Search results for: stochastic modeling.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2290

Search results for: stochastic modeling.

2290 Dynamic-Stochastic Influence Diagrams: Integrating Time-Slices IDs and Discrete Event Systems Modeling

Authors: Xin Zhao, Yin-fan Zhu, Wei-ping Wang, Qun Li

Abstract:

The Influence Diagrams (IDs) is a kind of Probabilistic Belief Networks for graphic modeling. The usage of IDs can improve the communication among field experts, modelers, and decision makers, by showing the issue frame discussed from a high-level point of view. This paper enhances the Time-Sliced Influence Diagrams (TSIDs, or called Dynamic IDs) based formalism from a Discrete Event Systems Modeling and Simulation (DES M&S) perspective, for Exploring Analysis (EA) modeling. The enhancements enable a modeler to specify times occurred of endogenous events dynamically with stochastic sampling as model running and to describe the inter- influences among them with variable nodes in a dynamic situation that the existing TSIDs fails to capture. The new class of model is named Dynamic-Stochastic Influence Diagrams (DSIDs). The paper includes a description of the modeling formalism and the hiberarchy simulators implementing its simulation algorithm, and shows a case study to illustrate its enhancements.

Keywords: Time-sliced influence diagrams, discrete event systems, dynamic-stochastic influence diagrams, modeling formalism, simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1432
2289 A Computational Stochastic Modeling Formalism for Biological Networks

Authors: Werner Sandmann, Verena Wolf

Abstract:

Stochastic models of biological networks are well established in systems biology, where the computational treatment of such models is often focused on the solution of the so-called chemical master equation via stochastic simulation algorithms. In contrast to this, the development of storage-efficient model representations that are directly suitable for computer implementation has received significantly less attention. Instead, a model is usually described in terms of a stochastic process or a "higher-level paradigm" with graphical representation such as e.g. a stochastic Petri net. A serious problem then arises due to the exponential growth of the model-s state space which is in fact a main reason for the popularity of stochastic simulation since simulation suffers less from the state space explosion than non-simulative numerical solution techniques. In this paper we present transition class models for the representation of biological network models, a compact mathematical formalism that circumvents state space explosion. Transition class models can also serve as an interface between different higher level modeling paradigms, stochastic processes and the implementation coded in a programming language. Besides, the compact model representation provides the opportunity to apply non-simulative solution techniques thereby preserving the possible use of stochastic simulation. Illustrative examples of transition class representations are given for an enzyme-catalyzed substrate conversion and a part of the bacteriophage λ lysis/lysogeny pathway.

Keywords: Computational Modeling, Biological Networks, Stochastic Models, Markov Chains, Transition Class Models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1580
2288 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function

Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos

Abstract:

Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.

Keywords: Diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion equation, trends functions, bi-parameters Weibull density function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1968
2287 Low-Cost Inertial Sensors Modeling Using Allan Variance

Authors: A. A. Hussen, I. N. Jleta

Abstract:

Micro-electromechanical system (MEMS) accelerometers and gyroscopes are suitable for the inertial navigation system (INS) of many applications due to low price, small dimensions and light weight. The main disadvantage in a comparison with classic sensors is a worse long term stability. The estimation accuracy is mostly affected by the time-dependent growth of inertial sensor errors, especially the stochastic errors. In order to eliminate negative effects of these random errors, they must be accurately modeled. In this paper, the Allan variance technique will be used in modeling the stochastic errors of the inertial sensors. By performing a simple operation on the entire length of data, a characteristic curve is obtained whose inspection provides a systematic characterization of various random errors contained in the inertial-sensor output data.

Keywords: Allan variance, accelerometer, gyroscope, stochastic errors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5279
2286 A Scenario-Based Approach for the Air Traffic Flow Management Problem with Stochastic Capacities

Authors: Soumia Ichoua

Abstract:

In this paper, we investigate the strategic stochastic air traffic flow management problem which seeks to balance airspace capacity and demand under weather disruptions. The goal is to reduce the need for myopic tactical decisions that do not account for probabilistic knowledge about the NAS near-future states. We present and discuss a scenario-based modeling approach based on a time-space stochastic process to depict weather disruption occurrences in the NAS. A solution framework is also proposed along with a distributed implementation aimed at overcoming scalability problems. Issues related to this implementation are also discussed.

Keywords: Air traffic management, sample average approximation, scenario-based approach, stochastic capacity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2086
2285 Stochastic Learning Algorithms for Modeling Human Category Learning

Authors: Toshihiko Matsuka, James E. Corter

Abstract:

Most neural network (NN) models of human category learning use a gradient-based learning method, which assumes that locally-optimal changes are made to model parameters on each learning trial. This method tends to under predict variability in individual-level cognitive processes. In addition many recent models of human category learning have been criticized for not being able to replicate rapid changes in categorization accuracy and attention processes observed in empirical studies. In this paper we introduce stochastic learning algorithms for NN models of human category learning and show that use of the algorithms can result in (a) rapid changes in accuracy and attention allocation, and (b) different learning trajectories and more realistic variability at the individual-level.

Keywords: category learning, cognitive modeling, radial basis function, stochastic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629
2284 Stochastic Modeling for Parameters of Modified Car-Following Model in Area-Based Traffic Flow

Authors: N. C. Sarkar, A. Bhaskar, Z. Zheng

Abstract:

The driving behavior in area-based (i.e., non-lane based) traffic is induced by the presence of other individuals in the choice space from the driver’s visual perception area. The driving behavior of a subject vehicle is constrained by the potential leaders and leaders are frequently changed over time. This paper is to determine a stochastic model for a parameter of modified intelligent driver model (MIDM) in area-based traffic (as in developing countries). The parametric and non-parametric distributions are presented to fit the parameters of MIDM. The goodness of fit for each parameter is measured in two different ways such as graphically and statistically. The quantile-quantile (Q-Q) plot is used for a graphical representation of a theoretical distribution to model a parameter and the Kolmogorov-Smirnov (K-S) test is used for a statistical measure of fitness for a parameter with a theoretical distribution. The distributions are performed on a set of estimated parameters of MIDM. The parameters are estimated on the real vehicle trajectory data from India. The fitness of each parameter with a stochastic model is well represented. The results support the applicability of the proposed modeling for parameters of MIDM in area-based traffic flow simulation.

Keywords: Area-based traffic, car-following model, micro-simulation, stochastic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 774
2283 A General Stochastic Spatial MIMO Channel Model for Evaluating Various MIMO Techniques

Authors: Fang Shu, Li Lihua, Zhang Ping

Abstract:

A general stochastic spatial MIMO channel model is proposed for evaluating various MIMO techniques in this paper. It can generate MIMO channels complying with various MIMO configurations such as smart antenna, spatial diversity and spatial multiplexing. The modeling method produces the stochastic fading involving delay spread, Doppler spread, DOA (direction of arrival), AS (angle spread), PAS (power azimuth Spectrum) of the scatterers, antenna spacing and the wavelength. It can be applied in various MIMO technique researches flexibly with low computing complexity.

Keywords: MIMO channel, Spatial Correlation, DOA, AS, PAS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1678
2282 Calculation of Reorder Point Level under Stochastic Parameters: A Case Study in Healthcare Area

Authors: Serap Akcan, Ali Kokangul

Abstract:

We consider a single-echelon, single-item inventory system where both demand and lead-time are stochastic. Continuous review policy is used to control the inventory system. The objective is to calculate the reorder point level under stochastic parameters. A case study is presented in Neonatal Intensive Care Unit.

Keywords: Inventory control system, reorder point level, stochastic demand, stochastic lead time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3536
2281 Forecasting the Volatility of Geophysical Time Series with Stochastic Volatility Models

Authors: Maria C. Mariani, Md Al Masum Bhuiyan, Osei K. Tweneboah, Hector G. Huizar

Abstract:

This work is devoted to the study of modeling geophysical time series. A stochastic technique with time-varying parameters is used to forecast the volatility of data arising in geophysics. In this study, the volatility is defined as a logarithmic first-order autoregressive process. We observe that the inclusion of log-volatility into the time-varying parameter estimation significantly improves forecasting which is facilitated via maximum likelihood estimation. This allows us to conclude that the estimation algorithm for the corresponding one-step-ahead suggested volatility (with ±2 standard prediction errors) is very feasible since it possesses good convergence properties.

Keywords: Augmented Dickey Fuller Test, geophysical time series, maximum likelihood estimation, stochastic volatility model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 861
2280 Non-Stationary Stochastic Optimization of an Oscillating Water Column

Authors: María L. Jalón, Feargal Brennan

Abstract:

A non-stationary stochastic optimization methodology is applied to an OWC (oscillating water column) to find the design that maximizes the wave energy extraction. Different temporal cycles are considered to represent the long-term variability of the wave climate at the site in the optimization problem. The results of the non-stationary stochastic optimization problem are compared against those obtained by a stationary stochastic optimization problem. The comparative analysis reveals that the proposed non-stationary optimization provides designs with a better fit to reality. However, the stationarity assumption can be adequate when looking at averaged system response.

Keywords: Non-stationary stochastic optimization, oscillating water column, temporal variability, wave energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380
2279 Dynamic Slope Scaling Procedure for Stochastic Integer Programming Problem

Authors: Takayuki Shiina

Abstract:

Mathematical programming has been applied to various problems. For many actual problems, the assumption that the parameters involved are deterministic known data is often unjustified. In such cases, these data contain uncertainty and are thus represented as random variables, since they represent information about the future. Decision-making under uncertainty involves potential risk. Stochastic programming is a commonly used method for optimization under uncertainty. A stochastic programming problem with recourse is referred to as a two-stage stochastic problem. In this study, we consider a stochastic programming problem with simple integer recourse in which the value of the recourse variable is restricted to a multiple of a nonnegative integer. The algorithm of a dynamic slope scaling procedure for solving this problem is developed by using a property of the expected recourse function. Numerical experiments demonstrate that the proposed algorithm is quite efficient. The stochastic programming model defined in this paper is quite useful for a variety of design and operational problems.

Keywords: stochastic programming problem with recourse, simple integer recourse, dynamic slope scaling procedure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1617
2278 Network of Coupled Stochastic Oscillators and One-way Quantum Computations

Authors: Eugene Grichuk, Margarita Kuzmina, Eduard Manykin

Abstract:

A network of coupled stochastic oscillators is proposed for modeling of a cluster of entangled qubits that is exploited as a computation resource in one-way quantum computation schemes. A qubit model has been designed as a stochastic oscillator formed by a pair of coupled limit cycle oscillators with chaotically modulated limit cycle radii and frequencies. The qubit simulates the behavior of electric field of polarized light beam and adequately imitates the states of two-level quantum system. A cluster of entangled qubits can be associated with a beam of polarized light, light polarization degree being directly related to cluster entanglement degree. Oscillatory network, imitating qubit cluster, is designed, and system of equations for network dynamics has been written. The constructions of one-qubit gates are suggested. Changing of cluster entanglement degree caused by measurements can be exactly calculated.

Keywords: network of stochastic oscillators, one-way quantumcomputations, a beam of polarized light.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1401
2277 A Novel Approach of Route Choice in Stochastic Time-varying Networks

Authors: Siliang Wang, Minghui Wang

Abstract:

Many exist studies always use Markov decision processes (MDPs) in modeling optimal route choice in stochastic, time-varying networks. However, taking many variable traffic data and transforming them into optimal route decision is a computational challenge by employing MDPs in real transportation networks. In this paper we model finite horizon MDPs using directed hypergraphs. It is shown that the problem of route choice in stochastic, time-varying networks can be formulated as a minimum cost hyperpath problem, and it also can be solved in linear time. We finally demonstrate the significant computational advantages of the introduced methods.

Keywords: Markov decision processes (MDPs), stochastictime-varying networks, hypergraphs, route choice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
2276 Burstiness Reduction of a Doubly Stochastic AR-Modeled Uniform Activity VBR Video

Authors: J. P. Dubois

Abstract:

Stochastic modeling of network traffic is an area of significant research activity for current and future broadband communication networks. Multimedia traffic is statistically characterized by a bursty variable bit rate (VBR) profile. In this paper, we develop an improved model for uniform activity level video sources in ATM using a doubly stochastic autoregressive model driven by an underlying spatial point process. We then examine a number of burstiness metrics such as the peak-to-average ratio (PAR), the temporal autocovariance function (ACF) and the traffic measurements histogram. We found that the former measure is most suitable for capturing the burstiness of single scene video traffic. In the last phase of this work, we analyse statistical multiplexing of several constant scene video sources. This proved, expectedly, to be advantageous with respect to reducing the burstiness of the traffic, as long as the sources are statistically independent. We observed that the burstiness was rapidly diminishing, with the largest gain occuring when only around 5 sources are multiplexed. The novel model used in this paper for characterizing uniform activity video was thus found to be an accurate model.

Keywords: AR, ATM, burstiness, doubly stochastic, statisticalmultiplexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1409
2275 Stochastic Estimation of Cavity Flowfield

Authors: Yin Yin Pey, Leok Poh Chua, Wei Long Siauw

Abstract:

Linear stochastic estimation and quadratic stochastic estimation techniques were applied to estimate the entire velocity flow-field of an open cavity with a length to depth ratio of 2. The estimations were done through the use of instantaneous velocity magnitude as estimators. These measurements were obtained by Particle Image Velocimetry. The predicted flow was compared against the original flow-field in terms of the Reynolds stresses and turbulent kinetic energy. Quadratic stochastic estimation proved to be more superior than linear stochastic estimation in resolving the shear layer flow. When the velocity fluctuations were scaled up in the quadratic estimate, both the time-averaged quantities and the instantaneous cavity flow can be predicted to a rather accurate extent.

Keywords: Open cavity, Particle Image Velocimetry, Stochastic estimation, Turbulent kinetic energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1716
2274 Stochastic Programming Model for Power Generation

Authors: Takayuki Shiina

Abstract:

We consider power system expansion planning under uncertainty. In our approach, integer programming and stochastic programming provide a basic framework. We develop a multistage stochastic programming model in which some of the variables are restricted to integer values. By utilizing the special property of the problem, called block separable recourse, the problem is transformed into a two-stage stochastic program with recourse. The electric power capacity expansion problem is reformulated as the problem with first stage integer variables and continuous second stage variables. The L-shaped algorithm to solve the problem is proposed.

Keywords: electric power capacity expansion problem, integerprogramming, L-shaped method, stochastic programming

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
2273 Urban Growth Analysis Using Multi-Temporal Satellite Images, Non-stationary Decomposition Methods and Stochastic Modeling

Authors: Ali Ben Abbes, ImedRiadh Farah, Vincent Barra

Abstract:

Remotely sensed data are a significant source for monitoring and updating databases for land use/cover. Nowadays, changes detection of urban area has been a subject of intensive researches. Timely and accurate data on spatio-temporal changes of urban areas are therefore required. The data extracted from multi-temporal satellite images are usually non-stationary. In fact, the changes evolve in time and space. This paper is an attempt to propose a methodology for changes detection in urban area by combining a non-stationary decomposition method and stochastic modeling. We consider as input of our methodology a sequence of satellite images I1, I2, … In at different periods (t = 1, 2, ..., n). Firstly, a preprocessing of multi-temporal satellite images is applied. (e.g. radiometric, atmospheric and geometric). The systematic study of global urban expansion in our methodology can be approached in two ways: The first considers the urban area as one same object as opposed to non-urban areas (e.g. vegetation, bare soil and water). The objective is to extract the urban mask. The second one aims to obtain a more knowledge of urban area, distinguishing different types of tissue within the urban area. In order to validate our approach, we used a database of Tres Cantos-Madrid in Spain, which is derived from Landsat for a period (from January 2004 to July 2013) by collecting two frames per year at a spatial resolution of 25 meters. The obtained results show the effectiveness of our method.

Keywords: Multi-temporal satellite image, urban growth, Non-stationarity, stochastic modeling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
2272 Application of Generalized Stochastic Petri Nets(GSPN) in Modeling and Evaluating a Resource Sharing Flexible Manufacturing System

Authors: Aryanejad Mir Bahador Goli, Zahra Honarmand Shah Zileh

Abstract:

In most study fields, a phenomenon may not be studied directly but it will be examined indirectly by phenomenon model. Making an accurate model of system, there is attained new information from modeled phenomenon without any charge, danger, etc... there have been developed more solutions for describing and analyzing the recent complicated systems but few of them have analyzed the performance in the range of system description. Petri nets are of limited solutions which may make such union. Petri nets are being applied in problems related to modeling and designing the systems. Theory of Petri nets allow a system to model mathematically by a Petri net and analyzing the Petri net can then determine main information of modeled system-s structure and dynamic. This information can be used for assessing the performance of systems and suggesting corrections in the system. In this paper, beside the introduction of Petri nets, a real case study will be studied in order to show the application of generalized stochastic Petri nets in modeling a resource sharing production system and evaluating the efficiency of its machines and robots. The modeling tool used here is SHARP software which calculates specific indicators helping to make decision.

Keywords: Flexible manufacturing system, generalizedstochastic Petri nets, Markov chain, performance evaluation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1902
2271 Stochastic Scheduling to Minimize Expected Lateness in Multiple Identical Machines

Authors: Ghulam Zakria, Zailin Guan , Yasser Riaz Awan, Wan Lizhi

Abstract:

There are many real world problems in which parameters like the arrival time of new jobs, failure of resources, and completion time of jobs change continuously. This paper tackles the problem of scheduling jobs with random due dates on multiple identical machines in a stochastic environment. First to assign jobs to different machine centers LPT scheduling methods have been used, after that the particular sequence of jobs to be processed on the machine have been found using simple stochastic techniques. The performance parameter under consideration has been the maximum lateness concerning the stochastic due dates which are independent and exponentially distributed. At the end a relevant problem has been solved using the techniques in the paper..

Keywords: Quantity Production Flow Shop, LPT Scheduling, Stochastic Scheduling, Maximum Lateness, Random Due Dates

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1394
2270 Profit Optimization for Solar Plant Electricity Production

Authors: Fl. Loury, P. Sablonière

Abstract:

In this paper a stochastic scenario-based model predictive control applied to molten salt storage systems in concentrated solar tower power plant is presented. The main goal of this study is to build up a tool to analyze current and expected future resources for evaluating the weekly power to be advertised on electricity secondary market. This tool will allow plant operator to maximize profits while hedging the impact on the system of stochastic variables such as resources or sunlight shortage.

Solving the problem first requires a mixed logic dynamic modeling of the plant. The two stochastic variables, respectively the sunlight incoming energy and electricity demands from secondary market, are modeled by least square regression. Robustness is achieved by drawing a certain number of random variables realizations and applying the most restrictive one to the system. This scenario approach control technique provides the plant operator a confidence interval containing a given percentage of possible stochastic variable realizations in such a way that robust control is always achieved within its bounds. The results obtained from many trajectory simulations show the existence of a ‘’reliable’’ interval, which experimentally confirms the algorithm robustness.

Keywords: Molten Salt Storage System, Concentrated Solar Tower Power Plant, Robust Stochastic Model Predictive Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1926
2269 Comparison of Reliability Systems Based Uncertainty

Authors: A. Aissani, H. Benaoudia

Abstract:

Stochastic comparison has been an important direction of research in various area. This can be done by the use of the notion of stochastic ordering which gives qualitatitive rather than purely quantitative estimation of the system under study. In this paper we present applications of comparison based uncertainty related to entropy in Reliability analysis, for example to design better systems. These results can be used as a priori information in simulation studies.

Keywords: Uncertainty, Stochastic comparison, Reliability, serie's system, imperfect repair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1255
2268 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals

Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić

Abstract:

This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.

Keywords: Noise, signal-to-noise ratio, stochastic signals, variance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2259
2267 On Diffusion Approximation of Discrete Markov Dynamical Systems

Authors: Jevgenijs Carkovs

Abstract:

The paper is devoted to stochastic analysis of finite dimensional difference equation with dependent on ergodic Markov chain increments, which are proportional to small parameter ". A point-form solution of this difference equation may be represented as vertexes of a time-dependent continuous broken line given on the segment [0,1] with "-dependent scaling of intervals between vertexes. Tending " to zero one may apply stochastic averaging and diffusion approximation procedures and construct continuous approximation of the initial stochastic iterations as an ordinary or stochastic Ito differential equation. The paper proves that for sufficiently small " these equations may be successfully applied not only to approximate finite number of iterations but also for asymptotic analysis of iterations, when number of iterations tends to infinity.

Keywords: Markov dynamical system, diffusion approximation, equilibrium stochastic stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1579
2266 The Strict Stability of Impulsive Stochastic Functional Differential Equations with Markovian Switching

Authors: Dezhi Liu Guiyuan Yang Wei Zhang

Abstract:

Strict stability can present the rate of decay of the solution, so more and more investigators are beginning to study the topic and some results have been obtained. However, there are few results about strict stability of stochastic differential equations. In this paper, using Lyapunov functions and Razumikhin technique, we have gotten some criteria for the strict stability of impulsive stochastic functional differential equations with markovian switching.

Keywords: Impulsive; Stochastic functional differential equation; Strict stability; Razumikhin technique.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1289
2265 Mean Square Stability of Impulsive Stochastic Delay Differential Equations with Markovian Switching and Poisson Jumps

Authors: Dezhi Liu

Abstract:

In the paper, based on stochastic analysis theory and Lyapunov functional method, we discuss the mean square stability of impulsive stochastic delay differential equations with markovian switching and poisson jumps, and the sufficient conditions of mean square stability have been obtained. One example illustrates the main results. Furthermore, some well-known results are improved and generalized in the remarks.

Keywords: Impulsive, stochastic, delay, Markovian switching, Poisson jumps, mean square stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
2264 Modeling and Simulating Reaction-Diffusion Systems with State-Dependent Diffusion Coefficients

Authors: Paola Lecca, Lorenzo Dematte, Corrado Priami

Abstract:

The present models and simulation algorithms of intracellular stochastic kinetics are usually based on the premise that diffusion is so fast that the concentrations of all the involved species are homogeneous in space. However, recents experimental measurements of intracellular diffusion constants indicate that the assumption of a homogeneous well-stirred cytosol is not necessarily valid even for small prokaryotic cells. In this work a mathematical treatment of diffusion that can be incorporated in a stochastic algorithm simulating the dynamics of a reaction-diffusion system is presented. The movement of a molecule A from a region i to a region j of the space is represented as a first order reaction Ai k- ! Aj , where the rate constant k depends on the diffusion coefficient. The diffusion coefficients are modeled as function of the local concentration of the solutes, their intrinsic viscosities, their frictional coefficients and the temperature of the system. The stochastic time evolution of the system is given by the occurrence of diffusion events and chemical reaction events. At each time step an event (reaction or diffusion) is selected from a probability distribution of waiting times determined by the intrinsic reaction kinetics and diffusion dynamics. To demonstrate the method the simulation results of the reaction-diffusion system of chaperoneassisted protein folding in cytoplasm are shown.

Keywords: Reaction-diffusion systems, diffusion coefficient, stochastic simulation algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1526
2263 Segmentation of Noisy Digital Images with Stochastic Gradient Kernel

Authors: Abhishek Neogi, Jayesh Verma, Pinaki Pratim Acharjya

Abstract:

Image segmentation and edge detection is a fundamental section in image processing. In case of noisy images Edge Detection is very less effective if we use conventional Spatial Filters like Sobel, Prewitt, LOG, Laplacian etc. To overcome this problem we have proposed the use of Stochastic Gradient Mask instead of Spatial Filters for generating gradient images. The present study has shown that the resultant images obtained by applying Stochastic Gradient Masks appear to be much clearer and sharper as per Edge detection is considered.

Keywords: Image segmentation, edge Detection, noisy images, spatialfilters, stochastic gradient kernel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1522
2262 Noise Analysis of Single-Ended Input Differential Amplifier using Stochastic Differential Equation

Authors: Tarun Kumar Rawat, Abhirup Lahiri, Ashish Gupta

Abstract:

In this paper, we analyze the effect of noise in a single- ended input differential amplifier working at high frequencies. Both extrinsic and intrinsic noise are analyzed using time domain method employing techniques from stochastic calculus. Stochastic differential equations are used to obtain autocorrelation functions of the output noise voltage and other solution statistics like mean and variance. The analysis leads to important design implications and suggests changes in the device parameters for improved noise characteristics of the differential amplifier.

Keywords: Single-ended input differential amplifier, Noise, stochastic differential equation, mean and variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1724
2261 Comparative Analysis of the Stochastic and Parsimonious Interest Rates Models on Croatian Government Market

Authors: Zdravka Aljinović, Branka Marasović, Blanka Škrabić

Abstract:

The paper provides a discussion of the most relevant aspects of yield curve modeling. Two classes of models are considered: stochastic and parsimonious function based, through the approaches developed by Vasicek (1977) and Nelson and Siegel (1987). Yield curve estimates for Croatia are presented and their dynamics analyzed and finally, a comparative analysis of models is conducted.

Keywords: the term structure of interest rates, Vasicek model, Nelson-Siegel model, Croatian Government market.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501