Abstracts | Bioengineering and Life Sciences
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2115

World Academy of Science, Engineering and Technology

[Bioengineering and Life Sciences]

Online ISSN : 1307-6892

2115 Biosynthesis of Silver Nanoparticles Using Zataria multiflora Extract, and Study of Antibacterial Effects on UTI Bacteria (MDR)

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

Irregular consumption of current antibiotic makes increases of antibiotic resistance between urin pathogens on all worlds. This study selected based on this great community problem. The aim of this study was the biosynthesis of silver nanoparticles from Zataria multiflora extract and then to investigate its antibacterial effect on gram-negative bacilli common in Urinary Tract Infections (UTI) and MDR. The plant used in the present research was Zataria multiflora whose extract was prepared through Soxhlet extraction method. Green synthesis condition of silver nanoparticles was investigated in terms of three parameters including the extract amount, concentration of silver nitrate salt, and temperature. The seizes of nanoparticles were determined by Zetasizer. In order to identify synthesized silver nanoparticles Transmission Electron Microscopy (TEM) and X-ray Diffraction (XRD) methods were used. For evaluating the antibacterial effects of nanoparticles synthesized through biological method different concentrations of silver nanoparticles were studied on 140 cases of Muliple Drug Resistance (MDR) bacteria strains Escherichia coli, Klebsiella pneumoniae, Enterobacter aerogenes, Proteus vulgaris,Citrobacter freundii, Acinetobacter bumanii and Pseudomonas aeruginosa, (each genus of bacteria, 20 samples), which all were MDR and cause urinary tract infections , for identification of bacteria were used of Polymerase Chain Reaction (PCR) test and laboratory methods (Agar well diffusion and Microdilution methods) to assess their sensitivity to Nanoparticles. The data were analyzed using SPSS software by nonparametric Kruskal-Wallis and Mann-Whitney tests. Significant results were found about the effects of silver nitrate concentration, different amounts of Zataria multiflora extract, and temperature on nanoparticles; that is, by increasing the concentration of silver nitrate, extract amount, and temperature, the sizes of synthesized nanoparticles declined. However, the effect of above mentioned factors on particles diffusion index was not significant. Based on the TEM results, particles were mainly spherical shape with a diameter range of 25 to 50 nm. The results of XRD Analysis indicated the formation of Nanostructures and Nanocrystals of silver.. The obtained results of antibacterial effects of different concentrations of silver nanoparticles on according to agar well diffusion and microdilution method, biologically synthesized nanoparticles showed 1000 mg /ml highest and lowest mean inhibition zone diameter in E.coli , Acinetobacter bumanii 23 and 15mm, respectively. MIC was observed for all of bacteria 125mg/ml and for Acinetobacter bumanii 250mg/ml.Comparing the growth inhibitory effect of chemically synthesized Nanoparticles and biologically synthesized Nanoparticles showed that in the chemical method the highest growth inhibition belonged to the concentration of 62.5 mg /ml. The inhibitory effect on the growth all of bacteria causes of urine infection and MDR was observed and by increasing silver ion concentration in Nanoparticles, antibacterial activity increased. Generally, the biological synthesis can be considered an efficient way not only in making Nanoparticles but also for having anti-bacterial properties. It is more biocompatible and may be possess less toxicity than the Nanoparticles synthesized chemically.

Keywords: biosynthesis, MDR bacteria, silver nanoparticles, UTI

Procedia PDF Downloads 0
2114 Using Audio-Visual Aids and Computer-Assisted Language Instruction (CALI) to Overcome Learning Difficulties of Listening in Students of Special

Authors: Sadeq Al Yaari, Muhammad Alkhunayn, Ayman Al Yaari, Montaha Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Fatehi Eissa

Abstract:

Background & Aims: Audio-visual aids and computer-aided language instruction (CALI) have been documented to improve receptive skills, namely listening skills, in normal students. The increased listening has been attributed to the understanding of other interlocutors' speech, but recent experiments have suggested that audio-visual aids and CALI should be tested against the listening of students of special needs to see the effects of the former in the latter. This investigation described the effect of audio-visual aids and CALI on the performance of these students. Methods: Pre-and-posttests were administered to 40 students of special needs of both sexes at al-Malādh school for students of special needs aged between 8 and 18 years old. A comparison was held between this group of students and another similar group (control group). Whereas the former group underwent a listening course using audio-visual aids and CALI, the latter studied the same course with the same speech language therapist (SLT) with the classical method. The outcomes of the two tests for the two groups were qualitatively and quantitatively analyzed. Results: Significant improvement in the performance was found in the first group (treatment group) (posttest= 72.45% vs. pre-test= 25.55%) in comparison to the second (control) (posttest= 25.55% vs. pre-test= 23.72%). In comparison to the males’ scores, the scores of females are higher (1487 scores vs. 1411 scores). Suggested results support the necessity of the use of audio-visual aids and CALI in teaching listening at the schools of students of special needs.

Keywords: listening, receptive skills, audio-visual aids, CALI, special needs

Procedia PDF Downloads 1
2113 Effect of Mistranslating tRNA Alanine on Polyglutamine Aggregation

Authors: Sunidhi Syal, Rasangi Tennakoon, Patrick O'Donoghue

Abstract:

Polyglutamine (polyQ) diseases are a group of diseases related to neurodegeneration caused by repeats of the amino acid glutamine (Q) in the DNA, which translates into an elongated polyQ tract in the protein. The pathological explanation is that the polyQ tract forms cytotoxic aggregates in the neurons, leading to their degeneration. There are no cures or preventative efforts established for these diseases as of today, although the symptoms of these diseases can be relieved. This study specifically focuses on Huntington's disease, which is a type of polyQ disease in which aggregation is caused by the extended cytosine, adenine, guanine (CUG) codon repeats in the huntingtin (HTT) gene, which encodes for the huntingtin protein. Using this principle, we attempted to create six models, which included mutating wildtype tRNA alanine variant tRNA-AGC-8-1 to have glutamine anticodons CUG and UUG so serine is incorporated at glutamine sites in poly Q tracts. In the process, we were successful in obtaining tAla-8-1 CUG mutant clones in the HTTexon1 plasmids with a polyQ tract of 23Q (non-pathogenic model) and 74Q (disease model). These plasmids were transfected into mouse neuroblastoma cells to characterize protein synthesis and aggregation in normal and mistranslating cells and to investigate the effects of glutamines replaced with alanines on the disease phenotype. Notably, we observed no noteworthy differences in mean fluorescence between the CUG mutants for 23Q or 74Q; however, the Triton X-100 assay revealed a significant reduction in insoluble 74Q aggregates. We were unable to create a tAla-8-1 UUG mutant clone, and determining the difference in the effects of the two glutamine anticodons may enrich our understanding of the disease phenotype. In conclusion, by generating structural disruption with the amino acid alanine, it may be possible to find ways to minimize the toxicity of Huntington's disease caused by these polyQ aggregates. Further research is needed to advance knowledge in this field by identifying the cellular and biochemical impact of specific tRNA variants found naturally in human genomes.

Keywords: Huntington's disease, polyQ, tRNA, anticodon, clone, overlap PCR

Procedia PDF Downloads 2
2112 Gestural Pragmatic Inference among Primates: An Experimental Approach

Authors: Siddharth Satishchandran, Brian Khumalo

Abstract:

Humans are able to derive semantic content from syntactic and pragmatic sources. Multimodal evidence from signaling theory, which examines communication between individuals within and across species, suggests that non-human primates possess similar syntactic and pragmatic capabilities. However, the extent remains unknown because primate pragmatics are relatively under-examined. Our paper reviews research within communication theory amongst non-human primates to understand current theoretical trends. We examine evidence for primate pragmatic capacities through observational, experimental, and theoretical work on gestures. Given fragmented theoretical perspectives, we provide a unified framework of communication for future research that contextualizes the available research under code biology. To achieve this, we rely on biological semiotics (biosemiotics), the philosophy of biology investigating prelinguistic meaning-making as a function of signs and codes. We close by discussing areas of potential research for studying gestural pragmatics amongst non-human primates, particularly chimpanzees (Pan troglodytes), Diana monkeys (Cercopithecus diana), and other potential candidates.

Keywords: pragmatics, non-human primates, gestural communication, biological semiotics

Procedia PDF Downloads 6
2111 Literature Review of the Antibacterial Effects of Salvia Officinalis L.

Authors: Benguerine Zohra, Merzak Siham, Bouziane Cheimaa, Si Tayeb Fatima, Jou Siham, Belkessam

Abstract:

Introduction: Antibiotics, widely produced and consumed in large quantities, have proven problematic due to various types of side effects. The development of bacterial resistance to currently available antibiotics has made the search for new antibacterial agents necessary. One alternative strategy to combat antibiotic-resistant bacteria is the use of natural antimicrobial substances such as plant extracts. The objective of this study is to provide an overview of the antibacterial effects of a plant native to the Middle East and Mediterranean regions, Salvia officinalis (sage). Materials and Methods: This review article was conducted by searching studies in the PubMed, Scopus, JSTOR, and SpringerLink databases. The search terms were "Salvia officinalis L." and "antibacterial effects." Only studies that met our inclusion criteria (in English, antibacterial effects of Salvia officinalis L., and primarily dating from 2012 to 2023) were accepted for further review. Results and Discussion: The initial search strategy identified approximately 78 references, with only 13 articles included in this review. The synthesis of the articles revealed that several data sources confirm the antimicrobial effects of S. officinalis. Its essential oil and alcoholic extract exhibit strong bactericidal and bacteriostatic effects against both Gram-positive and Gram-negative bacteria. Conclusion: The significant value of the extract, oil, and leaves of S. officinalis calls for further studies on the other useful and unknown properties of this multi-purpose plant.

Keywords: salvia officinalis, literature review, antibacterial, effects

Procedia PDF Downloads 9
2110 Synergistic Effects of Hydrogen Sulfide and Melatonin in Alleviating Vanadium Toxicity in Solanum lycopersicum L. Plants

Authors: Abazar Ghorbani, W. M. Wishwajith W. Kandegama, Seyed Mehdi Razavi, Moxian Chen

Abstract:

The roles of hydrogen sulfide (H₂S) and melatonin (MT) as gasotransmitters in plants are widely recognised. Nevertheless, the precise nature of their involvement in defensive reactions remains uncertain. This study investigates the impact of the ML-H2S interaction on tomato plants exposed to vanadium (V) toxicity, focusing on synthesising secondary metabolites and V metal sequestration. The treatments applied in this study included a control (T1), V stress (T2), MT+V (T3), MT+H2S+V (T4), MT+hypotaurine (HT)+V (T5), and MT+H2S+HT+V (T6). These treatments were administered: MT (150 µM) as a foliar spray pre-treatment (3X), HT treatment (0.1 mM, an H2S scavenger) as root immersion for 12 hours as pre-treatments, and H2S (NaHS, 0.2 mM) and V (40 mg/L) treatments added to the Hoagland solution for 2 weeks. Results demonstrate that ML and H2S+ML treatments alleviate V toxicity by promoting the transcription of key genes (ANS, F3H, CHS, DFR, PAL, and CHI) involved in phenolic and anthocyanin biosynthesis. Moreover, they decreased V uptake and accumulation and enhanced the transcription of genes involved in glutathione and phytochelatin synthesis (GSH1, PCS, and ABC1), leading to V sequestration in roots and protection against V-induced damage. Additionally, ML and H2S+ML treatments optimize chlorophyll metabolism, and increase internal H2S levels, thereby promoting tomato growth under V stress. The combined treatment of ML+H2S shows superior effects compared to ML alone, suggesting synergistic/interactive effects between these two substances. Furthermore, inhibition of the beneficial impact of ML+H2S and ML treatments by HT, an H2S scavenger, underscores the significant involvement of H₂S in the signaling pathway activated by ML during V toxicity. Overall, these findings suggest that ML requires the presence of endogenous H₂S to mitigate V-induced adverse effects on tomato seedlings.

Keywords: vanadium toxicity, secondary metabolites, vanadium sequestration, h2s-melatonin crosstalk

Procedia PDF Downloads 9
2109 Biophysically Motivated Phylogenies

Authors: Catherine Felce, Lior Pachter

Abstract:

Current methods for building phylogenetic trees from gene expression data consider mean expression levels. With single-cell technologies, we can leverage more information about cell dynamics by considering the entire distribution of gene expression across cells. Using biophysical modeling, we propose a method for constructing phylogenetic trees from scRNA-seq data, building on Felsenstein's method of continuous characters. This method can highlight genes whose level of expression may be unchanged between species, but whose rates of transcription/decay may have evolved over time.

Keywords: phylogenetics, single-cell, biophysical modeling, transcription

Procedia PDF Downloads 12
2108 Cochlear Implants and the Emerging Therapies for Managing Hearing Loss

Authors: Hesham Kozou

Abstract:

Sensorineural hearing loss (SNHL) poses a significant challenge due to limited access to the inner ear for therapies. Emerging treatments such as regenerative, genetic, and pharmacotherapies offer hope for addressing this condition. This study aims to highlight the potential of cochlear implants and emerging therapies in managing sensorineural hearing loss by improving access to the inner ear. The study is conducted through a review of relevant literature and research articles in the field of cochlear implants and emerging therapies for hearing loss. It outlines how advancements in cochlear implant technologies, electrodes, and surgical techniques can facilitate the delivery of therapies to the inner ear, potentially revolutionizing the treatment of sensorineural hearing loss. The study underscores the potential of cochlear implants and emerging therapies in revolutionizing the treatment landscape for sensorineural hearing loss, emphasizing the feasibility of curing this condition by leveraging technological advancements.

Keywords: therapies for hearing loss management, future of CI as a cochlear delivery channel, regenerative, genetic and pharmacotherapeutic management of hearing loss

Procedia PDF Downloads 14
2107 Mesovarial Morphological Changes in Offspring Exposed to Maternal Cold Stress

Authors: Ariunaa.S., Javzandulam E., Chimegsaikhan S., Altantsetseg B., Oyungerel S., Bat-Erdene T., Naranbaatar S., Otgonbayar B., Suvdaa N., Tumenbayar B.

Abstract:

Introduction: Prenatal stress has been linked to heightened allergy sensitivity in offspring. However, there is a notable absence of research on the mesovarium structure of offspring born from mothers subjected to cold stress during pregnancy. Understanding the impact of maternal cold stress on the mesovarium structure could provide valuable insights into reproductive health outcomes in offspring. Objective: This study aims to investigate structural changes in the mesovarium of offspring born from cold-stress affected rats. Material and Methods: 20 female Westar rats weighing around 200g were chosen and evenly divided into four containers; then, 2-3 male rats were introduced to each container. The Papanicolaou method was used to estimate the spermatozoa and estrus period from vaginal swabs taken from female rats at 8:00 a.m. Female rats examined with the presence of spermatozoa during the estrous phase of the estrous cycle are defined as pregnant. Pregnant rats are divided into experimental and control groups. The experimental group was stressed using the model of severe and chronic cold stress for 30 days. They were exposed to cold stress for 3 hours each morning between 8:00 and 11:00 o’clock at a temperature of minus 15 degrees Celsius. The control group was kept under normal laboratory conditions. Newborn female rats from both experimental and control groups were selected. At 2 months of age, rats were euthanized by decapitation, and their mesovaria were collected. Tissues were fixed in 4% formalin, embedded in paraffin, and sectioned into 5μm thick slices. The sections were stained with H&E and digitized by digital microscope. The area of brown fat and inflammatory infiltrations were quantified using Image J software. The blood cortisol levels were measured using ELISA. Data are expressed as the mean ± standard error of the mean (SEM). The Mann-Whitney test was used to compare the two groups. All analyses were performed using Prism (GraphPad Software). A p-value of < 0.05 was considered statistically significant. Result: Offspring born from stressed mothers exhibited significant physiological differences compared to the control group. Specifically, the body weight of offspring from stressed mothers was significantly lower than the control group (p=0.0002). Conversely, the cortisol level in offspring from stressed mothers was significantly higher (p=0.0446). Offspring born from stressed mothers showed a statistically significant increase in brown fat area compared to the control group (p=0.01). Additionally, offspring from stressed mothers had a significantly higher number of inflammatory infiltrates in their mesovarium compared to the control group (p<0.047). These results indicate the profound impact of maternal stress on offspring physiology, affecting body weight, stress hormone levels, metabolic characteristics, and inflammatory responses. Conclusion: Exposure to cold stress during pregnancy has significant repercussions on offspring physiology. Our findings demonstrate that cold stress exposure leads to increased blood cortisol levels, brown fat accumulation, and inflammatory cell infiltration in offspring. These results underscore the profound impact of maternal stress on offspring health and highlight the importance of mitigating environmental stressors during pregnancy to promote optimal offspring outcomes.

Keywords: brown fat, cold stress during pregnancy, inflammation, mesovarium

Procedia PDF Downloads 12
2106 Osteoarthritis (OA): A Total Knee Replacement Surgery

Authors: Loveneet Kaur

Abstract:

Introduction: Osteoarthritis (OA) is one of the leading causes of disability, and the knee is the most commonly affected joint in the body. The last resort for treatment of knee OA is Total Knee Replacement (TKR) surgery. Despite numerous advances in prosthetic design, patients do not reach normal function after surgery. Current surgical decisions are made on 2D radiographs and patient interviews. Aims: The aim of this study was to compare knee kinematics pre and post-TKR surgery using computer-animated images of patient-specific models under everyday conditions. Methods: 7 subjects were recruited for the study. Subjects underwent 3D gait analysis during 4 everyday activities and medical imaging of the knee joint pre- and one-month post-surgery. A 3D model was created from each of the scans, and the kinematic gait analysis data was used to animate the images. Results: Improvements were seen in a range of motion in all 4 activities 1-year post-surgery. The preoperative 3D images provide detailed information on the anatomy of the osteoarthritic knee. The postoperative images demonstrate potential future problems associated with the implant. Although not accurate enough to be of clinical use, the animated data can provide valuable insight into what conditions cause damage to both the osteoarthritic and prosthetic knee joints. As the animated data does not require specialist training to view, the images can be utilized across the fields of health professionals and manufacturing in the assessment and treatment of patients pre and post-knee replacement surgery. Future improvements in the collection and processing of data may yield clinically useful data. Conclusion: Although not yet of clinical use, the potential application of 3D animations of the knee joint pre and post-surgery is widespread.

Keywords: Orthoporosis, Ortharthritis, knee replacement, TKR

Procedia PDF Downloads 16
2105 Characterization of a Putative Type 1 Toxin-Antitoxin System in Shigella Flexneri

Authors: David Sarpong, Waleed Khursheed, Ernest Danquah, Erin Murphy

Abstract:

Shigella is a pathogenic bacterium responsible for shigellosis, a severe diarrheal disease that claims the lives of immunocompromised individuals worldwide. To develop therapeutics against this disease, an understanding of the molecular mechanisms underlying the pathogen’s physiology is crucial. Small non-coding RNAs (sRNAs) have emerged as important regulators of bacterial physiology, including as components of toxin-antitoxin systems. In this study, we investigated the role of RyfA in S. flexneri physiology and virulence. RyfA, originally identified as an sRNA in Escherichia coli, is conserved within the Enterobacteriaceae family, including Shigella. Whereas two copies of ryfA are present in S. dysenteriae, all other Shigella species contain only one copy of the gene. Additionally, we identified a putative open reading frame within the RyfA transcript, suggesting that it may be a dual-functioning gene encoding a small protein in addition to its sRNA function. To study ryfA in vitro, we cloned the gene into an inducible plasmid and observed the effect on bacterial growth. Here, we report that RyfA production inhibits the growth of S. flexneri, and this inhibition is dependent on the contained open reading frame. In-silico analyses have revealed the presence of two divergently transcribed sRNAs, RyfB1 and RyfB2, which share nucleotide complementarity with RyfA and thus are predicted to function as anti-toxins. Our data demonstrate that RyfB2 has a stronger antitoxin effect than RyfB1. This regulatory pattern suggests a novel form of a toxin-antitoxin system in which the activity of a single toxin is inhibited to varying degrees by two sRNA antitoxins. Studies are ongoing to investigate the regulatory mechanism(s) of the antitoxin genes, as well as the downstream targets and mechanism of growth inhibition by the RyfA toxin. This study offers distinct insights into the regulatory mechanisms underlying Shigella physiology and may inform the development of new anti-Shigella therapeutics.

Keywords: sRNA, shigella, toxin-antitoxin, Type 1 toxin antitoxin

Procedia PDF Downloads 18
2104 Histopathological Examination of BALB/C Mice Receiving Strains of Acinetobacter baumannii Resistant to Colistin Antibiotic

Authors: Shahriar Sepahvand, Mohammad Ali Davarpanah

Abstract:

Infections caused by Acinetobacter baumannii are among the common hospital-acquired infections that have seen an increase in antibiotic resistance in recent years. Colistin is the last treatment option against this pathogen. The aim of this study is to investigate the histopathology of BALB/C mice receiving sensitive and resistant strains of Acinetobacter baumannii to colistin. A total of 68 female laboratory mice weighing 30 to 40 grams of the BALB/C breed were studied in this research for three weeks under appropriate laboratory conditions in terms of food and environment. The experimental groups included: control group, second group, third group, fourth group. Lung, liver, spleen, and kidney tissues were removed from anesthetized mice and, after washing in physiological serum, were fixed in 10% formalin for 14 days. For dehydration, alcohol with ascending degrees of 70, 80, 90, and 100 was used. After clearing and soaking in paraffin, the samples were embedded in paraffin. Then, sections with a thickness of 5 microns were prepared and, after staining by hematoxylin-eosin, the samples were ready for study with a light microscope. In liver, spleen, lung, and kidney tissues of mice receiving the colistin-sensitive strain of Acinetobacter baumannii, infiltration of inflammatory cells and hyperemia were observed compared to control group mice. Liver and lung tissues of mice receiving strains of Acinetobacter baumannii resistant to colistin showed tissue destruction in addition to infiltration of inflammatory cells and hyperemia, with more destruction observed in lung tissue.

Keywords: acinetobacter baumannii, colistin antibiotic, histopathological examination, resistant

Procedia PDF Downloads 22
2103 Effect of Heat Treatment on Nutrients, Bioactive Contents and Biological Activities of Red Beet (Beta Vulgaris L.)

Authors: Amessis-Ouchemoukh Nadia, Salhi Rim, Ouchemoukh Salim, Ayad Rabha, Sadou Dyhia, Guenaoui Nawel, Hamouche Sara, Madani Khodir

Abstract:

The cooking method is a key factor influencing the quality of vegetables. In this study, the effect of the most common cooking methods on the nutritional composition, phenolic content, pigment content and antioxidant activities (evaluated by DPPH, ABTS, CUPRAC, FRAP, reducing power and phosphomolybdene method) of fresh, steamed, and boiled red beet was investigated. The fresh samples showed the highest nutritional and bioactive composition compared to the cooked ones. The boiling method didn’t lead to a significant reduction (p< 0.05) in the content of phenolics, flavonoids, flavanols and DPPH, ABTS, FRAP, CUPRAC, phosphomolybdeneum and reducing power capacities. This effect was less pronounced when steam cooking was used, and the losses of bioactive compounds were lower. As a result, steam cooking resulted in greater retention of bioactive compounds and antioxidant activity compared to boiling. Overall, this study suggests that steam cooking is a better method in terms of retention of pigments and bioactive compounds and antioxidant activity of beetroot.

Keywords: beta vulgaris, cooking methods, bioactive compounds, antioxidant activities

Procedia PDF Downloads 22
2102 Chemical Composition and Biological Properties of Algerian Honeys

Authors: Ouchemoukh Salim, Amessis-Ouchemoukh Nadia, Guenaoui Nawel, Moumeni Lynda, Zaidi Hicham, Otmani Amar, Sadou Dyhia

Abstract:

Honey is a hive food rich in carbohydrates and water and it also has a lot of nutrients (enzymes, minerals, organic acids, phytochemicals...). It is used in different nutritional and therapeutic fields. Algerian honey was studied for its physicochemical parameters, nutritional values (moisture, brix, pH, electrical conductivity, and amounts of HMF, proteins, proline, total phenolic compounds and flavonoids) and some biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The antioxidant activities of the samples were estimated using different methods (ABTS, DPPH free radicals scavenging, reducing power, and chelating ferrous activity). All honeys were acidic (3.45≤pH≤4.65). The color varied from mimosa yellow to dark brown. The specific rotation was levorotatory in most honey samples, and the electrical conductivity, hydroxymethylfurfural, and proline values agreed with the international honey requirements. For anti-inflammatory activity, the results showed that the inhibiting capacity of the denaturation of the BSA of the honey analyzed varied from 15 to 75 % with a maximum of activity at the concentration of 0,5 mg/ml. All honey exhibited enzymatic anti-browning on different slices of fruits. In fact, the results showed that the controls have the greatest browning unit compared to the honeys studied and PPO and POD enzymes had the lowest enzyme activity. High significant correlations were found between the color of honey, its antioxidant content and its biological activities (antioxidant, anti-inflammatory and enzymatic anti-browning). The dark color of honey is a good indicator of the best biological properties, therefore, the best nutritional and therapeutic values.

Keywords: honey, physico-chemical parameters, bioactive compounds, biological properties

Procedia PDF Downloads 23
2101 Determining the Effective Substance of Cottonseed Extract on the Treatment of Leishmaniasis

Authors: Mehrosadat Mirmohammadi, Sara Taghdisi, Ali Padash, Mohammad Hossein Pazandeh

Abstract:

Gossypol, a yellowish anti-nutritional compound found in cotton plants, exists in various plant parts, including seeds, husks, leaves, and stems. Chemically, gossypol is a potent polyphenolic aldehyde with antioxidant and therapeutic properties. However, its free form can be toxic, posing risks to both humans and animals. Initially, we extracted gossypol from cotton seeds using n-hexane as a solvent (yield: 84.0 ± 4.0%). We also obtained cotton seed and cotton boll extracts via Soxhlet extraction (25:75 hydroalcoholic ratio). These extracts, combined with cornstarch, formed four herbal medicinal formulations. Ethical approval allowed us to investigate their effects on Leishmania-caused skin wounds, comparing them to glucantime (local ampoule). Herbal formulas outperformed the control group (ethanol only) in wound treatment (p-value 0.05). The average wound diameter after two months did not significantly differ between plant extract ointments and topical glucantime. Notably, cotton boll extract with 1% extra gossypol crystal showed the best therapeutic effect. We extracted gossypol from cotton seeds using n-hexane via Soxhlet extraction. Saponification, acidification, and recrystallization steps followed. FTIR, UV-Vis, and HPLC analyses confirmed the product’s identity. Herbal medicines from cotton seeds effectively treated chronic wounds compared to the ethanol-only control group. Wound diameter differed significantly between extract ointments and glucantime injections. It seems that due to the presence of large amounts of fat in the oil, the extraction of gossypol from it faces many obstacles. The extraction of this compound with our technique showed that extraction from oil has a higher efficiency, perhaps because of the preparation of oil by cold pressing method, the possibility of losing this compound is much less than when extraction is done with Soxhlet. On the other hand, the gossypol in the oil is mostly bound to the protein, which somehow protects the gossypol until the last stage of the extraction process. Since this compound is very sensitive to light and heat, it was extracted as a derivative with acetic acid. Also, in the treatment section, it was found that the ointment prepared with the extract is more effective and Gossypol is one of the effective ingredients in the treatment. Therefore, gossypol can be extracted from the oil and added to the extract from which gossypol has been extracted to make an effective medicine with a certain dose.

Keywords: cottonseed, glucantime, gossypol, leishmaniasis

Procedia PDF Downloads 28
2100 Isolation, Identification and Measurement of Cottonseed Oil Gossypol in the Treatment of Drug-Resistant Cutaneous Leishmaniasis

Authors: Sara Taghdisi, Mehrosadat Mirmohammadi, Mostafa Mokhtarian, Mohammad Hossein Pazandeh

Abstract:

Leishmaniasis is one of the 10 most important diseases of the World Health Organization with health problems in more than 90 countries. Over one billion people are at risk of these diseases on almost every continent. The present human study was performed to evaluate the therapeutic effect of cotton plant on cutaneous leishmaniasis leision. firstly, the cotton seeds were cleaned and grinded to smaller particles. In the second step, the seeds were oiled by cold press method. In order to separate bioactive compound, after saponification of the oil, its gossypol was hydrolyzed and crystalized. finally, the therapeutic effect of Cottonseed Oil on cutaneous leishmaniasis was investigated. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 1.28±0.12. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. This double-blind randomized controlled clinical trial was performed on 88 cases of leishmaniasis wounds. Patients were randomly divided into two groups of 44 cases. two groups received conventional treatment. In addition to the usual treatment (glucantime), the first group received cottonseed oil and the control group received placebo. The results of the present study showed that the surface of lesion before the intervention and in the first to fourth weeks after the intervention was not significantly different between the two groups (P-value> 0.05). But the surface of lesion in the Intervention group in the eighth and twelfth weeks was lower than the control group (P-value <0.05). This study showed that the improvement of leishmaniasis lesion using topical cotton plant mark in the eighth and twelfth weeks after the intervention was significantly more than the control group. Considering the most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them. Therefore, a plant base bioactive compound such as cottonseed oil can be useful whit fewer side effects.

Keywords: cottonseed oil, crystallization, gossypol, leishmaniasis

Procedia PDF Downloads 25
2099 The Effect of Technology on Skin Development and Progress

Authors: Haidy Weliam Megaly Gouda

Abstract:

Dermatology is often a neglected specialty in low-resource settings despite the high morbidity associated with skin disease. This becomes even more significant when associated with HIV infection, as dermatological conditions are more common and aggressive in HIV-positive patients. African countries have the highest HIV infection rates, and skin conditions are frequently misdiagnosed and mismanaged because of a lack of dermatological training and educational material. The frequent lack of diagnostic tests in the African setting renders basic clinical skills all the more vital. This project aimed to improve the diagnosis and treatment of skin disease in the HIV population in a district hospital in Malawi. A basic dermatological clinical tool was developed and produced in collaboration with local staff and based on available literature and data collected from clinics. The aim was to improve diagnostic accuracy and provide guidance for the treatment of skin disease in HIV-positive patients. A literature search within Embassy, Medline and Google Scholar was performed and supplemented through data obtained from attending 5 Antiretroviral clinics. From the literature, conditions were selected for inclusion in the resource if they were described as specific, more prevalent, or extensive in the HIV population or have more adverse outcomes if they develop in HIV patients. Resource-appropriate treatment options were decided using Malawian Ministry of Health guidelines and textbooks specific to African dermatology. After the collection of data and discussion with local clinical and pharmacy staff, a list of 15 skin conditions was included, and a booklet was created using the simple layout of a picture, a diagnostic description of the disease and treatment options. Clinical photographs were collected from local clinics (with full consent of the patient) or from the book ‘Common Skin Diseases in Africa’ (permission granted if fully acknowledged and used in a not-for-profit capacity). This tool was evaluated by the local staff alongside an educational teaching session on skin disease. This project aimed to reduce uncertainty in diagnosis and provide guidance for appropriate treatment in HIV patients by gathering information into one practical and manageable resource. To further this project, we hope to review the effectiveness of the tool in practice.

Keywords: prevalence and pattern of skin diseases, impact on quality of life, rural Nepal, interventions, quality switched ruby laser, skin color river blindness, clinical signs, circularity index, grey level run length matrix, grey level co-occurrence matrix, local binary pattern, object detection, ring detection, shape identification

Procedia PDF Downloads 22
2098 Identification of the Putative Interactome of Escherichia coli Glutaredoxin 2 by Affinity Chromatography

Authors: Eleni Poulou-Sidiropoulou, Charalampos N. Bompas, Martina Samiotaki, Alexios Vlamis-Gardikas

Abstract:

The glutaredoxin (Grx) and thioredoxin (Trx) systems keep the intracellular environment reduced in almost all organisms. In Escherichia coli (E. coli), the Grx system relies on NADPH+ to reduce GSH reductase (GR), the latter reducing oxidized diglutathione to glutathione (GSH) which in turn reduces cytosolic Grxs, the electron donors for different intracellular substrates. In the Trx system, GR and GSH are replaced by Trx reductase (TrxR). Three of the Grxs of E. coli (Grx1, 2, 3) are reduced by GSH, while Grx4 is likely reduced by TrxR. Trx1 and Grx1 from E. coli may reduce ribonucleotide reductase Ia to ensure a constant supply of deoxyribonucleotides for the synthesis of DNA. The role of the other three Grxs is relatively unknown, especially for Grx2 that may amount up to 1 % of total cellular protein in the stationary phase of growth. The protein is known as a potent antioxidant, but no specific functions have been attributed to it. Herein, affinity chromatography of cellular extracts on immobilized Grx2, followed by MS analysis of the resulting eluates, was employed to identify protein ligands that could provide insights into the biological role of Grx2. Ionic, strong non-covalent, and covalent (disulfide) interactions with relevant proteins were detected. As a means of verification, the identified ligands were subjected to in silico docking with monothiol Grx2. In other experiments, protein extracts from E. coli cells lacking the gene for Grx2 (grxB) were compared to those of wild type. Taken together, the two approaches suggest that Grx2 is involved in protein synthesis, nucleotide metabolism, DNA damage repair, stress responses, and various metabolic processes. Grx2 appears as a versatile protein that may participate in a wide range of biological pathways beyond its known general antioxidant function.

Keywords: Escherichia coli, glutaredoxin 2, interactome, thiol-disulfide oxidoreductase

Procedia PDF Downloads 22
2097 Biodeterioration and Biodegradation of Historic Parks of UK by Algae

Authors: Syeda Fatima Manzelat

Abstract:

The present study aims to study the groups of algal genera that are responsible for the biodeterioration, biodegradation, and biological pollution of the structures and features of the two historic parks of the UK. Different sites of Campbell Park and Great Linford Manor Park in Milton Keynes are selected to study the morphological, aesthetic, and physical effects of the algal growth. Specimens and swabs were collected mechanically from selected sites. Algal specimens are preserved in Lugol’s solution and labelled with standard information. Photomicrograph analysis of slides using taxonomic keys and visual observation identified algal species that are homogenously and non-homogenously mixed in the aerial, terrestrial, and aquatic habitats. A qualitative study revealed seven classes of Algae. Most of the algal genera isolated have proven records of potential biodegradation, discoloration, and biological pollution. Chlorophyceae was predominantly represented by eleven genera: Chlorella, Chlorococcum Cladophora, Coenochloris Cylindrocapsa, Microspora, Prasiola, Spirogyra, Trentepholia, Ulothrix and Zygnema. Charophyceae is represented by four genera: Cosmarium, Klebsormidium, Mesotaenium, and Mougeotia. Xanthophyceae with two genera, Tribonema and Vaucheria. Bacillariophyceae (Diatoms) are represented by six genera: Acnanthes, Bacillaria, Fragilaria, Gomphonema, Synedra, and Tabellaria, Dinophyceae with a Dinoflagellate. Rhodophyceae included Bangia and Batrachospermum, Cyanophyceae with five genera, Chroococcus, Gloeocapsa, Scytonema, Stigonema and Oscillatoria. The quantitative analysis by statistical method revealed that Chlorophyceae was the predominant class, with eleven genera isolated from different sites of the two parks. Coenochloris of Chlorophyceae was isolated from thirteen sites during the study, followed by Gloeocapsa of Cyanophyceae, which is isolated from 12 sites. These two algae impart varying shades of green colour on the surfaces on which they form biofilms. Prasiola, Vaucheria, and Trentepholia were isolated only from Great Linford Park. Trentepholia imparted a significant orange colour to the walls and trees of the sites. The compounds present in algae that are responsible for discoloration are the green pigment chlorophyll, orange pigment β-carotene, and yellow pigment quinone. Mesotaenium, Dinoflagellate, Gomphonema, Fragilaria, Tabellaria and two unidentified genera were isolated from Campbell Park only. Largest number of algal genera (25) were isolated from the canal of Campbell Park followed by (21) from the canal at Great Linford Manor Park. The Algae were found to grow on surfaces of walls, wooden fencings, metal sculptures, and railings. The Algae are reported to induce surface erosion, natural weathering, and cracking, leading to technical and mechanical instability and extensive damage to building materials. The algal biofilms secrete different organic acids, which are responsible for biosolubilization and biodeterioration of the building materials. The aquatic algal blooms isolated during the study release toxins which are responsible for allergy, skin rashes, vomiting, diarrhea, fever, muscle spasms, and lung and throat infections. The study identifies the places and locations at the historic sites which need to be paid attention. It provides an insight to the conservation strategies to overcome the negative impacts of bio colonization by algae. Prevention measures by different treatments need to be regularly monitored.

Keywords: algae, biodegradation, historic gardens, UK

Procedia PDF Downloads 27
2096 Expansion of Possible Cellular Functions of Protein Interactome of Escherichia coli Glutaredoxin 3

Authors: Charalampos N. Bompas, Eleni Poulou-Sidiropoulou, Martina Samiotaki, Alexios Vlamis-Gardikas

Abstract:

Ιn all living organisms, antioxidant defenses are orchestrated by the thioredoxin (Trx) and glutaredoxin (Grx) systems. The Trx system of Escherichia coli (E. coli) is comprised of Trx1 and Trx2, both reduced by thioredoxin reductase (TrxR). The Grx system consists of four Grxs (Grx1, Grx2, Grx3, and Grx4), all reduced by glutathione (GSH) except for Grx4, which is reduced by TrxR. Under normal conditions, the GSH reductase of the Grx system keeps GSH at its reduced state. NADPH+ provides the electrons for all reductions in the Trx and Grx systems. Although the role of the E. coli Trx system is widely known, the function of the Grx system reflects the main property of Grx1, which is the reduction of ribonucleotide reductase Ia (RRIa). E. coli Grx3 (encoded by grxC) may also reduce RRIa in vitro but with slow kinetics. The molecule may account for up to 0.4% of total soluble protein and has been the subject of extensive structural studies. Its biological function, however, remains unknown. Herein, affinity chromatography with monothiol Grx3 serving as bait was used to detect the interactions of Grx3 with other proteins. Different types of interactions were identified (covalent, weak, and strong non-covalent) that suggested novel functions for Grx3. In silico approaches were employed to validate selected interactions. In addition, total protein extracts from the null mutant for grxC and the wild-type strain were compared. The overall findings suggest that Grx3 is involved in various metabolic processes, protein synthesis, and stress responses, expanding the recognized functions of Grx3 beyond the possible reduction of RRIa.

Keywords: escherichia coli, glutaredoxin 3, interactome, thiol-disulfide oxidoreductase

Procedia PDF Downloads 22
2095 The Effect of Nanocomposite on the Release of Imipenem on Bacteria Causing Infections with Implants

Authors: Mohammad Hossein Pazandeh, Monir Doudi, Sona Rostampour Yasouri

Abstract:

—Results The prudent administration of antibiotics aims to avoid the side effects and the microbes' resistance to antibiotics. An approach developing methods of local administration of antibiotics is especially required for localized infections caused by bacterial colonization of medical devices or implant materials. Among the wide variety of materials used as drug delivery systems, bioactive glasses (BG) have large utilization in regenerative medicine . firstly, the production of bioactive glass/nickel oxide/tin dioxide nanocomposite using sol-gel method, and then, the controlled release of imipenem from the double metal oxide/bioactive glass nanocomposite, and finally, the investigation of the antibacterial property of the nanocomposite. against a number of implant-related infectious agents. In this study, BG/SnO2 and BG/NiO single systema with different metal oxide present and BG/NiO/SnO2 nanocomposites were synthesized by sol-gel as drug carriers for tetracycline and imepinem. These two antibiotics were widely used for osteomyelitis because of its favorable penetration and bactericidal effect on all the probable osteomyelitis pathogens. The antibacterial activity of synthesized samples were evaluated against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa as bacteria model using disk diffusion method. The BG modification using metal oxides results to antibacterial property of samples containing metal oxide with highest efficiency for nancomposite. bioactivity of all samples was assessed by determining the surface morphology, structural and composition changes using scanning electron microscopy (SEM), FTIR and X-ray diffraction (XRD) spectroscopy, respectively, after soaking in simulated body fluid (SBF) for 28 days. The hydroxyapatite formation was clearly observed as a bioactivity measurement. Then, BG nanocomposite sample was loaded using two antibiotics, separately and their release profiles were studied. The BG nancomposite sample was shown the slow and continuous drug releasing for a period of 72 hours which is desirable for a drug delivery system. The loaded antibiotic nanocomposite sample retaining antibacterial property and showing inactivation effect against bacteria under test. The modified bioactive glass forming hydroxyapatite with controlled release drug and effective against bacterial infections can be introduced as scaffolds for bone implants after clinical trials for biomedical applications . Considering the formation of biofilm by infectious bacteria after sticking on the surfaces of implants, medical devices, etc. Also, considering the complications of traditional methods, solving the problems caused by the above-mentioned microorganisms in technical and biomedical industries was one of the necessities of this research.

Keywords: antibacterial, bioglass, drug delivery system, sol- gel

Procedia PDF Downloads 26
2094 In Vitro Propagation of Vanilla Planifolia Using Nodal Explants and Varied Concentrations of Naphthaleneacetic acid (NAA) and 6-Benzylaminopurine (BAP).

Authors: Jessica Arthur, Duke Amegah, Kingsley Akenten Wiafe

Abstract:

Background: Vanilla planifolia is the only edible fruit of the orchid family (Orchidaceae) among the over 35,000 Orchidaceae species found worldwide. In Ghana, Vanilla was discovered in the wild, but it is underutilized for commercial production, most likely due to a lack of knowledge on the best NAA and BAP combinations for in vitro propagation to promote successfully regenerated plant acclimatization. The growing interest and global demand for elite Vanilla planifolia plants and natural vanilla flavour emphasize the need for an effective industrial-scale micropropagation protocol. Tissue culture systems are increasingly used to grow disease-free plants and reliable in vitro methods can also produce plantlets with typically modest proliferation rates. This study sought to develop an efficient protocol for in vitro propagation of vanilla using nodal explants by testing different concentrations of NAA and BAP, for the proliferation of the entire plant. Methods: Nodal explants with dormant axillary buds were obtained from year-old laboratory-grown Vanilla planifolia plants. MS media was prepared with a nutrient stock solution (containing macronutrients, micronutrients, iron solution and vitamins) and semi-solidified using phytagel. It was supplemented with different concentrations of NAA and BAP to induce multiple shoots and roots (0.5mg/L BAP with NAA at 0, 0.5, 1, 1.5, 2.0mg/L and vice-versa). The explants were sterilized, cultured in labelled test tubes and incubated at 26°C ± 2°C with 16/8 hours light/dark cycle. Data on shoot and root growth, leaf number, node number, and survival percentage were collected over three consecutive two-week periods. The data were square root transformed and subjected to ANOVA and LSD at a 5% significance level using the R statistical package. Results: Shoots emerged at 8 days and roots at 12 days after inoculation with 94% survival rate. It was discovered that for the NAA treatments, MS media supplemented with 2.00 mg/l NAA resulted in the highest shoot length (10.45cm), maximum root number (1.51), maximum shoot number (1.47) and the highest number of leaves (1.29). MS medium containing 1.00 mg/l NAA produced the highest number of nodes (1.62) and root length (14.27cm). Also, a similar growth pattern for the BAP treatments was observed. MS medium supplemented with 1.50 mg/l BAP resulted in the highest shoot length (14.98 cm), the highest number of nodes (4.60), the highest number of leaves (1.75) and the maximum shoot number (1.57). MS medium containing 0.50 mg/l BAP and 1.0 mg/l BAP generated a maximum root number (1.44) and the highest root length (13.25cm), respectively. However, the best concentration combination for maximizing shoot and root was media containing 1.5mg/l BAP combined with 0.5mg/l NAA, and 1.0mg/l NAA combined with 0.5mg/l of BAP respectively. These concentrations were optimum for in vitro growth and production of Vanilla planifolia. Significance: This study presents a standardized protocol for labs to produce clean vanilla plantlets, enhancing cultivation in Ghana and beyond. It provides insights into Vanilla planifolia's growth patterns and hormone responses, aiding future research and cultivation.

Keywords: Vanilla planifolia, In vitro propagation, plant hormones, MS media

Procedia PDF Downloads 28
2093 Inherited Eye Diseases in Africa: A Scoping Review and Strategy for an African Longitudinal Eye Study

Authors: Bawa Yusuf Muhammad, Musa Abubakar Kana, Aminatu Abdulrahman, Kerry Goetz

Abstract:

Background: Inherited eye diseases are disorders that affect globally, 1 in 1000 people. The six main world populations have created databases containing information on eye genotypes. Aim: The aim of the scoping review was to mine and present the available information to date on the genetics of inherited eye diseases within the African continent. Method: Literature Search Strategy was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). PubMed and Google Scholar searched for articles on inherited eye diseases from inception to 20th June 2022. Both Original and review articles that report on inherited, genetic or developmental/congenital eye diseases within the African Continent were included in the research. Results: A total of 1162 citations were obtained, but only 37 articles were reviewed based on the inclusion and exclusion criteria. The highest output of publications on inherited eye diseases comes from South Africa and Tunisia (about 43%), followed by Morocco and Egypt (27%), then Sub-Saharan Africa and North Africa (13.50%), while the remaining articles (16.5%) originated from Nigeria, Ghana, Mauritania Cameroon, Zimbabwe and combined article between Zimbabwe and Cameroon. Glaucoma and inherited retinal disorders represent the most studied diseases, followed by Albinism and congenital cataracts, respectively. Conclusion: Despite the growing research from Tunisia, Morocco, Egypt and South Africa, Sub-Saharan Africa remains almost a virgin region to explore the genetics of eye diseases.

Keywords: inherited eye diseases, Africa, scoping review, longitudinal eye study

Procedia PDF Downloads 26
2092 Soft Exoskeleton Elastomer Pre-Tension Drive Control System

Authors: Andrey Yatsun, Andrei Malchikov

Abstract:

Exoskeletons are used to support and compensate for the load on the human musculoskeletal system. Elastomers are an important component of exoskeletons, providing additional support and compensating for the load. The algorithm of the active elastomer tension system provides the required auxiliary force depending on the angle of rotation and the tilt speed of the operator's torso. Feedback for the drive is provided by a force sensor integrated into the attachment of the exoskeleton vest. The use of direct force measurement ensures the required accuracy in all settings of the man-machine system. Non-adjustable elastic elements make it difficult to move without load, tilt forward and walk. A strategy for the organization of the auxiliary forces management system is proposed based on the allocation of 4 operating modes of the human-machine system.

Keywords: soft exoskeleton, mathematical modeling, pre-tension elastomer, human-machine interaction

Procedia PDF Downloads 34
2091 Advancement in Adhesion and Osteogenesis of Stem Cells with Histatin Coated 3D-Printed Bio-Ceramics

Authors: Haiyan Wang, Dongyun Wang, Yongyong Yan, Richard T. Jaspers, Gang Wu

Abstract:

Mesenchymal stem cell and 3D printing-based bone tissue engineering present a promising technique to repair large-volume bone defects. Its success is highly dependent on cell attachment, spreading, osteogenic differentiation, and in vivo survival of stem cells on 3D-printed scaffolds. In this study, human salivary histatin-1 (Hst1) was utilized to enhance the interactions between human adipose-derived stem cells (hASCs) and 3D-printed β-tricalcium phosphate (β-TCP) bioceramic scaffolds. Fluorescent images showed that Hst1 significantly enhanced the adhesion of hASCs to both bioinert glass and 3D-printed β-TCP scaffold. In addition, Hst1 was associated with significantly higher proliferation and osteogenic differentiation of hASCs on 3D-printed β-TCP scaffolds. Moreover, coating 3D-printed β-TCP scaffolds with histatin significantly promotes the survival of hASCs in vivo. The ERK and p38 but not JNK signaling was found to be involved in the superior adhesion of hASCs to β-TCP scaffolds with the aid of Hst1. In conclusion, Hst1 could significantly promote the adhesion, spreading, osteogenic differentiation, and in vivo survival of hASCs on 3D-printed β-TCP scaffolds, bearing a promising application in stem cell/3D printing-based constructs for bone tissue engineering.

Keywords: 3d printing, adipose-derived stem cells, bone tissue engineering, histatin-1, osteogenesis

Procedia PDF Downloads 32
2090 The Effects of Metformin And PCL-sorafenib Nanoparticles Co-treatment on MCF-7 Cell Culture Model of Breast Cancer

Authors: Emad Heydarnia, Aref Sepasi, Nika Asefi, Sara Khakshournia, Javad Mohammadnejad

Abstract:

Background: Despite breakthrough therapeutics in breast cancer, it is one of the main causes of mortality among women worldwide. Thus, drug therapies for treating breast cancer have recently been developed by scientists. Metformin and Sorafenib are well-known therapeutic in breast cancer. In the present study, we combined Sorafenib and PCL-sorafenib with metformin to improve drug absorption and promote therapeutic efficiency. Methods: The MCF-7 cells were treated with Metformin, Sorafenib, or PCL-sorafenib. The growth inhibitory effect of these drugs and cell viability were assessed using MTT and flow cytometry assays, respectively. The expression of targeted genes involved in cell proliferation, signaling, and the cell cycle was measured by Real-time PCR. Results: The results showed that MCF-7 cells treated with Metformin/Sorafenib and PCL-sorafenib/Metformin co-treatment contributed to 50% viability compared to untreated group. Moreover, PI and Annexin V staining tests showed that the cells viability for Metformin/Sorafenib and PCL-sorafenib/Metformin was 38% and 17%, respectively. Furthermore, Sorafenib/Metformin and PCL-sorafenib/Metformin leads to p53 gene expression increase by which they can increase ROS, thereby decreasing GPX4 gene expression. In addition, they affected the expression of BCL2, and BAX genes and altered the cell cycle. Conclusion: Together, the combination of PCL-sorafenib/Metformin and Sorafenib/Metformin increased Sorafenib absorption at lower doses and also leads to apoptosis and oxidative stress increases in MCF-7 cells.

Keywords: breast cancer, metformin, nanotechnology, sorafenib

Procedia PDF Downloads 31
2089 Evaluation of the Antiviral Activity of Dermaseptin Analogs Against Zika Virus

Authors: Houda Haddad, Nolwen Jouvenet, Maxime Chazal, Frédéric Tangy, Amira Zairi

Abstract:

Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders, such as microcephaly and Guillain-Barré syndrome, affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on the HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations except for dermaseptin B2 and its derivative, which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from the S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 μg/mL, unlike the native B2 and its derivative, which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as lead structures for the development of potent antiviral agents against Zika virus infections.

Keywords: dermaseptin B2, dermaseptin S4, analogs, zika virus, neurological infections, antiviral activity

Procedia PDF Downloads 28
2088 Evaluation of the Antibacterial Activity of New Dermaseptin Derivatives Against Acinetobacter Baumannii

Authors: Houda Haddad, Radhia Mejri, , Alyne Rodrigues de Araujo, Amira Zairi

Abstract:

Nosocomial infections represent one of the biggest health problems nowadays. Acinetobacter baumannii is known as an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived infection. It is known that in recent years, more and more bacteria have become multidrug-resistant (MDR), and for this reason, the development of new drugs is a priority. However, these products must not affect the human body, and therefore, cytotoxicity studies are mandatory. In this context, antimicrobial peptides with potential antibacterial proprieties could be an alternative. In this research, we describe the synthesis and the bioactivity of dermaseptins and their derivatives against Acinetobacter baumannii. The cytotoxicity of these dermaseptins was investigated on the HEp-2 cell line by the MTT cell viability assay. Thereafter, we studied morphological alterations caused by the action of one of the active peptides on the bacterial membrane using atomic force microscopy (AFM). The cytotoxicity of dermaseptins was concentration-dependent at microgram concentrations. It was observed that all tested analogs exhibit antibacterial activity with Minimum Inhibitory Concentrations (MICs) ranging from 3.125 to 12.5 μg/mL and Minimum Bactericidal Concentrations (MBCs) ranging from 6.25 to 25 μg/mL. Microscopic images obtained by AFM revealed morphological changes on the surface of treated bacteria caused by K4S4(1-16), as well as significant surface alterations. Overall, these findings demonstrate that dermaseptins might constitute new lead structures for the development of potent antibacterial agents against Acinetobacter baumannii infections.

Keywords: dermaseptin B2, dermaseptin S4, analogs, Acinetobacter baumannii, healthcare-associated infections, antibacterial activity

Procedia PDF Downloads 28
2087 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics

Authors: Nurudeen Oluwasola Lasisi

Abstract:

Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.

Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis

Procedia PDF Downloads 22
2086 Physical Contact Modulation of Macrophage-Mediated Anti-Inflammatory Response in Osteoimmune Microenvironment by Pollen-Like Nanoparticles

Authors: Qing Zhang, Janak L. Pathak, Macro N. Helder, Richard T. Jaspers, Yin Xiao

Abstract:

Introduction: Nanomaterial-based bone regeneration is greatly influenced by the immune microenvironment. Tissue-engineered nanomaterials mediate the inflammatory response of macrophages to regulate bone regeneration. Silica nanoparticles have been widely used in tissue engineering-related preclinical studies. However, the effect of topological features on the surface of silica nanoparticles on the immune response of macrophages remains unknown. Purposes: The aims of this research are to compare the influences of normal and pollen-like silica nano-surface topography on macrophage immune responses and to obtain insight into their potential regulatory mechanisms. Method: Macrophages (RAW 264.7 cells) were exposed to mesoporous silica nanoparticles with normal morphology (MSNs) and pollen-like morphology (PMSNs). RNA-seq, RT-qPCR, and LSCM were used to assess the changes in expression levels of immune response-related genes and proteins. SEM and TEM were executed to evaluate the contact and adherence of silica nanoparticles by macrophages. For the assessment of the immunomodulation-mediated osteogenic potential, BMSCs were cultured with conditioned medium (CM) from LPS pre-stimulated macrophage cultures treated with MSNs or PMSNs. Osteoimmunomodulatory potential of MSNs and PMSNs in vivo was tested in a mouse cranial bone osteolysis model. Results: The results of the RNA-seq, RT-qPCR, and LSCM assays showed that PMSNs inhibited the expression of pro-inflammatory genes and proteins in macrophages. SEM images showed distinct macrophage membrane surface binding patterns of MSNs and PMSNs. MSNs were more evenly dispersed across the macrophage cell membrane, while PMSNs were aggregated. PMSNs-induced macrophage anti-inflammatory response was associated with upregulation of the cell surface receptor CD28 and inhibition of ERK phosphorylation. TEM images showed that both MSNs and PMSNs could be phagocytosed by macrophages, and inhibiting nanoparticle phagocytosis did not affect the expression of anti-inflammatory genes and proteins. Moreover, PMSNs-induced conditioned medium from macrophages enhanced BMP-2 expression and osteogenic differentiation mBMSCs. Similarly, PMSNs prevented LPS-induced bone resorption via downregulation of inflammatory reaction. Conclusions: PMSNs can promote bone regeneration by modulating osteoimmunological processes through surface topography. The study offers insights into how surface physical contact cues can modulate the regulation of osteoimmunology and provides a basis for the application of nanoparticles with pollen-like morphology to affect immunomodulation in bone tissue engineering and regeneration.

Keywords: physical contact, osteoimmunology, macrophages, silica nanoparticles, surface morphology, membrane receptor, osteogenesis, inflammation

Procedia PDF Downloads 30