

Abstract:

Satellite observation is a fundamental component of air pollution monitoring systems, such as the large-scale Copernicus Programme. Next-generation satellite sensors, in orbit or programmed in the future, offer great potential to observe major air pollutants, such as tropospheric ozone, with unprecedented spatial and temporal coverage. However, satellite approaches developed for remote sensing of tropospheric ozone are based solely on measurements from a single instrument in a specific spectral range, either thermal infrared or ultraviolet. These methods offer sensitivity to tropospheric ozone located at the lowest at 3 or 4 km altitude above the surface, thus limiting their applications for ozone pollution analysis. Indeed, no current observation of a single spectral domain provides enough information to accurately measure ozone in the atmospheric boundary layer. To overcome this limitation, we have developed a multispectral synergism approach, called "IASI+GOME2", at the Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA) laboratory. This method is based on the synergy of thermal infrared and ultraviolet observations of respectively the Infrared Atmospheric Sounding Interferometer (IASI) and the Global Ozone Monitoring Experiment-2 (GOME-2) sensors embedded in MetOp satellites that have been in orbit since 2007. IASI+GOME2 allowed the first satellite observation of ozone plumes located between the surface and 3 km of altitude (what we call the lowermost troposphere), as it offers significant sensitivity in this layer. This represents a major advance for the observation of ozone in the lowermost troposphere and its application to air quality analysis. The ozone abundance derived by IASI+GOME2 shows a good agreement with respect to independent observations of ozone based on ozone sondes (a low mean bias, a linear correlation larger than 0.8 and a mean precision of about 16 %) around the world during all seasons. Using IASI+GOME2, lowermost tropospheric ozone pollution plumes are quantified both in terms of concentrations and also in the amounts of ozone photo-chemically produced along transport and also enabling the characterization of the ozone pollution, such as what occurred during the lockdowns linked to the COVID-19 pandemic. The current paper will show the IASI+GOME2 multispectral approach to observe the lowermost tropospheric ozone from space and an overview of several applications on different continents and at a global scale.

Keywords: ozone pollution, multispectral synergism, satellite, air quality

Procedia PDF Downloads 10
272 Development of Risk-Based Dam Safety Framework in Climate Change Condition for Batu Dam, Malaysia

Authors: Wan Noorul Hafilah Binti Wan Ariffin

Abstract:

Dam safety management is the crucial infrastructure as dam failure has a catastrophic effect on the community. Dam safety management is the effective framework of key actions and activities for the dam owner to manage the safety of the dam for its entire life cycle. However, maintaining dam safety is a challenging task as there are changes in current dam states. These changes introduce new risks to the dam's safety, which had not been considered when the dam was designed. A new framework has to be developed to adapt to the changes in the dam risk and make the dams resilient. This study proposes a risk-based decision-making adaptation framework for dam safety management. The research focuses on climate change's impact on hydrological situations as it causes floods and damages the dam structure. The risk analysis framework is adopted to improve the dam management strategies. The proposed study encompasses four phases. To start with, measuring the effect by assessing the impact of climate change on embankment dam, the second phase is to analyze the potential embankment dam failures. The third is analyzing the different components of risks related to the dam and, finally, developing a robust decision-making framework.

Keywords: climate change, embankment dam, failure, risk-informed decision making

Procedia PDF Downloads 22
271 Web and Smart Phone-based Platform Combining Artificial Intelligence and Satellite Remote Sensing Data to Geoenable Villages for Crop Health Monitoring

Authors: Siddhartha Khare, Nitish Kr Boro, Omm Animesh Mishra

Abstract:

Recent food price hikes may signal the end of an era of predictable global grain crop plenty due to climate change, population expansion, and dietary changes. Food consumption will treble in 20 years, requiring enormous production expenditures. Climate and the atmosphere changed owing to rainfall and seasonal cycles in the past decade. India's tropical agricultural relies on evapotranspiration and monsoons. In places with limited resources, the global environmental change affects agricultural productivity and farmers' capacity to adjust to changing moisture patterns. Motivated by these difficulties, satellite remote sensing might be combined with near-surface imaging data (smartphones, UAVs, and PhenoCams) to enable phenological monitoring and fast evaluations of field-level consequences of extreme weather events on smallholder agriculture output. To accomplish this technique, we must digitally map all communities agricultural boundaries and crop kinds. With the improvement of satellite remote sensing technologies, a geo-referenced database may be created for rural Indian agriculture fields. Using AI, we can design digital agricultural solutions for individual farms. Main objective is to Geo-enable each farm along with their seasonal crop information by combining Artificial Intelligence (AI) with satellite and near-surface data and then prepare long term crop monitoring through in-depth field analysis and scanning of fields with satellite derived vegetation indices. We developed an AI based algorithm to understand the timelapse based growth of vegetation using PhenoCam or Smartphone based images. We developed an android platform where user can collect images of their fields based on the android application. These images will be sent to our local server, and then further AI based processing will be done at our server. We are creating digital boundaries of individual farms and connecting these farms with our smart phone application to collect information about farmers and their crops in each season. We are extracting satellite-based information for each farm from Google earth engine APIs and merging this data with our data of tested crops from our app according to their farm’s locations and create a database which will provide the data of quality of crops from their location.

Keywords: artificial intelligence, satellite remote sensing, crop monitoring, android and web application

Procedia PDF Downloads 15
270 Flood Devastation Assessment Through Mapping in Nigeria-2022 using Geospatial Techniques

Authors: Hafiz Muhammad Tayyab Bhatti, Munazza Usmani

Abstract:

One of nature's most destructive occurrences, floods do immense damage to communities and economic losses. Nigeria country, specifically southern Nigeria, is known for being prone to flooding. Even though periodic flooding occurs in Nigeria frequently, the floods of 2022 were the worst since those in 2012. Flood vulnerability analysis and mapping are still lacking in this region due to the very limited historical hydrological measurements and surveys on the effects of floods, which makes it difficult to develop and put into practice efficient flood protection measures. Remote sensing and Geographic Information Systems (GIS) are useful approaches to detecting, determining, and estimating the flood extent and its impacts. In this study, NOAA VIIR has been used to extract the flood extent using the flood water fraction data and afterward fused with GIS data for some zonal statistical analysis. The estimated possible flooding areas are validated using satellite imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS). The goal is to map and studied flood extent, flood hazards, and their effects on the population, schools, and health facilities for each state of Nigeria. The resulting flood hazard maps show areas with high-risk levels clearly and serve as an important reference for planning and implementing future flood mitigation and control strategies. Overall, the study demonstrated the viability of using the chosen GIS and remote sensing approaches to detect possible risk regions to secure local populations and enhance disaster response capabilities during natural disasters.

Keywords: flood hazards, remote sensing, damage assessment, GIS, geospatial analysis

Procedia PDF Downloads 18
269 Geospatial Modeling of Dry Snow Avalanches Distribution Using Geographic Information Systems and Remote Sensing: A Case Study of the Šar Mountains (Balkan Peninsula)

Authors: Uroš Durlević, Ivan Novković, Nina Čegar, Stefanija Stojković

Abstract:

Snow avalanches represent one of the most dangerous natural phenomena in mountain regions worldwide. Material and human casualties caused by snow avalanches can be very significant. In this study, using geographic information systems and remote sensing, the natural conditions of the Šar Mountains were analyzed for geospatial modeling of dry slab avalanches. For this purpose, the Fuzzy Analytic Hierarchy Process (FAHP) multi-criteria analysis method was used, within which fifteen environmental criteria were analyzed and evaluated. Based on the existing analyzes and results, it was determined that a significant area of the Šar Mountains is very highly susceptible to the occurrence of dry slab avalanches. The obtained data can be of significant use to local governments, emergency services, and other institutions that deal with natural disasters at the local level. To our best knowledge, this is one of the first research in the Republic of Serbia that uses the FAHP method for geospatial modeling of dry slab avalanches.

Keywords: GIS, FAHP, Šar Mountains, snow avalanches, environmental protection

Procedia PDF Downloads 12
268 The Impacts of the COVID-19 Pandemic on Social Activities and Residential Areas

Authors: Asghar Motea Noparvar

Abstract:

According to the World Health Organization (WHO), the coronavirus disease (COVID-19), which has been characterized as a pandemic since December 2019, is attacking societies in terms of different ways. It means that this is much more than a crisis that is related to human health. It is a human, economic and social crisis. Since December 2019, not only some significant transformations have happened in human life, but also there has been some mental health, daily life activities, and even urban space changes. The purpose of this study is to mention some tangible transformations in society by applying two main restrictions such as “lock down” and “social distancing,” and how people took refuge in their homes and fit every activity there. How this pandemic has been transforming human life and social activities is the main issue of this study. In order to gather the information, review the impacts of COVID-19 on social life by revising the literature and considering the “Risk Society” theory, which is gotten credited by a German sociologist, Ulrich Beck. Additionally, COVID-19 not only had a direct impact on health but also had significant impacts on the economy, education, tourism, the environment, and the construction industry. Therefore, the pandemic caused a disruption in the whole urban system. In this study, the main focused point is the transformation of activities and residential areas. In order to achieve this finding, the literature review is analyzed in the case of COVID-19 and its impacts on social life. To sum up, it can be concluded that a pandemic can change social life along with other transformations that it is able to do.

Keywords: infectious disease, COVID-19, social activities, residential areas, transformation

Procedia PDF Downloads 3
267 Effects of Directivity and Fling step on buildings equipped with J-Hook Sandwich Composite Walls and Reinforced Concrete Shear Walls

Authors: Majid Saaly, Shahriar Tavousi Tafreshi, Mehdi Nazari Afshar

Abstract:

The structural systems with the sandwich composite wall (SCSSC) are of very popular due to their ductileness and competency to swallow more energy and power than standard reinforced concrete shear walls. The purpose of this enhanced system is in high-rise building, Nuclear power plant facilities, and bridge slabs are much more. SCSSCs showed acceptable seismic performance under experimental tests and cyclic loading from the points of view of in-plane and out-of-plane shear and flexural interaction, in-plane punching shear, and compressive behavior. The use of sandwich composite walls with J-hook connectors has a significant effect on energy dissipation and reduction of dynamic responses of mid-rise and high-rise structural models. By changing the systems of the building from SW to SCWJ, the maximum inter-story drift values of ten- and fifteen-story models are reduced by up to 25% and 35%, respectively.

Keywords: J-Hook sandwich composite walls, fling step, directivity, IDA analyses, fractile curves

Procedia PDF Downloads 34
266 Use of Waste Tire Rubber Alkali-Activated-Based Mortars in Repair of Concrete Structures

Authors: Mohammad Ebrahim Kianifar, Ehsan Ahmadi

Abstract:

Reinforced concrete structures experience local defects such as cracks over their lifetime under various environmental loadings. Consequently, they are repaired by mortars to avoid detrimental effects such as corrosion of reinforcement, which in long-term may lead to strength loss of a member or collapse of structures. However, repaired structures may need multiple repairs due to changes in load distribution, and thus, lack of compatibility between mortar and substrate concrete. On the other hand, waste tire rubber alkali-activated (WTRAA)-based materials have very high potential to be used as repair mortars because of their ductility and flexibility, which may delay the failure of repair mortar and thus, provide sufficient compatibility. Hence, this work presents a pioneering study on suitability of WTRAA-based materials as mortars for the repair of concrete structures through an experimental program. To this end, WTRAA mortars with 15% aggregate replacement, alkali-activated (AA) mortars, and ordinary mortars are made to repair a number of concrete beams. The WTRAA mortars are composed of slag as base material, sodium hydroxide as an alkaline activator, and different gradations of waste tire rubber (fine and coarse gradations). Flexural tests are conducted on the concrete beams repaired by the ordinary, AA, and WTRAA mortars. It is found that, despite having lower compressive strength and modulus of elasticity, the WTRAA and AA mortars increase the flexural strength of the repaired beams, give compatible failures, and provide sufficient mortar-concrete interface bondings. The ordinary mortars, however, show incompatible failure modes. This study demonstrates the promising application of WTRAA mortars in the practical repairs of concrete structures.

Keywords: alkali-activated mortars, concrete repair, mortar compatibility, flexural strength, waste tire rubber

Procedia PDF Downloads 50
265 Airflow Characteristics and Thermal Comfort of Air Diffusers: A Case Study

Authors: Tolga Arda Eraslan

Abstract:

The quality of the indoor environment is significant to occupants’ health, comfort, and productivity, as Covid-19 spread throughout the world, people started spending most of their time indoors. Since buildings are getting bigger, mechanical ventilation systems are widely used where natural ventilation is insufficient. Four primary tasks of a ventilation system have been identified indoor air quality, comfort, contamination control, and energy performance. To fulfill such requirements, air diffusers, which are a part of the ventilation system, have begun to enter our lives in different airflow distribution systems. Detailed observations are needed to assure that such devices provide high levels of comfort effectiveness and energy efficiency. This study addresses these needs. The objective of this article is to observe air characterizations of different air diffusers at different angles and their effect on people by the thermal comfort model in CFD simulation and to validate the outputs with the help of data results based on a simulated office room. Office room created to provide validation; Equipped with many thermal sensors, including head height, tabletop, and foot level. In addition, CFD simulations were carried out by measuring the temperature and velocity of the air coming out of the supply diffuser. The results considering the flow interaction between diffusers and surroundings showed good visual illustration.

Keywords: computational fluid dynamics, fanger’s model, predicted mean vote, thermal comfort

Procedia PDF Downloads 33
264 Satellite Data to Understand Changes in Carbon Dioxide for Surface Mining and Green Zone

Authors: Carla Palencia-Aguilar

Abstract:

In order to attain the 2050’s zero emissions goal, it is necessary to know the carbon dioxide changes over time either from pollution to attenuations in the mining industry versus at green zones to establish real goals and redirect efforts to reduce greenhouse effects. Two methods were used to compute the amount of CO2 tons in specific mining zones in Colombia. The former by means of NPP with MODIS MOD17A3HGF from years 2000 to 2021. The latter by using MODIS MYD021KM bands 33 to 36 with maximum values of 644 data points distributed in 7 sites corresponding to surface mineral mining of: coal, nickel, iron and limestone. The green zones selected were located at the proximities of the studied sites, but further than 1 km to avoid information overlapping. Year 2012 was selected for method 2 to compare the results with data provided by the Colombian government to determine range of values. Some data was compared with 2022 MODIS energy values and converted to kton of CO2 by using the Greenhouse Gas Equivalencies Calculator by EPA. The results showed that Nickel mining was the least pollutant with 81 kton of CO2 e.q on average and maximum of 102 kton of CO2 e.q. per year, with green zones attenuating carbon dioxide in 103 kton of CO2 on average and 125 kton maximum per year in the last 22 years. Following Nickel, there was Coal with average kton of CO2 per year of 152 and maximum of 188, values very similar to the subjacent green zones with average and maximum kton of CO2 of 157 and 190 respectively. Iron had similar results with respect to 3 Limestone sites with average values of 287 kton of CO2 for mining and 310 kton for green zones, and maximum values of 310 kton for iron mining and 356 kton for green zones. One of the limestone sites exceeded the other sites with an average value of 441 kton per year and maximum of 490 kton per year, eventhough it had higher attenuation by green zones than a close Limestore site (3.5 Km apart): 371 kton versus 281 kton on average and maximum 416 kton versus 323 kton, such vegetation contribution is not enough, meaning that manufacturing process should be improved for the most pollutant site. By comparing bands 33 to 36 for years 2012 and 2022 from January to August, it can be seen that on average the kton of CO2 were similar for mining sites and green zones; showing an average yearly balance of carbon dioxide emissions and attenuation. However, efforts on improving manufacturing process are needed to overcome the carbon dioxide effects specially during emissions’ peaks because surrounding vegetation cannot fully attenuate it.

Keywords: carbon dioxide, MODIS, surface mining, vegetation

Procedia PDF Downloads 37
263 Comparison between Hardy-Cross Method and Water Software to Solve a Pipe Networking Design Problem for a Small Town

Authors: Ahmed Emad Ahmed, Zeyad Ahmed Hussein, Mohamed Salama Afifi, Ahmed Mohammed Eid

Abstract:

Water has a great importance in life. In order to deliver water from resources to the users, many procedures should be taken by the water engineers. One of the main procedures to deliver water to the community is by designing pressurizer pipe networks for water. The main aim of this work is to calculate the water demand of a small town and then design a simple water network to distribute water resources among the town with the smallest losses. Literature has been mentioned to cover the main point related to water distribution. Moreover, the methodology has introduced two approaches to solve the research problem, one by the iterative method of Hardy-cross and the other by water software Pipe Flow. The results have introduced two main designs to satisfy the same research requirements. Finally, the researchers have concluded that the use of water software provides more abilities and options for water engineers.

Keywords: looping pipe networks, hardy cross networks accuracy, relative error of hardy cross method

Procedia PDF Downloads 28
262 Using the GIS Technology for Erosion Risk Mapping of BEN EL WIDAN Dam Watershed in Beni Mallal, Marroco

Authors: Azzouzi Fadoua

Abstract:

This study focuses on the diagnosis of the dynamics of natural resources in a semi-arid mountainous weakened by natural vulnerability and anthropogenic action. This is evident in the forms of hydraulic erosion and degradation of agricultural land. The rate of this damaged land is 53%, with a strong presence of concentrated erosion; this shows that balanced and semi-balanced environments are less apparent to the Watershed, representing 47%. The results revealed the crucial role of the slopes and the density of the hydraulic networks to facilitate the transport of fine elements, at the level of the slopes with low vegetation intensity, to the lake of the dam. Something that endangers the siltation of the latter. After the study of natural and anthropogenic elements, it turned out that natural vulnerability is an integral part of the current dynamic, especially when it coincides with the overexploitation of natural resources, in this case, the exploitation of steep slopes for the cultivation of cereals and overgrazing. This causes the soil to pile up and increase the rate of runoff.

Keywords: watershed, erosion, natural vulnerability, anthropogenic

Procedia PDF Downloads 47
261 GIS Data Governance: GIS Data Submission Process for Build-in Project, Replacement Project at Oman electricity Transmission Company

Authors: Rahma Saleh Hussein Al Balushi

Abstract:

Oman Electricity Transmission Company's (OETC) vision is to be a renowned world-class transmission grid by 2025, and one of the indications of achieving the vision is obtaining Asset Management ISO55001 certification, which required setting out a documented Standard Operating Procedures (SOP). Hence, documented SOP for the Geographical information system data process has been established. Also, to effectively manage and improve OETC power transmission, asset data and information need to be governed as such by Asset Information & GIS department. This paper will describe in detail the current GIS data submission process and the journey for developing it. The methodology used to develop the process is based on three main pillars, which are system and end-user requirements, Risk evaluation, data availability, and accuracy. The output of this paper shows the dramatic change in the used process, which results subsequently in more efficient, accurate, and updated data. Furthermore, due to this process, GIS has been and is ready to be integrated with other systems as well as the source of data for all OETC users. Some decisions related to issuing No objection certificates (NOC) for excavation permits and scheduling asset maintenance plans in Computerized Maintenance Management System (CMMS) have been made consequently upon GIS data availability. On the Other hand, defining agreed and documented procedures for data collection, data systems update, data release/reporting and data alterations has also contributed to reducing the missing attributes and enhance data quality index of GIS transmission data. A considerable difference in Geodatabase (GDB) completeness percentage was observed between the years 2017 and year 2022. Overall, concluding that by governance, asset information & GIS department can control the GIS data process; collect, properly record, and manage asset data and information within the OETC network. This control extends to other applications and systems integrated with/related to GIS systems.

Keywords: asset management ISO55001, standard procedures process, governance, CMMS

Procedia PDF Downloads 40
260 Revisiting Pedestrians’ Appraisals of Urban Streets

Authors: Norhaslina Hassan, Sherina Rezvanipour, Amirhosein Ghaffarian Hoseini, Ng Siew Cheok

Abstract:

The walkability features of urban streets are prominent factors that are often focused on achieving a pedestrian-friendly environment. The limited attention that walkability enhancements devote to pedestrians' experiences or perceptions, on the other hand, raises the question of whether walkability enhancement is sufficient for pedestrians to enjoy using the streets. Thus, this paper evaluates the relationship between the socio-physical components of urban streets and pedestrians’ perceptions. A total of 1152 pedestrians from five urban streets in two major Malaysian cities, Kuala Lumpur, and George Town, Penang, participated in this study. In particular, this study used pedestrian preference scores towards socio-physical attributes that exist in urban streets to assess their impact on pedestrians’ appraisals of street likeability, comfort, and safety. Through analysis, the principal component analysis extracted eight socio-physical components, which were then tested via an ordinal regression model to identify their impact on pedestrian street likeability, comfort (visual, auditory, haptic and olfactory), and safety (physical safety, environmental safety, and security). Furthermore, a non-parametric Kruskal Wallis test was used to identify whether the results were subjected to any socio-demographic differences. The results found that all eight components had some degree of effect on the appraisals. It was also revealed that pedestrians’ preferences towards the attributes as well as their appraisals significantly varied based on their age, gender, ethnicity and education. These results and their implications for urban planning are further discussed in this paper.

Keywords: pedestrian appraisal, pedestrian perception, street sociophysical attributes, walking experience

Procedia PDF Downloads 47
259 A Quantitative Analysis of Rural to Urban Migration in Morocco

Authors: Donald Wright

Abstract:

The ultimate goal of this study is to reinvigorate the philosophical underpinnings the study of urbanization with scientific data with the goal of circumventing what seems an inevitable future clash between rural and urban populations. To that end urban infrastructure must be sustainable economically, politically and ecologically over the course of several generations as cities continue to grow with the incorporation of climate refugees. Our research will provide data concerning the projected increase in population over the coming two decades in Morocco, and the population will shift from rural areas to urban centers during that period of time. As a result, urban infrastructure will need to be adapted, developed or built to fit the demand of future internal migrations from rural to urban centers in Morocco. This paper will also examine how past experiences of internally displaced people give insight into the challenges faced by future migrants and, beyond the gathering of data, how people react to internal migration. This study employs four different sets of research tools. First, a large part of this study is archival, which involves compiling the relevant literature on the topic and its complex history. This step also includes gathering data bout migrations in Morocco from public data sources. Once the datasets are collected, the next part of the project involves populating the attribute fields and preprocessing the data to make it understandable and usable by machine learning algorithms. In tandem with the mathematical interpretation of data and projected migrations, this study benefits from a theoretical understanding of the critical apparatus existing around urban development of the 20th and 21st centuries that give us insight into past infrastructure development and the rationale behind it. Once the data is ready to be analyzed, different machine learning algorithms will be experimented (k-clustering, support vector regression, random forest analysis) and the results compared for visualization of the data. The final computational part of this study involves analyzing the data and determining what we can learn from it. This paper helps us to understand future trends of population movements within and between regions of North Africa, which will have an impact on various sectors such as urban development, food distribution and water purification, not to mention the creation of public policy in the countries of this region. One of the strengths of this project is the multi-pronged and cross-disciplinary methodology to the research question, which enables an interchange of knowledge and experiences to facilitate innovative solutions to this complex problem. Multiple and diverse intersecting viewpoints allow an exchange of methodological models that provide fresh and informed interpretations of otherwise objective data.

Keywords: climate change, machine learning, migration, Morocco, urban development

Procedia PDF Downloads 27
258 Aerial Survey and 3D Scanning Technology Applied to the Survey of Cultural Heritage of Su-Paiwan, an Aboriginal Settlement, Taiwan

Authors: April Hueimin Lu, Liangj-Ju Yao, Jun-Tin Lin, Susan Siru Liu

Abstract:

This paper discusses the application of aerial survey technology and 3D laser scanning technology in the surveying and mapping work of the settlements and slate houses of the old Taiwanese aborigines. The relics of old Taiwanese aborigines with thousands of history are widely distributed in the deep mountains of Taiwan, with a vast area and inconvenient transportation. When constructing the basic data of cultural assets, it is necessary to apply new technology to carry out efficient and accurate settlement mapping work. In this paper, taking the old Paiwan as an example, the aerial survey of the settlement of about 5 hectares and the 3D laser scanning of a slate house were carried out. The obtained orthophoto image was used as an important basis for drawing the settlement map. This 3D landscape data of topography and buildings derived from the aerial survey is important for subsequent preservation planning as well as building 3D scan provides a more detailed record of architectural forms and materials. The 3D settlement data from the aerial survey can be further applied to the 3D virtual model and animation of the settlement for virtual presentation. The information from the 3D scanning of the slate house can also be used for further digital archives and data queries through network resources. The results of this study show that, in large-scale settlement surveys, aerial surveying technology is used to construct the topography of settlements with buildings and spatial information of landscape, as well as the application of 3D scanning for small-scale records of individual buildings. This application of 3D technology, greatly increasing the efficiency and accuracy of survey and mapping work of aboriginal settlements, is much helpful for further preservation planning and rejuvenation of aboriginal cultural heritage.

Keywords: aerial survey, 3D scanning, aboriginal settlement, settlement architecture cluster, ecological landscape area, old Paiwan settlements, slat house, photogrammetry, SfM, MVS), Point cloud, SIFT, DSM, 3D model

Procedia PDF Downloads 66
257 Research on Key Technologies on Initial Installation of Ultra-Deep-Water Dynamic Umbilical

Authors: Weiwei Xie, Yichao Li

Abstract:

The initial installation of the umbilical can affect the subsequent installation process and final installation. Meanwhile, the design of both ends of the ultra-deep water dynamic umbilical (UDWDU), as well as the design of the surface unit and the subsea production system connected by UDWDU,], varies in different oil and gas fields. To optimize the installation process of UDWDU, on the basis of the summary and analysis of the surface-end and the subsea-end design of UDWDU and the mainstream construction resources, the method of initial installation from the surface unit side or the subsea production system side of UDWDU is studied, and each initiation installation method is pointed out if some difficulties that may be encountered.

Keywords: dynamic umbilical, ultra-deep-water, initial installation, installation process

Procedia PDF Downloads 31
256 FEM Based Numerical Simulation and Analysis of a Landslide Triggered by the Fluctuations of Ground-Water Levels

Authors: Deepak Raj Bhat, Akihiko Wakai, Shigeru Ogita, Yorihiro Tanaka, Kazushige Hayashi, Shinro Abe

Abstract:

In this study, the newly developed finite element methods are used for numerical analysis ofa landslide triggered by the fluctuations of ground-water levels in different cases I-IV. In case I, the ground-water level is fixed in such a way that the overall factor of safety (Fs) would be greater or equal to 1 (i.e., stable condition). Then, the ground-water level is gradually increased up to 1.0 m for, making the overall factor of safety (Fs) less than one (i.e., stable or moving condition). Then, the newly developed finite element model is applied for numerical simulation of the slope for each case. Based on the numerical analysis results of each Cases I-IV, the details of the deformation pattern and shear strain pattern are compared to each other. Moreover, the change in mobilized shear strength and local factor of safety along the slip surface of the landslide for each case are discussed to understand the triggering behaviors of a landslide due to the increased in ground water level. It is expected that this study will help to better understand the role of groundwater fluctuation for triggering of a landslide or slope failure disasters, and it would be also helpful for the judgment of the countermeasure works for the prevention and mitigation of landslide and slope failure disasters in near future.

Keywords: finite element method, ground water fluctuations, constitutive model, landslides, long-term disaster management system

Procedia PDF Downloads 44
255 A Less Complexity Deep Learning Method for Drones Detection

Authors: Mohamad Kassab, Amal El Fallah Seghrouchni, Frederic Barbaresco, Raed Abu Zitar

Abstract:

Detecting objects such as drones is a challenging task as their relative size and maneuvering capabilities deceive machine learning models and cause them to misclassify drones as birds or other objects. In this work, we investigate applying several deep learning techniques to benchmark real data sets of flying drones. A deep learning paradigm is proposed for the purpose of mitigating the complexity of those systems. The proposed paradigm consists of a hybrid between the AdderNet deep learning paradigm and the Single Shot Detector (SSD) paradigm. The goal was to minimize multiplication operations numbers in the filtering layers within the proposed system and, hence, reduce complexity. Some standard machine learning technique, such as SVM, is also tested and compared to other deep learning systems. The data sets used for training and testing were either complete or filtered in order to remove the images with mall objects. The types of data were RGB or IR data. Comparisons were made between all these types, and conclusions were presented.

Keywords: drones detection, deep learning, birds versus drones, precision of detection, AdderNet

Procedia PDF Downloads 47
254 Utilizing Dowel-Laminated Mass Timber Components in Residential Multifamily Structures: A Case Study

Authors: Theodore Panton

Abstract:

As cities in the United States experience critical housing shortages, mass timber presents the opportunity to address this crisis in housing supply while taking advantage of the carbon-positive benefits of sustainably forested wood fiber. Mass timber, however, currently has a low level of adoption in residential multifamily structures due to the risk-averse nature of change within the construction financing, Architecture / Engineering / Contracting (AEC) communities, as well as various agency approval challenges. This study demonstrates how mass timber can be used within the cost and feasibility parameters of a typical multistory residential structure and ultimately address the need for dense urban housing. This study will utilize The Garden District, a mixed-use market-rate housing project in Woodinville, Washington, as a case study to illuminate the potential of mass timber in this application. The Garden District is currently in final stages of permit approval and will commence construction in 2023. It will be the tallest dowel-laminated timber (DLT) residential structure in the United States when completed. This case study includes economic, technical, and design reference points to demonstrate the relevance of the use of this system and its ability to deliver “triple bottom line” results. In terms of results, the study establishes scalable and repeatable approaches to project design and delivery of mass timber in multifamily residential uses and includes economic data, technical solutions, and a summary of end-user advantages. This study discusses the third party tested systems for satisfying acoustical requirements within dwelling units, a key to resolving the use of mass timber within multistory residential use. Lastly, the study will also compare the mass timber solution with a comparable cold formed steel (CFS) system with a similar program, which indicates a net carbon savings of over three million tons over the life cycle of the building.

Keywords: DLT, dowell laminated timber, mass timber, market rate multifamily

Procedia PDF Downloads 54