Search results for: styrene terpolymer
30 Rheological and Thermomechanical Properties of Graphene/ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Konstantina I. Stathi, Petroula A. Tarantili
Abstract:
In the present study, the incorporation of graphene into blends of acrylonitrile-butadiene-styrene terpolymer with polypropylene (ABS/PP) was investigated focusing on the improvement of their thermomechanical characteristics and the effect on their rheological behavior. The blends were prepared by melt mixing in a twin-screw extruder and were characterized by measuring the MFI as well as by performing DSC, TGA and mechanical tests. The addition of graphene to ABS/PP blends tends to increase their melt viscosity, due to the confinement of polymer chains motion. Also, graphene causes an increment of the crystallization temperature (Tc), especially in blends with higher PP content, because of the reduction of surface energy of PP nucleation, which is a consequence of the attachment of PP chains to the surface of graphene through the intermolecular CH-π interaction. Moreover, the above nanofiller improves the thermal stability of PP and increases the residue of thermal degradation at all the investigated compositions of blends, due to the thermal isolation effect and the mass transport barrier effect. Regarding the mechanical properties, the addition of graphene improves the elastic modulus, because of its intrinsic mechanical characteristics and its rigidity, and this effect is particularly strong in the case of pure PP.
Keywords: Acrylonitrile-butadiene-styrene terpolymer, blends, graphene, polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 378629 Monte Carlo Simulation of Copolymer Heterogeneity in Atom Transfer Radical Copolymerization of Styrene and N-Butyl Acrylate
Authors: Mohammad Najafi, Hossein Roghani-Mamaqani, Mehdi Salami-Kalajahi, Vahid Haddadi-Asl
Abstract:
A high-performance Monte Carlo simulation, which simultaneously takes diffusion-controlled and chain-length-dependent bimolecular termination reactions into account, is developed to simulate atom transfer radical copolymerization of styrene and nbutyl acrylate. As expected, increasing initial feed fraction of styrene raises the fraction of styrene-styrene dyads (fAA) and reduces that of n-butyl acrylate dyads (fBB). The trend of variation in randomness parameter (fAB) during the copolymerization also varies significantly. Also, there is a drift in copolymer heterogeneity and the highest drift occurs in the initial feeds containing lower percentages of styrene, i.e. 20% and 5%.Keywords: Atom Transfer Radical Copolymerization, MonteCarlo Simulation, Copolymer Heterogeneity, Styrene n-ButylAcrylate
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 160028 The Effect of Styrene-Butadiene-Rubber (SBR) Polymer Modifier on Properties of Bitumen
Authors: Seyed Abbas Tabatabaei, Alireza Kiasat, Ferdows Karimi Alkouhi
Abstract:
In order to use bitumen in hot mix asphalt, it must have specific characteristics. There are some methods to reach these properties. Using polymer modifiers are one of the methods to modify the bitumen properties. In this paper the effect of Styrene- Butadiene-Rubber that is one of the bitumen polymer modifiers on rheology properties of bitumen is studied. In this regard, the rheological properties of base bitumen and the modified bitumen with 3, 4, and 5 percent of Styrene-Butadiene-Rubber (SBR) were analysed. The results show that bitumen modified with 5 percent of SBR has the best performance than the other samples.
Keywords: Bitumen, polymer modifier, styrene-butadienerubber, rheological properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 439527 Response Surface Based Optimization of Toughness of Hybrid Polyamide 6 Nanocomposites
Authors: E. Hajizadeh, H. Garmabi
Abstract:
Toughening of polyamide 6 (PA6)/ Nanoclay (NC) nanocomposites with styrene-ethylene/butadiene-styrene copolymer (SEBS) using maleated styrene-ethylene/butadiene-styrene copolymer (mSEBS)/ as a compatibilizer were investigated by blending them in a co-rotating twin-screw extruder. Response surface method of experimental design was used for optimizing the material and processing parameters. Effect of four factors, including SEBS, mSEBS and NC contents as material variables and order of mixing as a processing factor, on toughness of hybrid nanocomposites were studied. All the prepared samples showed ductile behavior and low temperature Izod impact toughness of some of the hybrid nanocomposites demonstrated 900% improvement compared to the PA6 matrix while the modulus showed maximum enhancement of 20% compared to the pristine PA6 resin.
Keywords: Hybrid nanocomposites, PA6, SEBS rubber, toughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 162326 Electron Beam Processing of Ethylene-Propylene-Terpolymer-Based Rubber Mixtures
Authors: M. D. Stelescu, E. Manaila, G. Craciun, D. Ighigeanu
Abstract:
The goal of the paper is to present the results regarding the influence of the irradiation dose and amount of multifunctional monomer trimethylol-propane trimethacrylate (TMPT) on ethylene-propylene-diene terpolymer rubber (EPDM) mixtures irradiated in electron beam. Blends, molded on an electrically heated laboratory roller mill and compressed in an electrically heated hydraulic press, were irradiated using the ALID 7 of 5.5 MeV linear accelerator in the dose range of 22.6 kGy to 56.5 kGy in atmospheric conditions and at room temperature of 25 °C. The share of cross-linking and degradation reactions was evaluated by means of sol-gel analysis, cross-linking density measurements, FTIR studies and Charlesby-Pinner parameter (p0/q0) calculations. The blends containing different concentrations of TMPT (3 phr and 9 phr) and irradiated with doses in the mentioned range have present the increasing of gel content and cross-linking density. Modified and new bands in FTIR spectra have appeared, because of both cross-linking and chain scission reactions.
Keywords: Electron beam irradiation, EPDM rubber, crosslinking density, gel fraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 103725 Thermal Stability and Crystallization Behaviour of Modified ABS/PP Nanocomposites
Authors: Marianna I. Triantou, Petroula A. Tarantili
Abstract:
In this research work, poly (acrylonitrile-butadienestyrene)/ polypropylene (ABS/PP) blends were processed by melt compounding in a twin-screw extruder. Upgrading of the thermal characteristics of the obtained materials was attempted by the incorporation of organically modified montmorillonite (OMMT), as well as, by the addition of two types of compatibilizers; polypropylene grafted with maleic anhydride (PP-g-MAH) and ABS grafted with maleic anhydride (ABS-g-MAH). The effect of the above treatments was investigated separately and in combination. Increasing the PP content in ABS matrix seems to increase the thermal stability of their blend and the glass transition temperature (Tg) of SAN phase of ABS. From the other part, the addition of ABS to PP promotes the formation of its β-phase, which is maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. In addition, it increases the crystallization rate of PP.The β-phase of PP in ABS/PP blends is reduced by the addition of compatibilizers or/and organoclay reinforcement. The incorporation of compatibilizers increases the thermal stability of PP and reduces its melting (ΔΗm) and crystallization (ΔΗc) enthalpies. Furthermore it decreases slightly the Tgs of PP and SAN phases of ABS/PP blends. Regarding the storage modulus of the ABS/PP blends, it presents a change in their behavior at about 10°C and return to their initial behavior at ~110°C. The incorporation of OMMT to no compatibilized and compatibilized ABS/PP blends enhances their storage modulus.
Keywords: Acrylonitrile, butadiene, styrene terpolymer, compatibilizer, organoclay, polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290824 Evaluate Aging Effect of SBS Modified Bitumen
Authors: Seyed Abbas Tabatabaei
Abstract:
One of the important factors of cracks on the asphalt pavements is bitumen aging that associated with the loss of volatile components and oxidation of asphalt binder. This paper is about effect of Styrene-Butadiene-Styrene (SBS) polymer on asphalt aging In order to decrease asphalt aging effects. For this purpose samples of base bitumen and SBS modified bitumen aged according to the rolling thin film oven test (RTFOT) and pressure aging vessel (PAV), respectively. Properties of each sample were evaluated using Fourier Transform Infrared (FTIR) spectroscopy, n-heptane precipitation, viscosity test, softening point test and penetration test. FT-IR Analysis, showed lower oxidation of SBS modified bitumen than base bitumen, after aging.Keywords: SBS, Asphalt aging, modified bitumen.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 315023 Comparative Study of Eva and Waste Polymer Modified Bitumen
Authors: Mohammed Sadeque, K. A. Patil
Abstract:
Polymer-modified bitumen is used to combat different pavement distresses and to increase the life span of pavement. Unmodified bitumen cannot perform better with the range extreme minimum and maximum pavement temperatures. The polymers commonly used to modify the bitumen are ethylene vinyl acetate (EVA) styrene butadiene styrene (SBS). The aim this study to compare the performance of EVA modified bitumen with the bitumen modified by waste low density polyethylene (LDPE), polypropylene (PP) obtained from waste carry bags and waste tyre rubber (CR) to encourage the use of waste polymer whose disposal is big problem today, in place of costly virgin polymer. From the experimental study, it was found that waste polymers are also effective in improving the properties bitumen as that of virgin polymer.
Keywords: Waste plastic, LDPE, PP, Modified bitumen, EVA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 367822 Catalytic Activity of Aluminum Impregnated Catalysts for the Degradation of Waste Polystyrene
Authors: J. Shah, M. Rasul Jan, Adnan
Abstract:
The aluminum impregnated catalysts of Al-alumina (Al-Al2O3), Al-montmorillonite (Al-Mmn) and Al-activated charcoal (Al-AC) of various percent loadings were prepared by wet impregnation method and characterized by SEM, XRD and N2 adsorption/desorption (BET). The catalytic properties were investigated in the degradation of waste polystyrene (WPS). The results of catalytic degradation of Al metal, 20% Al-Al2O3, 5% Al-Mmn and 20% Al-AC were compared with each other for optimum conditions. Among the catalyst used 20% Al-Al2O3 was found the most effective catalyst. The BET surface area of 20% Al-Al2O3 determined was 70.2 m2/g. The SEM data revealed the catalyst with porous structure throughout the frame work with small nanosized crystallites. The yield of liquid products with 20% Al-Al2O3 (91.53 ± 2.27 wt%) was the same as compared to Al metal (91.20 ± 0.35 wt%) but the selectivity of hydrocarbons and yield of styrene monomer (56.32 wt%) was higher with 20% Al-Al2O3 catalyst.
Keywords: Impregnation, catalytic degradation, waste polystyrene, styrene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 203521 Optimization of Asphalt Binder Modified with PP/SBS/Nanoclay Nanocomposite using Taguchi Method
Authors: Abolghasem Yazdani, Sara Pourjafar
Abstract:
This study has applied the L16 orthogonal array of the Taguchi method to determine the optimized polymeric Nanocomposite asphalt binder. Three control factors are defined as polypropylene plastomer (PP), styrene-butadiene-styrene elastomer (SBS) and Nanoclay. Four level of concentration contents are introduced for prepared asphalt binder samples. all samples were prepared with 4.5% of bitumen 60/70 content. Compressive strength tests were carried out for defining the optimized sample via QUALITEK-4 software. SBS with 3%, PP with 5 % and Nanoclay with 1.5% of concentrations are defined as the optimized Nanocomposite asphalt binders. The confirmation compressive strength and also softening point tests showed that modification of asphalt binders with this method, improved the compressive strength and softening points of asphalt binders up to 55%.Keywords: modified asphalt, Polypropylene, SBS, Nanoclay, Taguchi method
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 317520 Stabilization of γ-Sterilized Food-Packaging Materials by Synergistic Mixtures of Food-Contact Approval Stabilizers
Authors: Sameh A. S. Alariqi
Abstract:
Food is widely packaged with plastic materials to prevent microbial contamination and spoilage. Ionizing radiation is widely used to sterilize the food-packaging materials. Sterilization by γ-radiation causes degradation such as embrittlement, stiffening, softening, discoloration, odour generation, and decrease in molecular weight. Many antioxidants can prevent γ-degradation but most of them are toxic. The migration of antioxidants to its environment gives rise to major concerns in case of food packaging plastics. In this attempt, we have aimed to utilize synergistic mixtures of stabilizers which are approved for food-contact applications. Ethylene-propylene-diene terpolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organophosphites (hydroperoxide decomposer). Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems where we mostly observed discoloration due to the oxidation of hindered phenol, the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization. However, the combination of organo-phosphite with secondary HAS, tertiary HAS and phenol antioxidants have been found to give synergistic even at higher doses of Gamma-irradiation. The effects have been explained through the interaction between the stabilizers. After γ-irradiation, the consumption of oligomeric stabilizer significantly depends on the components of stabilization mixture. The effect of the organo-phosphite antioxidant on the overall stability has been discussed.
Keywords: Ethylene-propylene-diene terpolymer, Synergistic mixtures, Gamma-sterilization and stabilization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 584019 The Effect of Enzymatic Keratin Hydrolyzate on the Susceptibility of Cellulosic-Elastomeric Material to Biodecomposition
Authors: Y.-H Tshela Ntumba, A. Przepiórkowska, M. Prochoń
Abstract:
Polymeric materials have become an integral part of every aspect of today's industry. They have wide applications, inter alia, in areas such as medicine, food industry and agriculture. In agriculture, for example, they are used for the production of pots, irrigation systems and for soil mulching. The aim of this study was the attempt to produce a biodecomposable agricultural mat, by coating cotton fabric with a blend of carboxylated styrene-butadiene latex (LBSK) containing the enzymatic hydrolyzate of keratin from cattle hair, which would serve as a material for mulching.
The production of such material allows the beneficial management of burdensome tannery waste constituted by keratin from cattle hair and at the same time, the production of agricultural mats that much faster undergo decomposition than commonly used polyethylene mats.
Keywords: Agricultural mat, biodecomposition, biodegradation, carboxylated styrene-butadiene latex, cellulosic-elastomeric material, keratin hydrolyzate, mulching, protein hydrolyzate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 222918 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TrFE-CTFE) Terpolymer
Authors: Qing Liu, Jean-Fabien Capsal, Claude Richard
Abstract:
In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fullycrystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.
Keywords: Crystal orientation, electrostrictive strain, mechanical energy density, permittivity, relaxor ferroelectric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166417 Mechanical and Morphological Properties of Polypropylene and High Density Polyethylene Matrix Composites Reinforced with Surface Modified Nano Sized TiO2 Particles
Authors: Mirigul Altan, Huseyin Yildirim
Abstract:
Plastics occupy wide place in the applications of automotive, electronics and house goods. Especially reinforced plastics become popular because of their high strength besides their advantages of low weight and easy manufacturability. In this study, mechanical and morphological properties of polypropylene (PP) and high density polyethylene (HDPE) matrix composites reinforced with surface modified nano titan dioxide (TiO2) particles were investigated. Surface modification was made by coating the nano powders with maleic anhydride grafted styrene ethylene butylene styrene (SEBS-g-MA) and silane, respectively. After surface modification, PP/TiO2 and HDPE/TiO2 composites were obtained by using twin screw extruder at titan dioxide loading of 1 wt.%, 3 wt.% and 5 wt.%. Effects of surface modification were determined by thermal and morphological analysis. SEBS-g-MA provided bridging effect between TiO2 particles and polymer matrix while silane was effective as a dispersant. Depending on that, homogenous structures without agglomeration were obtained. Mechanical tests were performed on the injection moldings of the composites for obtaining the impact strength, tensile strength, stress at break, elongation and elastic modulus. Reinforced HDPE and PP moldings gave higher tensile strength and elastic modulus due to the rigid structure of TiO2. Slight increment was seen in stress at break. Elongation and impact strength decreased due to the stiffness of the nano titan dioxide.Keywords: High density polyethylene, mechanical properties, nano TiO2, polypropylene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 389116 Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite
Authors: M. D. Stelescu, E. Manaila, G. Pelin, M. Georgescu, M. Sonmez
Abstract:
This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application.
Keywords: Chlorobutyl rubber, ethylene-propylene-diene terpolymers, montmorillonite, rubber seals, space application.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73215 Investigation of Gas Phase Composition During Carbon Nanotube Production
Authors: S. Yaglikci, B. Salgara, F. Soysal, B. Cicek
Abstract:
Chemical vapor deposition method was used to produce carbon nanotubes on an iron based catalyst from acetylene. Gas-phase samples collected from the different positions of the tubular reactor were analyzed by GC/MS. A variety of species ranging from hydrogen to naphthalene were observed and changes in their concentrations were plotted against the reactor position. Briefly benzene, toluene, styrene, indene and naphthalene were the main higher molecular weight species and vinylacetylene and diacetylene were the important intermediates. Nanotube characterization was performed by scanning electron microscopy and transmission electron microscopy.Keywords: Carbon nanotubes, chemical vapor deposition, GC/MS, species profile
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 188214 Triboelectric Separation of Binary Plastic Mixture
Authors: M. Saeki
Abstract:
This paper presents the results of an experimental study on the performance of a triboelectric separator of plastic mixtures used for recycling. The separator consists of four cylindrical electrodes. The principle behind the separation technique is based on the difference in the Coulomb force acting on the plastic particles after triboelectric charging. The separation of mixtures of acrylonitrile butadiene styrene (ABS) and polystyrene (PS) using this method was studied. The effects of the triboelectric charging time and applied voltage on the separation efficiency were investigated. The experimental results confirm that it is possible to obtain a high purity and recovery rate for the initial compositions considered in this study.
Keywords: Coulomb force, recycling, triboelectric separator, waste plastics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 285813 Determination of Volatile Organic Compounds in Human Breath by Optical Fiber Sensing
Authors: C. I. L. Justino, L. I. B. Silva, K. Duarte, A. C. Freitas, T. A. P. Rocha-Santos, A. C. Duarte
Abstract:
This work proposes an optical fiber system (OF) for sensing various volatile organic compounds (VOCs) in human breath for the diagnosis of some metabolic disorders as a non-invasive methodology. The analyzed VOCs are alkanes (i.e., ethane, pentane, heptane, octane, and decane), and aromatic compounds (i.e., benzene, toluene, and styrene). The OF displays high analytical performance since it provides near real-time responses, rapid analysis, and low instrumentation costs, as well as it exhibits useful linear range and detection limits; the developed OF sensor is also comparable to a reference methodology (gas chromatography-mass spectrometry) for the eight tested VOCs.Keywords: Breath analysis, gas chromatography-mass spectrometry, optical fiber sensor, volatile organic compounds
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 229712 Testing of Materials for Rapid Prototyping Fused Deposition Modelling Technology
Authors: L. Novakova-Marcincinova, J. Novak-Marcincin
Abstract:
Paper presents knowledge about types of test in area of materials properties of selected methods of rapid prototyping technologies. In today used rapid prototyping technologies for production of models and final parts are used materials in initial state as solid, liquid or powder material structure. In solid state are used various forms such as pellets, wire or laminates. Basic range materials include paper, nylon, wax, resins, metals and ceramics. In Fused Deposition Modeling (FDM) rapid prototyping technology are mainly used as basic materials ABS (Acrylonitrile Butadiene Styrene), polyamide, polycarbonate, polyethylene and polypropylene. For advanced FDM applications are used special materials as silicon nitrate, PZT (Piezoceramic Material - Lead Zirconate Titanate), aluminium oxide, hydroxypatite and stainless steel.Keywords: Rapid prototyping, materials, testing of materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 443411 A Study on Polymer Coated Colour Pigments for Water-Based Ink
Authors: T. K N. Hoang, P. A. Tuan, R. Finsy, L. Deriemaeker
Abstract:
The pigments covered by film-forming polymers have opened a prospect to improve the quality of water-based printing inks. In this study such pigments were prepared by the initiated polymerization of styrene and methacrylate derivative monomers in the aqueous pigment dispersions. The formation of polymer films covering pigment cores depends on the polymerization time and the ratio of pigment to monomers. At the time of 4 hours and the ratio of 1/10 almost pigment particles are coated by the polymer. The formed polymer covers of pigments have the average thickness of 5.95 nm. The size increasing percentage of the coated particles after a week is 4.5 %, about fourteen-fold lower than of the original ones. The obtained results indicate that the coated pigments are improved dispersion stability in water medium along with a guarantee for the optical colour.Keywords: Aqueous pigment dispersion stability, colored resin particles, emulsion polymerization, water based ink.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 223710 Improving Injection Moulding Processes Using Experimental Design
Authors: Yousef Amer, Mehdi Moayyedian, Zeinab Hajiabolhasani, Lida Moayyedian
Abstract:
Moulded parts contribute to more than 70% of components in products. However, common defects particularly in plastic injection moulding exist such as: warpage, shrinkage, sink marks, and weld lines. In this paper Taguchi experimental design methods are applied to reduce the warpage defect of thin plate Acrylonitrile Butadiene Styrene (ABS) and are demonstrated in two levels; namely, orthogonal arrays of Taguchi and the Analysis of Variance (ANOVA). Eight trials have been run in which the optimal parameters that can minimize the warpage defect in factorial experiment are obtained. The results obtained from ANOVA approach analysis with respect to those derived from MINITAB illustrate the most significant factors which may cause warpage in injection moulding process. Moreover, ANOVA approach in comparison with other approaches like S/N ratio is more accurate and with the interaction of factors it is possible to achieve higher and the better outcomes.Keywords: Analysis of variance, ANOVA, plastic injection mould, Taguchi methods, Warpage.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38969 Antimicrobial Properties of SEBS Compounds with Zinc Oxide and Zinc Ions
Authors: Douglas N. Simões, Michele Pittol, Vanda F. Ribeiro, Daiane Tomacheski, Ruth M. C. Santana
Abstract:
The increasing demand of thermoplastic elastomers is related to the wide range of applications, such as automotive, footwear, wire and cable industries, adhesives and medical devices, cell phones, sporting goods, toys and others. These materials are susceptible to microbial attack. Moisture and organic matter present in some areas (such as shower area and sink), provide favorable conditions for microbial proliferation, which contributes to the spread of diseases and reduces the product life cycle. Compounds based on SEBS copolymers, poly(styrene-b-(ethylene-co-butylene)-b-styrene, are a class of thermoplastic elastomers (TPE), fully recyclable and largely used in domestic appliances like bath mats and tooth brushes (soft touch). Zinc oxide and zinc ions loaded in personal and home care products have become common in the last years due to its biocidal effect. In that sense, the aim of this study was to evaluate the effect of zinc as antimicrobial agent in compounds based on SEBS/polypropylene/oil/ calcite for use as refrigerator seals (gaskets), bath mats and sink squeegee. Two zinc oxides from different suppliers (ZnO-Pe and ZnO-WR) and one masterbatch of zinc ions (M-Zn-ion) were used in proportions of 0%, 1%, 3% and 5%. The compounds were prepared using a co-rotating double screw extruder (L/D ratio of 40/1 and 16 mm screw diameter). The extrusion parameters were kept constant for all materials. Tests specimens were prepared using the injection molding machine. A compound with no antimicrobial additive (standard) was also tested. Compounds were characterized by physical (density), mechanical (hardness and tensile properties) and rheological properties (melt flow rate - MFR). The Japan Industrial Standard (JIS) Z 2801:2010 was applied to evaluate antibacterial properties against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The Brazilian Association of Technical Standards (ABNT) NBR 15275:2014 were used to evaluate antifungal properties against Aspergillus niger (A. niger), Aureobasidium pullulans (A. pullulans), Candida albicans (C. albicans), and Penicillium chrysogenum (P. chrysogenum). The microbiological assay showed a reduction over 42% in E. coli and over 49% in S. aureus population. The tests with fungi showed inconclusive results because the sample without zinc also demonstrated an inhibition of fungal development when tested against A. pullulans, C. albicans and P. chrysogenum. In addition, the zinc loaded samples showed worse results than the standard sample when tested against A. niger. The zinc addition did not show significant variation in mechanical properties. However, the density values increased with the rise in ZnO additives concentration, and had a little decrease in M-Zn-ion samples. Also, there were differences in the MFR results in all compounds compared to the standard.
Keywords: Antimicrobial, home device, SEBS, zinc.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20548 Modeling and Analysis of a Cycling Prosthetic
Authors: John Tolentino, Yong Seok Park
Abstract:
There are currently many people living with limb loss in the USA. The main causes for amputation can range from vascular disease, to trauma, or cancer. This number is expected increase over the next decade. Many patients have a single prosthetic for the first year but end up getting a second one to accommodate their changing physique. Afterwards, the prosthesis gets replaced every three to five years depending on how often it is used. This could cost the patient up to $500,000 throughout their lifetime. Complications do not end there, however. Due to the absence of nerves, it becomes more difficult to traverse terrain with a prosthetic. Moving on an incline or decline becomes difficult, thus curbs and stairs can be a challenge. Certain physical activities, such as cycling, could be even more strenuous. It will need to be relearned to accommodate for the change in weight, center of gravity, and transfer of energy from the leg to the pedal. The purpose of this research project is to develop a new, alternate below-knee cycling prosthetic using Dieter & Schmidt’s design process approach. It will be subjected to fatigue analysis under dynamic loading to observe the limitations as well as the strengths and weaknesses of the prosthetic. Benchmark comparisons will be made between existing prosthetics and the proposed one, examining the benefits and disadvantages. The resulting prosthetic will be 3D printed using acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) plastic.
Keywords: 3D printing, cycling, prosthetic design, synthetic design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6247 Investigation of Physical Properties of Asphalt Binder Modified by Recycled Polyethylene and Ground Tire Rubber
Authors: Sajjad H. Kasanagh, Perviz Ahmedzade, Alexander Fainleib, Taylan Gunay
Abstract:
Modification of asphalt is a fundamental method around the world mainly on the purpose of providing more durable pavements which lead to diminish repairing cost during the lifetime of highways. Various polymers such as styrene-butadiene-styrene (SBS) and ethylene vinyl acetate (EVA) make up the greater parts of the all-over asphalt modifiers generally providing better physical properties of asphalt by decreasing temperature dependency which eventually diminishes permanent deformation on highways such as rutting. However, some waste and low-cost materials such as recycled plastics and ground rubber tire have been attempted to utilize in asphalt as modifier instead of manufactured polymer modifiers due to decreasing the eventual highway cost. On the other hand, the usage of recycled plastics has become a worldwide requirement and awareness in order to decrease the pollution made by waste plastics. Hence, finding an area in which recycling plastics could be utilized has been targeted by many research teams so as to reduce polymer manufacturing and plastic pollution. To this end, in this paper, thermoplastic dynamic vulcanizate (TDV) obtained from recycled post-consumer polyethylene and ground tire rubber (GTR) were used to provide an efficient modifier for asphalt which decreases the production cost as well and finally might provide an ecological solution by decreasing polymer disposal problems. TDV was synthesized by the chemists in the research group by means of the abovementioned components that are considered as compatible physical characteristic of asphalt materials. TDV modified asphalt samples having different rate of proportions of 3, 4, 5, 6, 7 wt.% TDV modifier were prepared. Conventional tests, such as penetration, softening point and roll thin film oven (RTFO) tests were performed to obtain fundamental physical and aging properties of the base and modified binders. The high temperature performance grade (PG) of binders was determined by Superpave tests conducted on original and aged binders. The multiple stress creep and recovery (MSCR) test which is relatively up-to-date method for classifying asphalts taking account of their elasticity abilities was carried out to evaluate PG plus grades of binders. The results obtained from performance grading, and MSCR tests were also evaluated together so as to make a comparison between the methods both aiming to determine rheological parameters of asphalt. The test results revealed that TDV modification leads to a decrease in penetration, an increase in softening point, which proves an increasing stiffness of asphalt. DSR results indicate an improvement in PG for modified binders compared to base asphalt. On the other hand, MSCR results that are compatible with DSR results also indicate an enhancement on rheological properties of asphalt. However, according to the results, the improvement is not as distinct as observed in DSR results since elastic properties are fundamental in MSCR. At the end of the testing program, it can be concluded that TDV can be used as modifier which provides better rheological properties for asphalt and might diminish plastic waste pollution since the material is 100% recycled.
Keywords: Asphalt, ground tire rubber, recycled polymer, thermoplastic dynamic vulcanized.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7746 Visualization of Flow Behaviour in Micro-Cavities during Micro Injection Moulding
Authors: Reza Gheisari, Paulo J. Bartolo, Nicholas Goddard
Abstract:
Polymeric micro-cantilevers (Cs) are rapidly becoming popular for MEMS applications such as chemo- and biosensing as well as purely electromechanical applications such as microrelays. Polymer materials present suitable physical and chemical properties combined with low-cost mass production. Hence, micro-cantilevers made of polymers indicate much more biocompatibility and adaptability of rapid prototyping along with mechanical properties. This research studies the effects of three process and one size factors on the filling behaviour in micro cavity, and the role of each in the replication of micro parts using different polymer materials i.e. polypropylene (PP) SABIC 56M10 and acrylonitrile butadiene styrene (ABS) Magnum 8434 . In particular, the following factors are considered: barrel temperature, mould temperature, injection speed and the thickness of micro features. The study revealed that the barrel temperature and the injection speed are the key factors affecting the flow length of micro features replicated in PP and ABS. For both materials, an increase of feature sizes improves the melt flow. However, the melt fill of micro features does not increase linearly with the increase of their thickness.Keywords: Flow length, micro-cantilevers, micro injection moulding, microfabrication.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19695 Mechanisms Involved In Organic Solvent Resistance in Gram-Negative Bacteria
Authors: M. M. Lâzâroaie
Abstract:
The high world interest given to the researches concerning the study of moderately halophilic solvent-tolerant bacteria isolated from marine polluted environments is due to their high biotechnological potential, and also to the perspective of their application in different remediation technologies. Using enrichment procedures, I isolated two moderately halophilic Gram-negative bacterial strains from seawater sample, which are tolerant to organic solvents. Cell tolerance, adhesion and cells viability of Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 in the presence of organic solvents depends not only on its physicochemical properties and its concentration, but also on the specific response of the cells, and the cellular response is not the same for these bacterial strains. n-hexane, n-heptane, propylbenzene, with log POW between 3.69 and 4.39, were less toxic for Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3, compared with toluene, styrene, xylene isomers and ethylbenzene, with log POW between 2.64 and 3.17. The results indicated that Aeromonas salmonicida IBBCt2 is more susceptible to organic solvents than Pseudomonas aeruginosa IBBCt3. The mechanisms underlying solvent tolerance (e.g., the existance of the efflux pumps) in Aeromonas salmonicida IBBCt2 and Pseudomonas aeruginosa IBBCt3 it was also studied.
Keywords: bacteria, mechanisms, organic solvent, resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19774 Effect of Surface-Modification of Indium Tin Oxide Particles on Their Electrical Conductivity
Authors: Y. Kobayashi, T. Kurosaka, K. Yamamura, T. Yonezawa, K. Yamasaki
Abstract:
The present work reports an effect of surface- modification of indium tin oxide (ITO) particles with chemicals on their electronic conductivity properties. Examined chemicals were polyvinyl alcohol (nonionic polymer), poly(diallyl dimethyl ammonium chloride) (cationic polymer), poly(sodium 4-styrene-sulfonate) (anionic polymer), (2-aminopropyl) trimethoxy silane (APMS) (silane coupling agent with amino group), and (3-mercaptopropyl) trimethoxy silane (MPS) (silane coupling agent with thiol group). For all the examined chemicals, volume resistivities of surface-modified ITO particles did not increase much when they were aged in air at 80 oC, compared to a volume resistivity of un-surface-modified ITO particles. Increases in volume resistivities of ITO particles surface-modified with the silane coupling agents were smaller than those with the polymers, since hydrolysis of the silane coupling agents and condensation of generated silanol and OH groups on ITO particles took place to provide efficient immobilization of them on particles. The APMS gave an increase in volume resistivity smaller than the MPS, since a larger solubility in water of APMS providing a larger amount of APMS immobilized on particles.Keywords: Indium tin oxide, particles, surface-modification, volume resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12543 Evaluation of the Power Generation Effect Obtained by Inserting a Piezoelectric Sheet in the Backlash Clearance of a Circular Arc Helical Gear
Authors: Barenten Suciu, Yuya Nakamoto
Abstract:
Power generation effect, obtained by inserting a piezo- electric sheet in the backlash clearance of a circular arc helical gear, is evaluated. Such type of screw gear is preferred since, in comparison with the involute tooth profile, the circular arc profile leads to reduced stress-concentration effects, and improved life of the piezoelectric film. Firstly, geometry of the circular arc helical gear, and properties of the piezoelectric sheet are presented. Then, description of the test-rig, consisted of a right-hand thread gear meshing with a left-hand thread gear, and the voltage measurement procedure are given. After creating the tridimensional (3D) model of the meshing gears in SolidWorks, they are 3D-printed in acrylonitrile butadiene styrene (ABS) resin. Variation of the generated voltage versus time, during a meshing cycle of the circular arc helical gear, is measured for various values of the center distance. Then, the change of the maximal, minimal, and peak-to-peak voltage versus the center distance is illustrated. Optimal center distance of the gear, to achieve voltage maximization, is found and its significance is discussed. Such results prove that the contact pressure of the meshing gears can be measured, and also, the electrical power can be generated by employing the proposed technique.
Keywords: Power generation, circular arc helical gear, piezo- electric sheet, contact problem, optimal center distance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7232 Performance Evaluation and Plugging Characteristics of Controllable Self-Aggregating Colloidal Particle Profile Control Agent
Authors: Zhiguo Yang, Xiangan Yue, Minglu Shao, Yang Yue, Tianqi Yue
Abstract:
In low permeability reservoirs, the reservoir pore throat is small and the micro heterogeneity is prominent. Conventional microsphere profile control agents generally have good injectability but poor plugging effect; however, profile control agents with good plugging effect generally have poor injectability, which makes it difficult for agent to realize deep profile control of reservoir. To solve this problem, styrene and acrylamide were used as monomers in the laboratory. Emulsion polymerization was used to prepare the Controllable Self-Aggregating Colloidal Particle (CSA), which was rich in amide group. The CSA microsphere dispersion solution with a particle diameter smaller than the pore throat diameter was injected into the reservoir to ensure that the profile control agent had good inject ability. After dispersing the CSA microsphere to the deep part of the reservoir, the CSA microspheres dispersed in static for a certain period of time will self-aggregate into large-sized particle clusters to achieve plugging of hypertonic channels. The CSA microsphere has the characteristics of low expansion and avoids shear fracture in the process of migration. It can be observed by transmission electron microscope that CSA microspheres still maintain regular and uniform spherical and core-shell heterogeneous structure after aging at 100 ºC for 35 days, and CSA microspheres have good thermal stability. The results of bottle test showed that with the increase of cation concentration, the aggregation time of CSA microspheres gradually shortened, and the influence of divalent cations was greater than that of monovalent ions. Physical simulation experiments show that CSA microspheres have good injectability, and the aggregated CSA particle clusters can produce effective plugging and migrate to the deep part of the reservoir for profile control.
Keywords: Heterogeneous reservoir, deep profile control, emulsion polymerization, colloidal particles, plugging characteristic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4861 Preparation of Sorbent Materials for the Removal of Hardness and Organic Pollutants from Water and Wastewater
Authors: Thanaa Abdel Moghny, Mohamed Keshawy, Mahmoud Fathy, Abdul-Raheim M. Abdul-Raheim, Khalid I. Kabel, Ahmed F. El-Kafrawy, Mahmoud Ahmed Mousa, Ahmed E. Awadallah
Abstract:
Ecological pollution is of great concern for human health and the environment. Numerous organic and inorganic pollutants usually discharged into the water caused carcinogenic or toxic effect for human and different life form. In this respect, this work aims to treat water contaminated by organic and inorganic waste using sorbent based on polystyrene. Therefore, two different series of adsorbent material were prepared; the first one included the preparation of polymeric sorbent from the reaction of styrene acrylate ester and alkyl acrylate. The second series involved syntheses of composite ion exchange resins of waste polystyrene and amorphous carbon thin film (WPS/ACTF) by solvent evaporation using micro emulsion polymerization. The produced ACTF/WPS nanocomposite was sulfonated to produce cation exchange resins ACTF/WPSS nanocomposite. The sorbents of the first series were characterized using FTIR, 1H NMR, and gel permeation chromatography. The thermal properties of the cross-linked sorbents were investigated using thermogravimetric analysis, and the morphology was characterized by scanning electron microscope (SEM). The removal of organic pollutant was determined through absorption tests in a various organic solvent. The chemical and crystalline structure of nanocomposite of second series has been proven by studies of FTIR spectrum, X-rays, thermal analysis, SEM and TEM analysis to study morphology of resins and ACTF that assembled with polystyrene chain. It is found that the composite resins ACTF/WPSS are thermally stable and show higher chemical stability than ion exchange WPSS resins. The composite resin was evaluated for calcium hardness removal. The result is evident that the ACTF/WPSS composite has more prominent inorganic pollutant removal than WPSS resin. So, we recommend the using of nanocomposite resin as new potential applications for water treatment process.
Keywords: Nanocomposite, sorbent materials, waste water, waste polystyrene.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407