Search results for: soft soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1103

Search results for: soft soil

1073 Nonlinear Response of Infinite Beams on a Tensionless Extensible Geosynthetic – Reinforced Earth Beds under Moving Load

Authors: Karuppsamy K., Eswara Prasad C. R.

Abstract:

In this paper analysis of an infinite beam resting on tensionless extensible geosynthetic reinforced granular bed overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough elastic membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear Winkler springs representing the under-lied very poor soil. The tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behavior of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. This study clearly observed that the comparisons of tension and tensionless foundation and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil foundation system.

Keywords: Infinite Beams, Tensionless Extensible Geosynthetic, Granular layer, Moving Load and Nonlinear behavior of poor soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1999
1072 Effects of an Added Foaming Agent on Hydro-Mechanical Properties of Soil

Authors: Moez Selmi, Mariem Kacem, Mehrez Jamei, Philippe Dubujet

Abstract:

Earth pressure balance (EPB) tunnel boring machines are designed for digging in different types of soil, especially clay soils. This operation requires the treatment of soil by lubricants to facilitate the procedure of excavation. A possible use of this soil is limited by the effect of treatment on the hydro-mechanical properties of the soil. This work aims to study the effect of a foaming agent on the hydro-mechanical properties of clay soil. The injection of the foam agent in the soil leads to create a soil matrix in which they are incorporated gas bubbles. The state of the foam in the soil is scalable thanks to the degradation of the gas bubbles in the soil.

Keywords: EPB, clay soils, foam agent, hydro-mechanical properties, degradation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1539
1071 Stabilization of Clay Soil Using A-3 Soil

Authors: Mohammed Mustapha Alhaji, Salawu Sadiku

Abstract:

A clay soil classified as A-7-6 and CH soil according to AASHTO and unified soil classification system respectively, was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20%, to 100% A-3 soil, compacted at both British Standard Light (BSL) and British Standard Heavy (BSH) compaction energy levels and using Unconfined Compressive Strength (UCS) as evaluation criteria. The Maximum Dry Density (MDD) of the treated soils at both the BSL and BSH compaction energy levels showed increase from 0% to 40% A-3 soil replacement after which the values reduced to 100% replacement. The trend of the Optimum Moisture Content (OMC) with varied A-3 soil replacement was similar to that of MDD but in a reversed order. The OMC reduced from 0% to 40% A-3 soil replacement after which the values increased to 100% replacement. This trend was attributed to the observed reduction in void ratio from 0% to 40% replacement after which the void ratio increased to 100% replacement. The maximum UCS for the soil at varied A-3 soil replacement increased from 272 and 770 kN/m2 for BSL and BSH compaction energy level at 0% replacement to 295 and 795 kN/m2 for BSL and BSH compaction energy level respectively at 10% replacement after which the values reduced to 22 and 60 kN/m2 for BSL and BSH compaction energy level respectively at 70% replacement. Beyond 70% replacement, the mixtures could not be moulded for UCS test.

Keywords: A-3 soil, clay soil, pozzolanic action, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2355
1070 Determining G-γ Degradation Curve in Cohesive Soils by Dilatometer and in situ Seismic Tests

Authors: Ivandic Kreso, Spiranec Miljenko, Kavur Boris, Strelec Stjepan

Abstract:

This article discusses the possibility of using dilatometer tests (DMT) together with in situ seismic tests (MASW) in order to get the shape of G-g degradation curve in cohesive soils (clay, silty clay, silt, clayey silt and sandy silt). MASW test provides the small soil stiffness (Go from vs) at very small strains and DMT provides the stiffness of the soil at ‘work strains’ (MDMT). At different test locations, dilatometer shear stiffness of the soil has been determined by the theory of elasticity. Dilatometer shear stiffness has been compared with the theoretical G-g degradation curve in order to determine the typical range of shear deformation for different types of cohesive soil. The analysis also includes factors that influence the shape of the degradation curve (G-g) and dilatometer modulus (MDMT), such as the overconsolidation ratio (OCR), plasticity index (IP) and the vertical effective stress in the soil (svo'). Parametric study in this article defines the range of shear strain gDMT and GDMT/Go relation depending on the classification of a cohesive soil (clay, silty clay, clayey silt, silt and sandy silt), function of density (loose, medium dense and dense) and the stiffness of the soil (soft, medium hard and hard). The article illustrates the potential of using MASW and DMT to obtain G-g degradation curve in cohesive soils.

Keywords: Dilatometer testing, MASW testing, shear wave, soil stiffness, stiffness reduction, shear strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 832
1069 Entropy Measures on Neutrosophic Soft Sets and Its Application in Multi Attribute Decision Making

Authors: I. Arockiarani

Abstract:

The focus of the paper is to furnish the entropy measure for a neutrosophic set and neutrosophic soft set which is a measure of uncertainty and it permeates discourse and system. Various characterization of entropy measures are derived. Further we exemplify this concept by applying entropy in various real time decision making problems.

Keywords: Entropy measure, Hausdorff distance, neutrosophic set, soft set.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 888
1068 Soil Respiration Rate of Laurel-Leaved and Cryptomeria japonica Forests

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

We assessed the ecology of the organic and mineral soil layers of laurel-leaved (BB-1) and Cryptomeria japonica (BB-2 and Pw) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The soil respiration rate was higher in the deeper horizons (F and H) of organic layers than in those of mineral soil layers, suggesting organic layers may be where active microbial metabolism occurs. Respiration rates in the soil of BB-1, BB-2 and Pw forests were closely similar at 5 and 10°C. However, the soil respiration rate increased in proportion to temperatures of 15°C or above. We therefore consider the activity of soil microorganisms to markedly decrease at temperatures below 10°C. At a temperature of 15°C or above, the soil respiration rate in the BB-1 organic layers was higher than in those of the BB-2 and Pw organic layers, due to differences in forest vegetation that appeared to influence several salient soil properties, particularly pH and the carbon (C) and nitrogen (N) content of the F and H horizons.

Keywords: Forest soil, mineralization rate, soil respiration rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1431
1067 The Effect of Raindrop Kinetic Energy on Soil Erodibility

Authors: A. Moussouni, L. Mouzai, M. Bouhadef

Abstract:

Soil erosion is a very complex phenomenon, resulting from detachment and transport of soil particles by erosion agents. The kinetic energy of raindrop is the energy available for detachment and transport by splashing rain. The soil erodibility is defined as the ability of soil to resist to erosion. For this purpose, an experimental study was conducted in the laboratory using rainfall simulator to study the effect of the kinetic energy of rain (Ec) on the soil erodibility (K). The soil used was a sandy agricultural soil of 62.08% coarse sand, 19.14% fine sand, 6.39% fine silt, 5.18% coarse silt and 7.21% clay. The obtained results show that the kinetic energy of raindrops evolves as a power law with soil erodibility.

Keywords: Erosion, runoff, raindrop kinetic energy, soil erodibility, rainfall intensity, raindrop fall velocity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4057
1066 Nonlinear Response of Infinite Beams on a Multilayer Tensionless Extensible Geo-Synthetic: Reinforced Earth Beds under Moving Load

Authors: K. Karuppasamy

Abstract:

In this paper, analysis of an infinite beam resting on multilayer tensionless extensible geosynthetic reinforced granular fill-poor soil system overlying soft soil strata under moving load with constant velocity is presented. The beam is subjected to a concentrated load moving with constant velocity. The upper reinforced granular bed is modeled by a rough membrane embedded in Pasternak shear layer overlying a series of compressible nonlinear winkler springs representing the underlying the very poor soil. The multilayer tensionless extensible geosynthetic layer has been assumed to deform such that at interface the geosynthetic and the soil have some deformation. Nonlinear behaviour of granular fill and the very poor soil has been considered in the analysis by means of hyperbolic constitutive relationships. Governing differential equations of the soil foundation system have been obtained and solved with the help of appropriate boundary conditions. The solution has been obtained by employing finite difference method by means of Gauss-Siedal iterative scheme. Detailed parametric study has been conducted to study the influence of various parameters on the response of soil–foundation system under consideration by means of deflection and bending moment in the beam and tension mobilized in the geosynthetic layer. These parameters include magnitude of applied load, velocity of load, damping, ultimate resistance of poor soil and granular fill layer. Range of values of parameters has been considered as per Indian Railway conditions. This study clearly observed that the comparisons of multilayer tensionless extensible geosynthetic reinforcement with poor foundation soil and magnitude of applied load, relative compressibility of granular fill and ultimate resistance of poor soil has significant influence on the response of soil–foundation system.

Keywords: Infinite beams, multilayer tensionless extensible geosynthetic, granular layer, moving load, nonlinear behavior of poor soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2394
1065 Soil Mass Loss Reduction during Rainfalls by Reinforcing the Slopes with the Surficial Confinement

Authors: Ramli Nazir, Hossein Moayedi

Abstract:

Soil confinement systems serve as effective solutions to any erosion control project. Various confinements systems, namely triangular, circular and rectangular with the size of 50, 100, and 150 mm, and with a depth of 10 mm, were embedded in soil samples at slope angle of 60°. The observed soil mass losses for the confined soil systems were much smaller than those from unconfined system. As a result, the size of confinement and rainfall intensity have a direct effect on the soil mass loss. The triangular and rectangular confinement systems showed the lowest and highest soil loss masses, respectively. The slopes also failed much faster in the unconfined system than in the confined slope.

Keywords: Erosion control, Soil confinement, Soil erosion, Slope stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1821
1064 Single Event Transient Tolerance Analysis in 8051 Microprocessor Using Scan Chain

Authors: Jun Sung Go, Jong Kang Park, Jong Tae Kim

Abstract:

As semi-conductor manufacturing technology evolves; the single event transient problem becomes more significant issue. Single event transient has a critical impact on both combinational and sequential logic circuits, so it is important to evaluate the soft error tolerance of the circuits at the design stage. In this paper, we present a soft error detecting simulation using scan chain. The simulation model generates a single event transient randomly in the circuit, and detects the soft error during the execution of the test patterns. We verified this model by inserting a scan chain in an 8051 microprocessor using 65 nm CMOS technology. While the test patterns generated by ATPG program are passing through the scan chain, we insert a single event transient and detect the number of soft errors per sub-module. The experiments show that the soft error rates per cell area of the SFR module is 277% larger than other modules.

Keywords: Scan chain, single event transient, soft error, 8051 processor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1451
1063 Effects of Geometry of Disk Openers on Seed Slot Properties

Authors: E. Seidi

Abstract:

Offset Double-Disk Opener (DDO) is a popular furrow opener in conservation tillage. It has some limitations such as negative suction to penetrate in the soil, hair pinning and mixing seed and fertilizer in the slot. Because of importance of separation of seed and fertilizer in the slot, by adding two horizontal mini disks to DDO a modified opener was made (MDO) which placed the fertilizer between and under two rows of seed. To consider performance of novel opener an indoor comparison test between DDO and MDO was performed at soil bin. The experiment was conducted with three working speeds (3, 6 and 8 km h-1), two bulk densities of soil (1.1 and 1.4 Mg m-3) and two levels of residues (1 and 2 ton ha-1). The experimental design consisted in a (3×2×2) complete randomized factorial with three replicates for each test. Moisture of seed furrow, separation of seed and fertilizer, hair pinning and resultant forces acting on the openers were used as assessing indexes. There was no significant difference between soil moisture content in slots created by DDO and MDO at 0-4 cm depth, but at 4-8 cm the in the slot created by MDO moisture content was higher about 9%. Horizontal force for both openers increased with increasing speed and soil bulk density. Vertical force for DDO was negative so it needed additional weight for penetrating in the soil, but vertical force for MDO was positive and, which can solve the challenge of penetration in the soil in DDO. In soft soil with heavy residues some trash was pushed by DDO into seed furrow (hair pinning) but at MDO seed were placed at clean groove. Lateral and vertical separation of seed and fertilizer was performed effectively by MDO (4.5 and 5 cm, respectively) while DDO put seed and fertilizer close to each other. Overall, the Modified Offset Double-disks (MDO) had better performance. So by adapting this opener with no-tillage drillers it would possible to have higher yield in conservation tillage where the most appropriate opener is disk type.

Keywords: Seed Slot, opener's geometry, physical properties.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1779
1062 Main Elements of Soft Cost in Green Buildings

Authors: Nurul Zahirah M.A., N. Zainul Abidin

Abstract:

Green buildings have been commonly cited to be more expensive than conventional buildings. However, limited research has been conducted to clearly identify elements that contribute to this cost differential. The construction cost of buildings can be typically divided into “hard" costs and “soft" cost elements. Using a review analysis of existing literature, the study identified six main elements in green buildings that contribute to the general cost elements that are “soft" in nature. The six elements found are insurance, developer-s experience, design cost, certification, commissioning and energy modeling. Out of the six elements, most literatures have highlighted the increase in design cost for green design as compared to conventional design due to additional architectural and engineering costs, eco-charettes, extra design time, and the further need for a green consultant. The study concluded that these elements of soft cost contribute to the green premium or cost differential of green buildings.

Keywords: Green building, cost differential, soft cost, intangible cost.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2713
1061 A Soft Systems Methodology Perspective on Data Warehousing Education Improvement

Authors: R. Goede, E. Taylor

Abstract:

This paper demonstrates how the soft systems methodology can be used to improve the delivery of a module in data warehousing for fourth year information technology students. Graduates in information technology needs to have academic skills but also needs to have good practical skills to meet the skills requirements of the information technology industry. In developing and improving current data warehousing education modules one has to find a balance in meeting the expectations of various role players such as the students themselves, industry and academia. The soft systems methodology, developed by Peter Checkland, provides a methodology for facilitating problem understanding from different world views. In this paper it is demonstrated how the soft systems methodology can be used to plan the improvement of data warehousing education for fourth year information technology students.

Keywords: Data warehousing, education, soft systems methodology, stakeholders, systems thinking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1060 Contaminated Soil Remediation with Hydrogen Peroxide Oxidation

Authors: A. Goi, M. Trapido, N. Kulik

Abstract:

The hydrogen peroxide treatment was able to remediate chlorophenols, polycyclic aromatic hydrocarbons, diesel and transformer oil contaminated soil. Chemical treatment of contaminants adsorbed in peat resulted in lower contaminants- removal and required higher addition of chemicals than the treatment of contaminants in sand. The hydrogen peroxide treatment was found to be feasible for soil remediation at natural soil pH. Contaminants in soil could degrade with the addition of hydrogen peroxide only indicating the ability of transition metals ions and minerals of these metals presented in soil to catalyse the reaction of hydrogen peroxide decomposition.

Keywords: Hydrogen peroxide, oxidation, soil treatment, decontamination.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4332
1059 Effect of Crude Oil on Soil-Water Characteristic Curve of Clayey Soil

Authors: Seyed Abolhasan Naeini, Seyed Mohammad Reza Hosseini

Abstract:

The measured soil suction values when related to water content is called suction-water content relationship (SWR) or soil-water characteristic curve (SWCC) and forms the basis of unsaturated soil behavior assessment. The SWCC can be measured or predicted based on soil index properties such as grain-size distribution and plasticity index. In this paper, the SWCC of clean and contaminated clayey soil classified as clay with low plasticity (CL) are presented. Laboratory studies were conducted on virgin (disturbed-uncontaminated soil collected from vicinity of Tehran oil refinery) soil and soil samples simulated to varying degrees of contamination with crude oil (i.e., 3, 6, and 9% by dry weight of soil) to compare the results before and after contamination. Laboratory tests were conducted using a device which is capable of measuring volume change and pore pressures. The soil matric suction at the ends of samples controlled by using the axis translation technique. The results show that contamination with crude oil facilitates the movement of water and reduces the soil suction.

Keywords: Axis translation technique, clayey soil, contamination, crude oil, soil-water characteristic curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1805
1058 Gypseous Soil Improvement using Fuel Oil

Authors: Hussein Yousif Aziz, Jianlin Ma

Abstract:

This research investigates the suitability of fuel oil in improving gypseous soil. A detailed laboratory tests were carried-out on two soils (soil I with 51.6% gypsum content, and soil II with 26.55%), where the two soils were obtained from Al-Therthar site (Al-Anbar Province-Iraq). This study examines the improvement of soil properties using the gypsum material which is locally available with low cost to minimize the effect of moisture on these soils by using the fuel oil. This study was conducted on two models of the soil gypsum, from the Tharthar area. The first model was sandy soil with Gypsum content of (51.6%) and the second is clayey soil and the content of Gypsum is (26.55%). The program included tests measuring the permeability and compressibility of the soil and their collapse properties. The shear strength of the soil and the amounts of weight loss of fuel oil due to drying had been found. These tests have been conducted on the treated and untreated soils to observe the effect of soil treatment on the engineering properties when mixed with varying degrees of fuel oil with the equivalent of the water content. The results showed that fuel oil is a good material to modify the basic properties of the gypseous soil of collapsibility and permeability, which are the main problems of this soil and retained the soil by an appropriate amount of the cohesion suitable for carrying the loads from the structure.

Keywords: Collapsibility, Enhancement of Gypseous Soils, Geotechnical Engineering, Gypseous soil, Shear Strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2586
1057 Heavy Metal Reduction in Plant Using Soil Amendment

Authors: C. Chaiyaraksa, T. Khamko

Abstract:

This study investigated the influence of limestone and sepiolite on heavy metals accumulation in the soil and soybean. The soil was synthesized to contaminate with zinc 150 mg/kg, copper 100 mg/kg, and cadmium 1 mg/kg. The contaminated soil was mixed with limestone and sepiolite at the ratio of 1:0, 0:1, 1:1, and 2:1. The amount of soil modifier added to soil was 0.2%, 0.4%, and 0.8%. The metals determination was performed on soil both before and after soybean planting and in the root, shoot, and seed of soybean after harvesting. The study was also on metal translocate from root to seed and on bioaccumulation factor. Using of limestone and sepiolite resulted in a reduction of metals accumulated in soybean. For soil containing a high concentration of copper, cadmium, and zinc, a mixture of limestone and sepiolite (1:1) was recommended to mix with soil with the amount of 0.2%. Zinc could translocate from root to seed more than copper, and cadmium. From studying the movement of metals from soil to accumulate in soybean, the result was that soybean could absorb the highest amount of cadmium, followed by zinc, and copper, respectively.

Keywords: Heavy metals, limestone, sepiolite, soil, soybean.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 691
1056 Soil-Structure Interaction Models for the Reinforced Foundation System: A State-of-the-Art Review

Authors: Ashwini V. Chavan, Sukhanand S. Bhosale

Abstract:

Challenges of weak soil subgrade are often resolved either by stabilization or reinforcing it. However, it is also practiced to reinforce the granular fill to improve the load-settlement behavior of it over weak soil strata. The inclusion of reinforcement in the engineered granular fill provided a new impetus for the development of enhanced Soil-Structure Interaction (SSI) models, also known as mechanical foundation models or lumped parameter models. Several researchers have been working in this direction to understand the mechanism of granular fill-reinforcement interaction and the response of weak soil under the application of load. These models have been developed by extending available SSI models such as the Winkler Model, Pasternak Model, Hetenyi Model, Kerr Model etc., and are helpful to visualize the load-settlement behavior of a physical system through 1-D and 2-D analysis considering beam and plate resting on the foundation, respectively. Based on the literature survey, these models are categorized as ‘Reinforced Pasternak Model,’ ‘Double Beam Model,’ ‘Reinforced Timoshenko Beam Model,’ and ‘Reinforced Kerr Model’. The present work reviews the past 30+ years of research in the field of SSI models for reinforced foundation systems, presenting the conceptual development of these models systematically and discussing their limitations. A flow-chart showing procedure for compution of deformation and mobilized tension is also incorporated in the paper. Special efforts are taken to tabulate the parameters and their significance in the load-settlement analysis, which may be helpful in future studies for the comparison and enhancement of results and findings of physical models. 

Keywords: geosynthetics, mathematical modeling, reinforced foundation, soil-structure interaction, ground improvement, soft soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 583
1055 Contribution of Root Respiration to Soil Respiration in Sugarcane Plantation in Thailand

Authors: Wilaiwan Sornpoon, Sebastien Bonnet, Poonpipope Kasemsap, Savitri Garivait

Abstract:

The understanding on the contribution of root respiration to total soil respiration is still very limited, especially for sugarcane. In this study, trenching experiments in sugarcane plantations were conducted to separate and investigate soil respiration for this crop. The measurements were performed for the whole growing period of 344 days to quantify root respiration. The obtained monitoring data showed that the respiration rate is increasing with the age of the plant, accounting for up to 29% of the total soil respiration before harvesting. The root to soil respiration ratio increased rapidly during the young seedling stage, i.e. first five months, then declined and finally got stabilized during yield formation and ripening stages, respectively. In addition, the results from the measurements confirmed that soil respiration was positively correlated with soil moisture content.

Keywords: Soil respiration, root respiration, trenching experiment, sugarcane.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1877
1054 Analysis and Research of Two-Level Scheduling Profile for Open Real-Time System

Authors: Yongxian Jin, Jingzhou Huang

Abstract:

In an open real-time system environment, the coexistence of different kinds of real-time and non real-time applications makes the system scheduling mechanism face new requirements and challenges. One two-level scheduling scheme of the open real-time systems is introduced, and points out that hard and soft real-time applications are scheduled non-distinctively as the same type real-time applications, the Quality of Service (QoS) cannot be guaranteed. It has two flaws: The first, it can not differentiate scheduling priorities of hard and soft real-time applications, that is to say, it neglects characteristic differences between hard real-time applications and soft ones, so it does not suit a more complex real-time environment. The second, the worst case execution time of soft real-time applications cannot be predicted exactly, so it is not worth while to cost much spending in order to assure all soft real-time applications not to miss their deadlines, and doing that may cause resource wasting. In order to solve this problem, a novel two-level real-time scheduling mechanism (including scheduling profile and scheduling algorithm) which adds the process of dealing with soft real-time applications is proposed. Finally, we verify real-time scheduling mechanism from two aspects of theory and experiment. The results indicate that our scheduling mechanism can achieve the following objectives. (1) It can reflect the difference of priority when scheduling hard and soft real-time applications. (2) It can ensure schedulability of hard real-time applications, that is, their rate of missing deadline is 0. (3) The overall rate of missing deadline of soft real-time applications can be less than 1. (4) The deadline of a non-real-time application is not set, whereas the scheduling algorithm that server 0 S uses can avoid the “starvation" of jobs and increase QOS. By doing that, our scheduling mechanism is more compatible with different types of applications and it will be applied more widely.

Keywords: Hard real-time, two-level scheduling profile, open real-time system, non-distinctive schedule, soft real-time

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1523
1053 Analysis and Design of a Novel Active Soft Switched Phase-Shifted Full Bridge Converter

Authors: Naga Brahmendra Yadav Gorla, Dr. Lakshmi Narasamma N

Abstract:

This paper proposes an active soft-switching circuit for bridge converters aiming to improve the power conversion efficiency. The proposed circuit achieves loss-less switching for both main and auxiliary switches without increasing the main switch current/voltage rating. A winding coupled to the primary of power transformer ensures ZCS for the auxiliary switches during their turn-off. A 350 W, 100 kHz phase shifted full bridge (PSFB) converter is built to validate the analysis and design. Theoretical loss calculations for proposed circuit is presented. The proposed circuit is compared with passive soft switched PSFB in terms of efficiency and loss in duty cycle.

Keywords: soft switching, passive soft switching, ZVS, ZCS, PSFB.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2668
1052 Study the Effect of Soft Errors on FlexRay-Based Automotive Systems

Authors: Yung-Yuan Chen, Kuen-Long Leu

Abstract:

FlexRay, as a communication protocol for automotive control systems, is developed to fulfill the increasing demand on the electronic control units for implementing systems with higher safety and more comfort. In this work, we study the impact of radiation-induced soft errors on FlexRay-based steer-by-wire system. We injected the soft errors into general purpose register set of FlexRay nodes to identify the most critical registers, the failure modes of the steer-by-wire system, and measure the probability distribution of failure modes when an error occurs in the register file.

Keywords: Soft errors, FlexRay, fault injection, steer-by-wirer

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1752
1051 Experimental Simulation of Soil Boundary Condition for Dynamic Studies

Authors: Omar.S. Qaftan, T. T. Sabbagh

Abstract:

This paper studies the free-field response by adopting a flexible membrane container as soil boundary for experimental shaking table tests. The influence of the soil container boundary on the soil behaviour and the dynamic soil properties under seismic effect were examined. A flexible container with 1/50 scale factor was adopted in the experimental tests, including construction, instrumentation, and determination of the results of dynamic tests on a shaking table. Horizontal face displacements and accelerations were analysed to determine the influence of the container boundary on the performance of the soil. The outputs results show that the flexible boundary container allows more displacement and larger accelerations. The soil in a rigid wall container cannot deform as similar as the soil in the real field does. Therefore, the response of flexible container tested is believed to be more reliable for soil boundary than that in the rigid container.

Keywords: Soil, boundary, seismic, earthquake, ground motion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1054
1050 Enhancing Soft Skills through Peer Review Activity in a Technical Writing Class

Authors: Hairuzila Idrus, Zullina Hussain Shaari, Razol Mahari Mohd Ali

Abstract:

Peer review is an activity where students review their classmates- writing and then evaluate the content, development, unity and organization. Studies have shown that peer review activities benefit both the reviewer and the writer in developing their reading and writing skills. Furthermore, peer review activities may also enhance students- soft skills. This study was conducted to find out the benefits of peer review activity in a technical writing class based on engineering students- perceptions. The study also highlights how these benefits could improve the students- soft skills. A set of questionnaire was given to 200 undergraduate students of a technical writing course. The results of the study indicate that the activity could help improve their critical thinking skills, written and oral communication skills, as well as team work. This paper further discusses how the implications of these benefits could help enhance students- soft skills.

Keywords: Peer review, soft skills, technical writing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
1049 Soft Cost Elements That Affect Developers’ Decision to Build Green

Authors: Nurul Zahirah M.A., N. Zainul Abidin, Azlan Raofuddin Nuruddin

Abstract:

Despite all the hype about green building, many developers are still resistant to the idea of building green due to the common perception that green building construction is expensive. This contradicts with scholarly findings that identify only a marginal cost premium or none at all given that green design is considered during the design process and planning stage. Nevertheless, cost implications continue to become an issue when deciding to build green. The planning stage is of strategic importance as decisions made at this early stage would influence the project cost thereafter. Using analysis of existing literature, the paper identifies six elements of soft cost that are considered in the planning stage. The elements include consultants, green building consultant, certification, commissioning, market, and tax. Out of the six elements, commissioning represents the bulk of soft cost for buildings seeking green certification. The study concluded that, although hard cost may have a bigger impact on the project cost, but soft cost is the hidden cost which people tend to ignore. Poor consideration of soft cost during planning stage may lead to over-realistic expectations and ultimately, overlooked cost additions.

Keywords: Green building, cost element, soft cost, developer decision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
1048 Methodology: A Review in Modelling and Predictability of Embankment in Soft Ground

Authors: Bhim Kumar Dahal

Abstract:

Transportation network development in the developing country is in rapid pace. The majority of the network belongs to railway and expressway which passes through diverse topography, landform and geological conditions despite the avoidance principle during route selection. Construction of such networks demand many low to high embankment which required improvement in the foundation soil. This paper is mainly focused on the various advanced ground improvement techniques used to improve the soft soil, modelling approach and its predictability for embankments construction. The ground improvement techniques can be broadly classified in to three groups i.e. densification group, drainage and consolidation group and reinforcement group which are discussed with some case studies.  Various methods were used in modelling of the embankments from simple 1-dimensional to complex 3-dimensional model using variety of constitutive models. However, the reliability of the predictions is not found systematically improved with the level of sophistication.  And sometimes the predictions are deviated more than 60% to the monitored value besides using same level of erudition. This deviation is found mainly due to the selection of constitutive model, assumptions made during different stages, deviation in the selection of model parameters and simplification during physical modelling of the ground condition. This deviation can be reduced by using optimization process, optimization tools and sensitivity analysis of the model parameters which will guide to select the appropriate model parameters.

Keywords: Embankment, ground improvement, modelling, model prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 905
1047 Optimisation of Polycyclic AromaticHydrocarbon Removal from Contaminated Soilusing Modified Fenton Treatment

Authors: Venny, S. Gan, H. K. Ng

Abstract:

The performance of modified Fenton (MF) treatment to promote PAH oxidation in artificially contaminated soil was investigated in packed soil column with a hydrogen peroxide (H2O2) delivery system simulating in situ injection. Soil samples were spiked with phenanthrene (low molecular weight PAH) and fluoranthene (high molecular weight PAH) to an initial concentration of 500 mg/kg dried soil each. The effectiveness of process parameters H2O2/soil, iron/soil, chelating agent/soil weight ratios and reaction time were studied using a 24 three level factorial design experiments. Statistically significant quadratic models were developed using Response Surface Methodology (RSM) for degrading PAHs from the soil samples. Optimum operating condition was achieved at mild range of H2O2/soil, iron/soil and chelating agent/soil weight ratios, indicating cost efficient method for treating highly contaminated lands.

Keywords: Fenton, polycyclic aromatic hydrocarbon, chelate, response surface methodology

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1672
1046 Principal Component Analysis for the Characterization in the Application of Some Soil Properties

Authors: Kamolchanok Panishkan, Kanokporn Swangjang, Natdhera Sanmanee, Daoroong Sungthong

Abstract:

The objective of this research is to study principal component analysis for classification of 67 soil samples collected from different agricultural areas in the western part of Thailand. Six soil properties were measured on the soil samples and are used as original variables. Principal component analysis is applied to reduce the number of original variables. A model based on the first two principal components accounts for 72.24% of total variance. Score plots of first two principal components were used to map with agricultural areas divided into horticulture, field crops and wetland. The results showed some relationships between soil properties and agricultural areas. PCA was shown to be a useful tool for agricultural areas classification based on soil properties.

Keywords: soil organic matter, soil properties, classification, principal components

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4058
1045 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: Beam on nonlinear Winkler foundation method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1160
1044 Seismic Fragility Curves for Shallow Circular Tunnels under Different Soil Conditions

Authors: Siti Khadijah Che Osmi, Syed Mohd Ahmad

Abstract:

This paper presents a methodology to develop fragility curves for shallow tunnels so as to describe a relationship between seismic hazard and tunnel vulnerability. Emphasis is given to the influence of surrounding soil material properties because the dynamic behaviour of the tunnel mostly depends on it. Four ground properties of soils ranging from stiff to soft soils are selected. A 3D nonlinear time history analysis is used to evaluate the seismic response of the tunnel when subjected to five real earthquake ground intensities. The derived curves show the future probabilistic performance of the tunnels based on the predicted level of damage states corresponding to the peak ground acceleration. A comparison of the obtained results with the previous literature is provided to validate the reliability of the proposed fragility curves. Results show the significant role of soil properties and input motions in evaluating the seismic performance and response of shallow tunnels.

Keywords: Fragility analysis, seismic performance, tunnel lining, vulnerability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1338