
 

 

  
Abstract—Many exist studies always use Markov decision 

processes (MDPs) in modeling optimal route choice in 
stochastic, time-varying networks. However, taking many 
variable traffic data and transforming them into optimal route 
decision is a computational challenge by employing MDPs in 
real transportation networks. In this paper we model finite 
horizon MDPs using directed hypergraphs. It is shown that the 
problem of route choice in stochastic, time-varying networks 
can be formulated as a minimum cost hyperpath problem, and 
it also can be solved in linear time. We finally demonstrate the 
significant computational advantages of the introduced 
methods. 
 

Keywords—Markov decision processes (MDPs), stochastic 
time-varying networks, hypergraphs, route choice.  

I. INTRODUCTION 
ECENTLY, there has been growing interest in determining 
optimal path in stochastic time-varying networks (STV 

networks). In STV networks, travel times are modeled as 
random variables with time-dependent distributions, which 
often provide a better modeling tool in transportation 
applications [1, 2, 3]. 

Hall studies for the first time about STV networks [4]. It is 
shown that in a stochastic, time varying network, the standard 
shortest path algorithms (such as Dijkstra’s algorithm) aren’t 
able to find the shortest path. The best route from any given 
node to the goal node depends not only on the node, but also 
on the arrival time to the node. Thus, the optimal route choice 
is not simple path but a policy that describes which node 
should be visited once the arrival time to a node is realized. 
Hall suggested dynamic programming for finding optimal 
policy. Based on the Hall’s work, many studies (Miller-Hooks 
[5], Pretolani [6], Gao [7], Nielsen [8]) are presented on how 
to compute the optimal route policy in STV networks. Among 
them, some paper search the policy based on computing the 
mean and variance of the travel time while others use the finite 
horizon MDPs to stimulate the procedure.  

For the sake of deficient deterministic travel time 
distribution information of all links under stochastic networks, 
it is proved that the method using mean of link travel time is 
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less applicable than the MDPs’s in describing real 
transportation networks. However, the decision procedure of 
MDPs used in STV networks depends on a lot of state 
variables for its dynamicity and time dependency, which 
requires enormous computational times [9,10]. The difficulty 
of this type of problem has made find optimal route choice an 
area of intensive investigation. 

In this paper we focus on the presence of variable traffic 
conditions on real transportation networks, where the 
information can greatly affect the outcomes of the planned 
schedule. We consider the finite horizon MDPs with finite 
state and action space and develop an efficient algorithm for 
finding optimal routing policies in STV networks. The main 
contribution of the paper is to apply finding minimum cost 
hyperpath to model MDPs used in finding stochastic shortest 
paths properly.  

This paper is organized as follows: Section 2 is problem 
description. In section 3, a hypergraph model for the finite 
horizon MDPs. Section 4 presents an efficient solving method. 
The final section concludes the paper. 

II. PROBLEM DESCRIPTION 
We formulate the optimal route determination problem as a 

discrete time, finite horizon Markov decision processes in 
STV networks. Let ( , )G N A= be a stochastic time-varying 
network, N is the set of nodes and A is the set of links. The 
network has a single start node s and multiple destinations. 
Define the link travel time vector at time t to 
be 1( ) { ( ),..., ( )}mL t L t L t= , where m denotes the number of 
links, and each link travel time is a random variable. Let 

{0,1,... }U T= be the set of possible times that decisions are 
made. Define the state space of our decision problem to be 
     {( , , ) | , , ( )}S n t l n N t U l L t= ∈ ∈ ∈               (1) 

Therefore, the size of the state space is N Ul × . Given the 
decision maker observes state, the vehicle may choose an 
action ,s sta A∈ from the set of actions and then generate 

cost ( , )stc s a . For simplicity, these kinds of actions omit 
staying and waiting at node, and only consider reroute or go 
direct next node. Moreover, the transition probabilities of 
obtaining next state 1sts S +′∈ at stage 1st + is (. | , )stp s a . 

A deterministic Markovian policy is defined a 
function : S Nπ → that prescribes which node should be 
visited next for each node. The characteristic of deterministic 
comes from its certainty and Markovian since it depends on 
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the current system state. A policy specifies the decision rules 
to be used at all stages and provides the decision maker with a 
plan of which action to take given stage and state. It means a 
policy is a sequence of decision rules, that 
is 0 1( , ,..., )STπ π π π= . Consequently, the mathematical model 
of the MDPs is  

,

0

, ,

min{ ( ( , ))}

. . (. | , )
st s st

ST

s st st st
st

st
st ST s S a A

E c X

s t M p s a

π π
=

∈ ∈ ∈

=

∑

∑
          (2) 

where stX is a random variable taking values in stS and denotes 
the state of the system at stage st . Here M is the total number 
of possible transition. In Equation (2), the policy maker seeks 
a policy stπ  to minimize the expected total cost. It is well 
known that there exists a deterministic Markovian policy in 
above model [11]. According to the definition of MDPs, the 
cost to go ( )stu sπ which denotes the expected total cost given 
policy π at stage st can be found using the following recursive 
equations 

1

1

( , )
( ) ( , ) ( | , ) ( )

st

st

st
st st

s S

c s a st ST
u s c s a p s s a u s st ST

π
π

+

+
′∈

=⎧⎪= ⎨ ′ ′+ <
⎪⎩

∑   (3) 

Thus, the optimal route policy with the minimal total cost for 
all stages and states can be found using the Bellman equations 
     

,

* ( ) min ( )
s stst a A stu s u sπ

∈=                         (4) 

The value of * ( )stu s is the optimal expected cost. The 
procedure is often referred to as value iteration or backward 
induction in MDPs.  

III. A HYPERGRAPH MODEL FOR THE FINITE-HORIZON MDPS 
The motivation that using hypergraph modeling the 

procedure of MDPs is the likeness between the recursive Eq. 
(3) and procedure of finding optimal path in hypergraph. The 
transition probabilities ( | , )p s s a′  in Equation (3) determine 
possible nodes which will be visited next. That is, each arc has 
more than two nodes. Moreover, the definition of hypergraph 
just describes the special arc attribution.  

A directed hypergraph is a pair ( , )H V E , where V is the set 
of nodes, and E is the set of hyperarcs. A hyperarc e E∈ is a 
pair ( ( ), ( ))e T e h e∈ , where ( )T e V⊂ denotes the set of tail 
nodes and ( ) \ ( )h e V T e⊂ denotes the head node [12]. 
According to the discussion above, we redefine the 
hypergraph ( , )H V E  with state space to describe the recursive 
Eq. (3). 
Definition1: The definition of the node and hyperarc set of the 
revised hypergraph ( , )H V E′ is 

{ }
{ }

{ }
{ }

,

, , ,

, , , 1 1 ,

,

| 0,..., ,

| 0,..., , ,

( | , ( | , ) , )

,

s st

a s st s st

a s st s st st st s st

s st

V v st ST s S

E e st ST s S a A

e v s S p s s a v

A if st STφ
′ + +

= = ∈

= = ∈ ∈

′ ′= ∈

= =

     (5) 

In view of the Definition1, it is easily proved that the structure 
of the revised hyperarc is the same as the standard hypergraph. 
The acyclic hypergraph ( , )H V E′ can be built in ( )O M time 
and ( ) ( )size H O M′ =  [13]. 

Consider a finite horizon MDP and its corresponding 
revised hypergraph, the policy 0 1( , ,..., )STπ π π π= defines a 
unique hypertree for its acyclic feature. The weight of 
hyperpath is ( )W v . A weighting function is defined by the 
recursive equation [14] 

0
( )

( ( )) ( ( )) \{ }
v s

W v
w p v F p v v V sπ

=⎧
= ⎨ + ∈⎩

        (6) 

Here ( )p v is the unique hyperarc in the hypertree which has 
node v as the head, and s is the start node. Note that 

( )F e denotes a non-decreasing function of the weights in the 
node of ( )T e , and ( )w e is the nonnegative weight of arc e . 
The cost function is defined as follows: 

( )
( ) ( ) ( ), ( )ev T e

F e a v W v p v e
∈

= ∃ =∑           (7)  

Compare with the (3) and (6), each hyperarc e  can be 
assigned multipliers to replace the variable ( )ea u in Equation 
(7). 

1

, , , 1

1
( )

( | , ) , ( )
st

e
st a s st s st

v v
a v

p s s a e e v v T e
+

′ +

=⎧⎪= ⎨ ′ = = ∈⎪⎩
   (8) 

Since the recursive definitions of W and ( )stu sπ are identical, 

,( ) ( )s st stW v u sπ= , the problem of finding an optimal route 
choice in STV networks can be formulated as finding a 
minimum cost hyperpath problem in the revised hypergraph 

( , )H V E′ . 

IV. OPTIMAL ROUTE CHOICE IN STV NETWORKS 
In order to get efficient method to find a minimum cost 

hyperpath, two major problems are addressed in the research. 
The first one that strongly influences the computation 
efficiencies is the big size of state space. The second one is 
how to develop an algorithm to solve the minimum cost 
hyperpath problem efficiently based on the former work. 
Example1. A directed hypergraph ( , )H V E is shown in Fig. 
1,where { }1 2 3 4 5, , , ,E e e e e e= , { }1 2 3 4 5, , , , , ,s dV v v v v v v v= . 
Assume each node (except node sv , dv ) with n  state and one 
stage number is m  in its corresponding revised 
hypergraph ( , )H V E′ , the number of nodes in the revised 
hypergraph ( , )H V E′ is enlarged to 5nm . Furthermore, 
according to the discussion, we know the size of the revised 
hypergraph is mainly decided by the size of state space and 
stage number. As a result, researches on reduction of the size 
of state space are urgent in its application in real transportation 
networks. 

In this section, we develop a method on reduction of state 
space. The main idea relies on the definition of earliest start 
time and latest arrival time. The variables offer us the heuristic 
method that defines the bound of the time space. As a result, 
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each node/time pair would be defined in a concrete time and 
position space. 

 
Fig. 1 A directed hypergraph ( , )H V E  

Proposition 1. Generally, given ( , )G N E , we denote the 
discrete time horizon as { }, 1, ,U L L T= + ⋅⋅⋅ , where L  is the 
earliest start time while T is the latest arrival time of any 
vehicle. Let iSp  be the shortest path value from source node 
s to node i using static link travel cost , ( , )ijcs i j E∀ ∈ , and 
let ,i iL L Sp i V≡ + ∀ ∈ . The final stochastic shortest path 
solution { }1, , us n n d= ⋅⋅ ⋅ = that represents the nodes visiting 
at respective times 1,..., uT T  must meet , 1,..., .

kk nT L k u≥ ∀ =  

Proof. Since the definition of L , we have 1 knT L L≥ = . Thus, 

for each 2,..., ,k u=  since 1 kk nT T Sp− ≥ , we have that 
following conclusion 

           
kk nT L≥                             (9) 

Remark 1.In a directed hypergraph, we denote by 
  { } { }( ) | ( ) , ( ) | ( )FS v e E v T e BS v e E v h e= ∈ ∈ = ∈ =   (10) 

forward links and the backward links of node v , respectively. 
According to equation (1), the state space S is defined by ( , )n t , 
where state ( , )n t denotes the status of being at node n  at 
time t such that it is possible to transition along 
arc ( , ( ))n succ n en route to reach node d  at the specified time, 
and here ( )succ n is the successive node of the node n .  

The set of states at stage { }0,1,...,st ST∈ , is denoted stS . 
The stage denotes an epoch when the traveler is located at a 
node from which it is possible to reach node d  in finite steps. 
Since the backward induction used in MDPs, we have 
that { }0 ( , )S d T= . Moreover, we compute kS as follows: 

{ }
1( , )

( , ) | ( ) , ,
k

k ij i
j t S

S i t i BS j t t cs t L
−′ ∈

′= ∈ = − ≥∪   (11) 

Hence, we reduce the set of state space according to 
{ }( , )k kS S i t= −                       (12) 

where ( , ) ,i t S t t′ ′∈ = . The principle of the reduction is to 
delete the state as it is not on the way, in which the time 
consuming descends in the procedure of backward recursion 
from the destination node to start node. 
Proposition 2. The hypergraph method is more efficient than 
the MDPs in solving the optimal route choice in STV 
networks. 
Proof. According to Equation (1), the complexity of the 
standard MDPs method is | || |( )N UlΘ . It grows exponentially as 

large state space and will make computing difficult in 
transportation networks. As regards the Algorithm 1, its 
computation complexity is ( log ( ))m n size HΘ + , where n  is 
the number of nodes and m  is the number of arcs in the 
network. 

The comparison of complexity between MDPs and 
hypergraph proves that the method of hypergraph is more 
efficient than the MDPs. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

V. CONCLUSIONS 
A novel approach is proposed to finding optimal route 

choice in STV networks. The approach models finite horizon 
MDPs using directed hypergraphs. With the help of efficient 
shortest path algorithm, the computation complexity is 
obviously decreased. The results are proved clearly in third 
section. Future work is to apply the method in real 
transportation networks. 
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