Search results for: solid fuel production
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3088

Search results for: solid fuel production

2818 Manufacture of Electroless Nickel/YSZ Composite Coatings

Authors: N. Bahiyah Baba, W. Waugh, A.M. Davidson

Abstract:

The paper discusses optimising work on a method of processing ceramic / metal composite coatings for various applications and is based on preliminary work on processing anodes for solid oxide fuel cells (SOFCs). The composite coating is manufactured by the electroless co-deposition of nickel and yttria stabilised zirconia (YSZ) simultaneously on to a ceramic substrate. The effect on coating characteristics of substrate surface treatments and electroless nickel bath parameters such as pH and agitation methods are also investigated. Characterisation of the resulting deposit by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDXA) is also discussed.

Keywords: Electroless deposition, nickel, YSZ, composite

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2519
2817 Effect of Polyvinyl Pyrrolidone and Ethyl Cellulose Concentration on Release Profile and Kinetics of Glibenclamide Extended Release Dosage Form System

Authors: Amit Kumar, Peeyush Sharma, Anil Bhandari

Abstract:

The aim of present work was to optimize the effect of Ethyl Cellulose (EC) and Polyvinyl Pyrrolidone (PVP) concentration in extended release solid dispersion of Glibenclamide using combination of hydrophilic and hydrophobic polymers such as Polyvinyl Pyrrolidone and Ethyl cellulose. The advantage of solid dispersion technique provides a unique approach to particle size reduction and increased rates of dissolution. The compatibility studies of the drug and polymers were studied by TLC and results suggested no interaction between drug and polymers. Solid dispersions of Glibenclamide were prepared by common solvent evaporation method using Polyvinyl Pyrrolidone and Ethyl cellulose. The results indicated that homogeneous or heterogeneous conditions during the preparation methods employed governed the internal structures of the polymer matrices while retaining the drug in an amorphous form. F2 formulation prepared by solid dispersion method, displayed extended drug release followed by Higuchi matrix model indicating diffusion release of GLB from polymer matrices.

Keywords: Ethyl Cellulose, Glibenclamide, Polyvinyl Pyrrolidone, Solid Dispersion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
2816 A CFD Study of Sensitive Parameters Effect on the Combustion in a High Velocity Oxygen-Fuel Thermal Spray Gun

Authors: S. Hossainpour, A. R. Binesh

Abstract:

High-velocity oxygen fuel (HVOF) thermal spraying uses a combustion process to heat the gas flow and coating material. A computational fluid dynamics (CFD) model has been developed to predict gas dynamic behavior in a HVOF thermal spray gun in which premixed oxygen and propane are burnt in a combustion chamber linked to a parallel-sided nozzle. The CFD analysis is applied to investigate axisymmetric, steady-state, turbulent, compressible, chemically reacting, subsonic and supersonic flow inside and outside the gun. The gas velocity, temperature, pressure and Mach number distributions are presented for various locations inside and outside the gun. The calculated results show that the most sensitive parameters affecting the process are fuel-to-oxygen gas ratio and total gas flow rate. Gas dynamic behavior along the centerline of the gun depends on both total gas flow rate and fuel-to-oxygen gas ratio. The numerical simulations show that the axial gas velocity and Mach number distribution depend on both flow rate and ratio; the highest velocity is achieved at the higher flow rate and most fuel-rich ratio. In addition, the results reported in this paper illustrate that the numerical simulation can be one of the most powerful and beneficial tools for the HVOF system design, optimization and performance analysis.

Keywords: HVOF, CFD, gas dynamics, thermal spray, combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2113
2815 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland

Authors: Alireza Ansariyar, Safieh Laaly

Abstract:

Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates Connected and Autonomous Vehicles (CAVs) fuel consumption and air pollutants including Carbon Monoxide (CO), Particulate Matter (PM), and Nitrogen Oxides (NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.

Keywords: Connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 373
2814 Sulfur Removal of Hydrocarbon Fuels Using Oxidative Desulfurization Enhanced by Fenton Process

Authors: Mahsa Ja’fari, Mohammad R. Khosravi-Nikou, Mohsen Motavassel

Abstract:

A comprehensive development towards the production of ultra-clean fuels as a feed stoke is getting to raise due to the increasing use of diesel fuels and global air pollution. Production of environmental-friendly fuels can be achievable by some limited single methods and most integrated ones. Oxidative desulfurization (ODS) presents vast ranges of technologies possessing suitable characteristics with regard to the Fenton process. Using toluene as a model fuel feed with dibenzothiophene (DBT) as a sulfur compound under various operating conditions is the attempt of this study. The results showed that this oxidative process followed a pseudo-first order kinetics. Removal efficiency of 77.43% is attained under reaction time of 40 minutes with (Fe+2/H2O2) molar ratio of 0.05 in acidic pH environment. In this research, temperature of 50 °C represented the most influential role in proceeding the reaction.

Keywords: Design of experiment, dibenzothiophene, optimization, oxidative desulfurization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1930
2813 Bioconversion of Oranges Wastes for Pectinase Production Using Aspergillus niger under Solid State Fermentation

Authors: N. Hachemi, A. Nouani, A. Benchabane

Abstract:

The influence of cultivation factors such as content of ammonium sulfate, glucose and water in the culture medium and particle size of dry orange waste, on their bioconversion for pectinase production was studied using complete factorial design. A polygalacturonase (PG) was isolated using ion exchange chromatography under gradient elution 0-0,5 m/l NaCl (column equilibrate with acetate buffer pH 4,5), subsequently by sephadex G75 column chromatography was applied and the molecular weight was obtained about 51,28 KDa. Purified PG enzyme exhibits a pH and temperature optima of activity at 5 and 35°C respectively. Treatment of apple juice by purified enzyme extract yielded a clear juice, which was competitive with juice yielded by pure Sigma Aldrich Aspergillus niger enzyme.

Keywords: Bioconversion, orange wastes, optimization, pectinase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3010
2812 A Comparison of Dilute Sulfuric and Phosphoric Acid Pretreatments in Biofuel Production from Corncobs

Authors: Jirakarn Nantapipat, Apanee Luengnaruemitchai, Sujitra Wongkasemjit

Abstract:

Biofuels, like biobutanol, have been recognized for being renewable and sustainable fuels which can be produced from lignocellulosic biomass. To convert lignocellulosic biomass to biofuel, pretreatment process is an important step to remove hemicelluloses and lignin to improve enzymatic hydrolysis. Dilute acid pretreatment has been successful developed for pretreatment of corncobs and the optimum conditions of dilute sulfuric and phosphoric acid pretreatment were obtained at 120 °C for 5 min with 15:1 liquid to solid ratio and 140 °C for 10 min with 10:1 liquid to solid ratio, respectively. The result shows that both of acid pretreatments gave the content of total sugar approximately 34–35 g/l. In case of inhibitor content (furfural), phosphoric acid pretreatment gives higher than sulfuric acid pretreatment. Characterizations of corncobs after pretreatment indicate that both of acid pretreatments can improve enzymatic accessibility and the better results present in corncobs pretreated with sulfuric acid in term of surface area, crystallinity, and composition analysis.

Keywords: Corncobs, Pretreatment, Sulfuric acid, Phosphoric acid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3375
2811 Reduced Inventories, High Reliability and Short Throughput Times by Using CONWIP Production Planning System

Authors: Tomas Duranik, Juraj Ruzbarsky, Markus Stopper

Abstract:

CONWIP (constant work-in-process) as a pull production system have been widely studied by researchers to date. The CONWIP pull production system is an alternative to pure push and pure pull production systems. It lowers and controls inventory levels which make the throughput better, reduces production lead time, delivery reliability and utilization of work. In this article a CONWIP pull production system was simulated. It was simulated push and pull planning system. To compare these systems via a production planning system (PPS) game were adjusted parameters of each production planning system. The main target was to reduce the total WIP and achieve throughput and delivery reliability to minimum values. Data was recorded and evaluated. A future state was made for real production of plastic components and the setup of the two indicators with CONWIP pull production system which can greatly help the company to be more competitive on the market.

Keywords: CONWIP, constant work in process, delivery reliability, hybrid production planning, PPS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2220
2810 Temperature Effect on the Solid-State Synthesis of Dehydrated Zinc Borates

Authors: N. Tugrul, N. Baran Acarali, A. S. Kipcak, E. Moroydor Derun, S. Piskin

Abstract:

Turkey has 72 % of total world boron reserves on the basis of B2O3.Borates that is a refined form of boron minerals have a wide range of applications. Zinc borates can be used as multifunctional synergistic additives. The most important properties are low solubility in water and high dehydration temperature. Zinc borates dehydrate above 290°C and anhydrous zinc borate has thermal resistance about 400°C. Zinc borates can be synthesized using several methods such as hydrothermal and solid-state processes. In this study, the solid-state method was applied between 500 and 800°C using the starting materials of ZnO and H3BO3 with 1:4 mole ratio. The reaction time was determined as 4 hours after some preliminary experiments. After the synthesis, the crystal structure and the morphology of the products were examined by XRay Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman Spectrometer. As a result the form of ZnB4O7 was synthesized with the highest crystal score at 800°C.

Keywords: Raman, solid-state method, zinc borate, XRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
2809 Investigation of Water Transport Dynamics in Polymer Electrolyte Membrane Fuel Cells Based on a Gas Diffusion Media Layers

Authors: Saad S. Alrwashdeh, Henning Markötter, Handri Ammari, Jan Haußmann, Tobias Arlt, Joachim Scholta, Ingo Manke

Abstract:

In this investigation, synchrotron X-ray imaging is used to study water transport inside polymer electrolyte membrane fuel cells. Two measurement techniques are used, namely in-situ radiography and quasi-in-situ tomography combining together in order to reveal the relationship between the structures of the microporous layers (MPLs) and the gas diffusion layers (GDLs), the operation temperature and the water flow. The developed cell is equipped with a thick GDL and a high back pressure MPL. It is found that these modifications strongly influence the overall water transport in the whole adjacent GDM.

Keywords: Polymer electrolyte membrane fuel cell, microporous layer, water transport, radiography, tomography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 695
2808 Modeling of Kepler-Poinsot Solid Using Isomorphic Polyhedral Graph

Authors: Hidetoshi Nonaka

Abstract:

This paper presents an interactive modeling system of uniform polyhedra using the isomorphic graphs. Especially, Kepler-Poinsot solids are formed by modifications of dodecahedron and icosahedron.

Keywords: Kepler-Poinsot solid, Shape modeling, Polyhedralgraph, Graph drawing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
2807 Modeling Decentralized Source-Separation Systems for Urban Waste Management

Authors: Bernard J.H. Ng, Apostolos Giannis, Victor Chang, Rainer Stegmann, Jing-Yuan Wang

Abstract:

Decentralized eco-sanitation system is a promising and sustainable mode comparing to the century-old centralized conventional sanitation system. The decentralized concept relies on an environmentally and economically sound management of water, nutrient and energy fluxes. Source-separation systems for urban waste management collect different solid waste and wastewater streams separately to facilitate the recovery of valuable resources from wastewater (energy, nutrients). A resource recovery centre constituted for 20,000 people will act as the functional unit for the treatment of urban waste of a high-density population community, like Singapore. The decentralized system includes urine treatment, faeces and food waste co-digestion, and horticultural waste and organic fraction of municipal solid waste treatment in composting plants. A design model is developed to estimate the input and output in terms of materials and energy. The inputs of urine (yellow water, YW) and faeces (brown water, BW) are calculated by considering the daily mean production of urine and faeces by humans and the water consumption of no-mix vacuum toilet (0.2 and 1 L flushing water for urine and faeces, respectively). The food waste (FW) production is estimated to be 150 g wet weight/person/day. The YW is collected and discharged by gravity into tank. It was found that two days are required for urine hydrolysis and struvite precipitation. The maximum nitrogen (N) and phosphorus (P) recovery are 150-266 kg/day and 20-70 kg/day, respectively. In contrast, BW and FW are mixed for co-digestion in a thermophilic acidification tank and later a decentralized/centralized methanogenic reactor is used for biogas production. It is determined that 6.16-15.67 m3/h methane is produced which is equivalent to 0.07-0.19 kWh/ca/day. The digestion residues are treated with horticultural waste and organic fraction of municipal waste in co-composting plants.

Keywords: Decentralization, ecological sanitation, material flow analysis, source-separation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2883
2806 Investigation of the Capability of REALP5 to Solve Complex Fuel Geometry

Authors: D. Abdelrazek, M. NaguibAly, A. A. Badawi, Asmaa G. Abo Elnour, A. A. El-Kafas

Abstract:

This work is developed within IAEA Coordinated Research Program 1496, “Innovative methods in research reactor analysis: Benchmark against experimental data on neutronics and thermal-hydraulic computational methods and tools for operation and safety analysis of research reactors”.

The study investigates the capability of Code RELAP5/Mod3.4 to solve complex geometry complexity. Its results are compared to the results of PARET, a common code in thermal hydraulic analysis for research reactors, belonging to MTR-PC groups.

The WWR-SM reactor at the Institute of Nuclear Physics (INP) in the Republic of Uzbekistan is simulated using both PARET and RELAP5 at steady state. Results from the two codes are compared.

REALP5 code succeeded in solving the complex fuel geometry. The PARET code needed some calculations to obtain the final result. Although the final results from the PARET are more accurate, the small differences in both results makes using RELAP5 code recommended in case of complex fuel assemblies. 

Keywords: Complex fuel geometry, PARET, RELAP5, WWR-SM reactor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2203
2805 Experimental Investigation of Combustion Chamber Dimensions Effects on Pollutant Emission and Combustion Efficiency

Authors: K. Bashirnezhad, M. Joleini

Abstract:

The combustion chamber dimensions have important effects on pollutant emission in furnaces as a direct result of temperature distribution and maximum temperature value. In this paper the pollutant emission and the temperature distribution in two cylindrical furnaces with different dimensions (with similar length to diameter ratio) in similar condition have been investigated experimentally. The furnace fuel is gas oil that is used with three different flow rates. The results show that in these two cases the temperature increases to its maximum value quickly, and then decreases slowly. The results also show that increase in fuel flow rate cause to increase in NOx emission in each case, but this increase is greater in small furnace. With increase in fuel flow rate, CO emission decreases firstly, and then it increases. Combustion efficiency reduces with increase in fuel flow rate but the rate of reduction in small furnace is greater than large furnace. The results of axial temperature distribution have been compared with those have been obtained numerically and experimentally by Moghiman.

Keywords: Furnace dimensions, Oxides of Nitrogen, Carbonmonoxide, Efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744
2804 Sludge and Compost Amendments in Tropical Soils: Impact on Coriander (Coriandrum sativum) Nutrient Content

Authors: Ml. López-Moreno, Le. Lugo Avilés, Fr. Román, J. Lugo Rosas, Ja. Hernández-Viezcas, Jr. Peralta-Videa, Jl. Gardea-Torresdey

Abstract:

Degradation of agricultural soils has increased rapidly during the last 20 years due to the indiscriminate use of pesticides and other anthropogenic activities. Currently, there is an urgent need of soil restoration to increase agricultural production. Utilization of sewage sludge or municipal solid waste is an important way to recycle nutrient elements and improve soil quality. With these amendments, nutrient availability in the aqueous phase might be increased and production of healthier crops can be accomplished. This research project aimed to achieve sustainable management of tropical agricultural soils, specifically in Puerto Rico, through the amendment of water treatment plant sludge’s. This practice avoids landfill disposal of sewage sludge and at the same time results costeffective practice for recycling solid waste residues. Coriander sativum was cultivated in a compost-soil-sludge mixture at different proportions. Results showed that Coriander grown in a mixture of 25% compost+50% Voladora soi+25% sludge had the best growth and development. High chlorophyll content (33.01 ± 0.8) was observed in Coriander plants cultivated in 25% compost+62.5% Coloso soil+ 12.5% sludge compared to plants grown with no sludge (32.59 ± 0.7). ICP-OES analysis showed variations in mineral element contents (macro and micronutrients) in coriander plant grown I soil amended with sludge and compost.

Keywords: Compost, Coriandrum sativum, nutrients, waste sludge.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2435
2803 Cessna Citation X Performances Improvement by an Adaptive Winglet during the Cruise Flight

Authors: Marine Segui, Simon Bezin, Ruxandra Mihaela Botez

Abstract:

As part of a ‘Morphing-Wing’ idea, this study consists of measuring how a winglet, which is able to change its shape during the flight, is efficient. Conventionally, winglets are fixed-vertical platforms at the wingtips, optimized for a cruise condition that the airplane should use most of the time. However, during a cruise, an airplane flies through a lot of cruise conditions corresponding to altitudes variations from 30,000 to 45,000 ft. The fixed winglets are not optimized for these variations, and consequently, they are supposed to generate some drag, and thus to deteriorate aircraft fuel consumption. This research assumes that it exists a winglet position that reduces the fuel consumption for each cruise condition. In this way, the methodology aims to find these optimal winglet positions, and to further simulate, and thus estimate the fuel consumption of an aircraft wearing this type of adaptive winglet during several cruise conditions. The adaptive winglet is assumed to have degrees of freedom given by the various changes of following surfaces: the tip chord, the sweep and the dihedral angles. Finally, results obtained during cruise simulations are presented in this paper. These results show that an adaptive winglet can reduce, thus improve up to 2.12% the fuel consumption of an aircraft during a cruise.

Keywords: Aerodynamics, Cessna Citation X, optimization, winglet, adaptive, morphing, wing, aircraft.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1186
2802 The Comparative Investigation and Calculation of Thermo-Neutronic Parameters on Two Gens II and III Nuclear Reactors with Same Powers

Authors: Mousavi Shirazi, Seyed Alireza, Rastayesh, Sima

Abstract:

Whereas in the third generation nuclear reactors, dimensions of core and also the kind of coolant and enrichment percent of fuel have significantly changed than the second generation, therefore in this article the aim is based on a comparative investigation between two same power reactors of second and third generations, that the neutronic parameters of both reactors such as: K∞, Keff and its details and thermal hydraulic parameters such as: power density, specific power, volumetric heat rate, released power per fuel volume unit, volume and mass of clad and fuel (consisting fissile and fertile fuels), be calculated and compared together. By this comparing the efficiency and modification of third generation nuclear reactors than second generation which have same power can be distinguished. In order to calculate the cited parameters, some information such as: core dimensions, the pitch of lattice, the fuel matter, the percent of enrichment and the kind of coolant are used. For calculating the neutronic parameters, a neutronic program entitled: SIXFAC and also related formulas have been used. Meantime for calculating the thermal hydraulic and other parameters, analytical method and related formulas have been applied.

Keywords: Nuclear reactor, second generation, third generation, thermo-neutronics parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1576
2801 Application of Powder Metallurgy Technologies for Gas Turbine Engine Wheel Production

Authors: Liubov Magerramova, Eugene Kratt, Pavel Presniakov

Abstract:

A detailed analysis has been performed for several schemes of Gas Turbine Wheels production based on additive and powder technologies including metal, ceramic, and stereolithography 3-D printing. During the process of development and debugging of gas turbine engine components, different versions of these components must be manufactured and tested. Cooled blades of the turbine are among of these components. They are usually produced by traditional casting methods. This method requires long and costly design and manufacture of casting molds. Moreover, traditional manufacturing methods limit the design possibilities of complex critical parts of engine, so capabilities of Powder Metallurgy Techniques (PMT) were analyzed to manufacture the turbine wheel with air-cooled blades. PMT dramatically reduce time needed for such production and allow creating new complex design solutions aimed at improving the technical characteristics of the engine: improving fuel efficiency and environmental performance, increasing reliability, and reducing weight. To accelerate and simplify the blades manufacturing process, several options based on additive technologies were used. The options were implemented in the form of various casting equipment for the manufacturing of blades. Methods of powder metallurgy were applied for connecting the blades with the disc. The optimal production scheme and a set of technologies for the manufacturing of blades and turbine wheel and other parts of the engine can be selected on the basis of the options considered.

Keywords: Additive technologies, gas turbine engine, powder technology, turbine wheel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1867
2800 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model

Authors: Bin Wang, Hengyu Ji, Zhifeng Ye

Abstract:

Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.

Keywords: Fuel metering unit, stepping motor, AMESim/MATLAB, full digital simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
2799 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach

Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin

Abstract:

Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.

Keywords: Reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 769
2798 Comparing Machine Learning Estimation of Fuel Consumption of Heavy-Duty Vehicles

Authors: Victor Bodell, Lukas Ekstrom, Somayeh Aghanavesi

Abstract:

Fuel consumption (FC) is one of the key factors in determining expenses of operating a heavy-duty vehicle. A customer may therefore request an estimate of the FC of a desired vehicle. The modular design of heavy-duty vehicles allows their construction by specifying the building blocks, such as gear box, engine and chassis type. If the combination of building blocks is unprecedented, it is unfeasible to measure the FC, since this would first r equire the construction of the vehicle. This paper proposes a machine learning approach to predict FC. This study uses around 40,000 vehicles specific and o perational e nvironmental c onditions i nformation, such as road slopes and driver profiles. A ll v ehicles h ave d iesel engines and a mileage of more than 20,000 km. The data is used to investigate the accuracy of machine learning algorithms Linear regression (LR), K-nearest neighbor (KNN) and Artificial n eural n etworks (ANN) in predicting fuel consumption for heavy-duty vehicles. Performance of the algorithms is evaluated by reporting the prediction error on both simulated data and operational measurements. The performance of the algorithms is compared using nested cross-validation and statistical hypothesis testing. The statistical evaluation procedure finds that ANNs have the lowest prediction error compared to LR and KNN in estimating fuel consumption on both simulated and operational data. The models have a mean relative prediction error of 0.3% on simulated data, and 4.2% on operational data.

Keywords: Artificial neural networks, fuel consumption, machine learning, regression, statistical tests.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 760
2797 Evaluating Alternative Fuel Vehicles from Technical, Environmental and Economic Perspectives: Case of Light-Duty Vehicles in Iran

Authors: Vahid Aryanpur , Ehsan Shafiei

Abstract:

This paper presents an environmental and technoeconomic evaluation of light duty vehicles in Iran. A comprehensive well-to-wheel (WTW) analysis is applied to compare different automotive fuel chains, conventional internal combustion engines and innovative vehicle powertrains. The study examines the competitiveness of 15 various pathways in terms of energy efficiencies, GHG emissions, and levelized cost of different energy carriers. The results indicate that electric vehicles including battery electric vehicles (BEV), fuel cell vehicles (FCV) and plug-in hybrid electric vehicles (PHEV) increase the WTW energy efficiency by 54%, 51% and 46%, respectively, compared to common internal combustion engines powered by gasoline. On the other hand, greenhouse gas (GHG) emissions per kilometer of FCV and BEV would be 48% lower than that of gasoline engines. It is concluded that BEV has the lowest total cost of energy consumption and external cost of emission, followed by internal combustion engines (ICE) fueled by CNG. Conventional internal combustion engines fueled by gasoline, on the other hand, would have the highest costs.

Keywords: Well-to-Wheel analysis, Energy Efficiency, GHG emissions, Levelized cost of energy, Alternative fuel vehicles.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1703
2796 Assessment of Sediment Remediation Potential using Microbial Fuel Cell Technology

Authors: S. W. Hong, Y. S. Choi, T. H. Chung, J. H. Song, H. S. Kim

Abstract:

Bio-electrical responses obtained from freshwater sediments by employing microbial fuel cell (MFC) technology were investigated in this experimental study. During the electricity generation, organic matter in the sediment was microbially oxidized under anaerobic conditions with an electrode serving as a terminal electron acceptor. It was found that the sediment organic matter (SOM) associated with electrochemically-active electrodes became more humified, aromatic, and polydispersed, and had a higher average molecular weight, together with the decrease in the quantity of SOM. The alteration of characteristics of the SOM was analogous to that commonly observed in the early stage of SOM diagenetic process (i.e., humification). These findings including an elevation of the sediment redox potential present a possibility of the MFC technology as a new soil/sediment remediation technique based on its potential benefits: non-destructive electricity generation and bioremediation.

Keywords: Anaerobic oxidation, microbial fuel cell, remediation, sediment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
2795 Development of Motor and Controller for VVA Module of Gasoline Vehicle

Authors: Joon Sung Park, Jun-Hyuk Choi, Jin-Hong Kim, In-Soung Jung

Abstract:

Due to environmental concerns, the recent regulation on automobile fuel economy has been strengthened. The market demand for efficient vehicles is growing and automakers to improve engine fuel efficiency in the industry have been paying a lot of effort. To improve the fuel efficiency, it is necessary to reduce losses or to improve combustion efficiency of the engine. VVA (Variable Valve Actuation) technology enhances the engine's intake air flow, reduce pumping losses and mechanical friction losses. And also, VVA technology is the engine's low speed and high speed operation to implement each of appropriate valve lift. It improves the performance of engine in the entire operating range. This paper presents a design procedure of DC motor and drive for VVA system and shows the validity of the design result by experimental result with prototype.

Keywords: DC motor, Inverter, VVA, Electric Drive.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1552
2794 Hazard Contributing Factors Classification for Petrol Fuel Station

Authors: Mirza Munir Ahmed, S.R.M. Kutty, Mohd Faris Khamidi, Idris Othman, Azmi Mohd Shariff

Abstract:

Petrol Fuel Station (PFS) has potential hazards to the people, asset, environment and reputation of an operating company. Fire hazards, static electricity air pollution evoked by aliphatic and aromatic organic compounds are major causes of accident/incident occurrence at fuel station. Activities such as carelessness, maintenance, housekeeping, slips trips and falls, transportation hazard, major and minor injuries, robbery and snake bites has a potential to create unsafe conditions. The level of risk of these hazards varies according to location and country. The emphasis on safety considerations by the government is variable all around the world. Developed countries safety records are much better as compared to developing countries safety statistics. There is no significant approach available to highlight the unsafe acts and unsafe conditions during operation and maintenance of fuel station. Fuel station is the most commonly available facilities that contain flammable and hazardous materials. Due to continuous operation of fuel station they pose various hazards to people, environment and assets of an organization. To control these hazards, there is a need for specific approach. PFS operation is unique as compared to other businesses. For smooth operations it demands an involvement of operating company, contractor and operator group. This study will focus to address hazard contributing factors that have a potential to make PFS operation risky. One year data collected, 902 activities analyzed, comparisons were made to highlight significant contributing factors. The study will provide help and assistance to PFS outlet marketing companies to make their fuel station operation safer. It will help health safety and environment (HSE) professionals to arrest the gap available related to safety matters at PFS.

Keywords: Accident, Contributing factors, carelessness, fire, explosion, injuries.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7330
2793 Evaluation of Energy and Environmental Aspects of Reduced Tillage Systems Applied in Maize Cultivation

Authors: E. Sarauskis, L. Masilionyte, Z. Kriauciuniene, K. Romaneckas, S. Buragiene

Abstract:

In maize growing technologies, tillage technological operations are the most time-consuming and require the greatest fuel input. Substitution of conventional tillage, involving deep ploughing, by other reduced tillage methods can reduce technological production costs, diminish soil degradation and environmental pollution from greenhouse gas emissions, as well as improve economic competitiveness of agricultural produce.

Experiments designed to assess energy and environmental aspects associated with different reduced tillage systems, applied in maize cultivation were conducted at Aleksandras Stulginskis University taking into account Lithuania’s economic and climate conditions. The study involved 5 tillage treatments: deep ploughing (DP, control), shallow ploughing (SP), deep cultivation (DC), shallow cultivation (SC) and no-tillage (NT).

Our experimental evidence suggests that with the application of reduced tillage systems it is feasible to reduce fuel consumption by 13-58% and working time input by 8.4% to nearly 3-fold, to reduce the cost price of maize cultivation technological operations, decrease environmental pollution with CO2 gas by 30 to 146 kg ha-1, compared with the deep ploughing.

Keywords: Reduced tillage, energy and environmental assessment, fuel consumption, CO2 emission, maize.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040
2792 Effects of Modified Bottom Boards on the Performance of Honeybee Colonies

Authors: M. Keshlaf, R. Spooner-Hart

Abstract:

Australia does not have varroa mite. However, we investigated whether modified hive bottom boards used for varroa mite management in honey bee colonies had other benefits, for honey production. We compared a number of colony parameters between hives fitted with tube, mesh and conventional (solid) bottom boards in two locations in eastern Australian, Richmond NSW and Castlemaine Victoria. Colonies housed in hives with mesh and tube bottom boards were not significantly superior to those in hives with conventional bottom boards with regard to bee flight activity, nor did they produce more honey, brood or stored pollen, in either experimental site. Although the trial was conducted over only one season, it is suggested that there may be no benefit in Australian bee keepers changing from using conventional bottom boards in the absence of varroamite.

Keywords: Apis mellifera, honey production, mesh bottom boards, tube bottom boards.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
2791 Nafion Nanofiber Composite Membrane Fabrication for Fuel Cell Applications

Authors: C. N. Okafor, M. Maaza, T. A. E. Mokrani

Abstract:

A proton exchange membrane has been developed for direct methanol fuel cell (DMFC). The nanofiber network composite membranes were prepared by interconnected network of Nafion (perfuorosulfonic acid) nanofibers that have been embedded in an uncharged and inert polymer matrix, by electro-spinning. The spinning solution of Nafion with a low concentration (1 wt% compared to Nafion) of high molecular weight poly(ethylene oxide), as a carrier polymer. The interconnected network of Nafion nanofibers with average fiber diameter in the range of 160-700nm, were used to make the membranes, with the nanofiber occupying up to 85% of the membrane volume. The matrix polymer was crosslinked with Norland Optical Adhesive 63 under UV. The resulting membranes showed proton conductivity of 0.10 S/cm at 25°C and 80% RH; and methanol permeability of 3.6 x 10-6 cm2/s.

Keywords: Composite membrane, electrospinning, fuel cell, nanofibers.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2861
2790 The Data Mining usage in Production System Management

Authors: Pavel Vazan, Pavol Tanuska, Michal Kebisek

Abstract:

The paper gives the pilot results of the project that is oriented on the use of data mining techniques and knowledge discoveries from production systems through them. They have been used in the management of these systems. The simulation models of manufacturing systems have been developed to obtain the necessary data about production. The authors have developed the way of storing data obtained from the simulation models in the data warehouse. Data mining model has been created by using specific methods and selected techniques for defined problems of production system management. The new knowledge has been applied to production management system. Gained knowledge has been tested on simulation models of the production system. An important benefit of the project has been proposal of the new methodology. This methodology is focused on data mining from the databases that store operational data about the production process.

Keywords: data mining, data warehousing, management of production system, simulation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3441
2789 Modeling and Optimization of Aggregate Production Planning - A Genetic Algorithm Approach

Authors: B. Fahimnia, L.H.S. Luong, R. M. Marian

Abstract:

The Aggregate Production Plan (APP) is a schedule of the organization-s overall operations over a planning horizon to satisfy demand while minimizing costs. It is the baseline for any further planning and formulating the master production scheduling, resources, capacity and raw material planning. This paper presents a methodology to model the Aggregate Production Planning problem, which is combinatorial in nature, when optimized with Genetic Algorithms. This is done considering a multitude of constraints of contradictory nature and the optimization criterion – overall cost, made up of costs with production, work force, inventory, and subcontracting. A case study of substantial size, used to develop the model, is presented, along with the genetic operators.

Keywords: Aggregate Production Planning, Costs, and Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2536