Search results for: second-order nonlinear neutral dynamic equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3755

Search results for: second-order nonlinear neutral dynamic equation

3485 Modelling an Investment Portfolio with Mandatory and Voluntary Contributions under M-CEV Model

Authors: Amadi Ugwulo Chinyere, Lewis D. Gbarayorks, Emem N. H. Inamete

Abstract:

In this paper, the mandatory contribution, additional voluntary contribution (AVC) and administrative charges are merged together to determine the optimal investment strategy (OIS) for a pension plan member (PPM) in a defined contribution (DC) pension scheme under the modified constant elasticity of variance (M-CEV) model. We assume that the voluntary contribution is a stochastic process and a portfolio consisting of one risk free asset and one risky asset modeled by the M-CEV model is considered. Also, a stochastic differential equation consisting of PPM’s monthly contributions, voluntary contributions and administrative charges is obtained. More so, an optimization problem in the form of Hamilton Jacobi Bellman equation which is a nonlinear partial differential equation is obtained. Using power transformation and change of variables method, an explicit solution of the OIS and the value function are obtained under constant absolute risk averse (CARA). Furthermore, numerical simulations on the impact of some sensitive parameters on OIS were discussed extensively. Finally, our result generalizes some existing result in the literature.

Keywords: DC pension fund, modified constant elasticity of variance, optimal investment strategies, voluntary contribution, administrative charges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 290
3484 On the Robust Stability of Homogeneous Perturbed Large-Scale Bilinear Systems with Time Delays and Constrained Inputs

Authors: Chien-Hua Lee, Cheng-Yi Chen

Abstract:

The stability test problem for homogeneous large-scale perturbed bilinear time-delay systems subjected to constrained inputs is considered in this paper. Both nonlinear uncertainties and interval systems are discussed. By utilizing the Lyapunove equation approach associated with linear algebraic techniques, several delay-independent criteria are presented to guarantee the robust stability of the overall systems. The main feature of the presented results is that although the Lyapunov stability theorem is used, they do not involve any Lyapunov equation which may be unsolvable. Furthermore, it is seen the proposed schemes can be applied to solve the stability analysis problem of large-scale time-delay systems.

Keywords: homogeneous bilinear system, constrained input, time-delay, uncertainty, transient response, decay rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
3483 Numerical Modeling and Computer Simulation of Ground Movement above Underground Mine

Authors: A. Nuric, S. Nuric, L. Kricak, I. Lapandic, R. Husagic

Abstract:

This paper describes topic of computer simulation with regard to the ground movement above an underground mine. Simulation made with software package ADINA for nonlinear elastic-plastic analysis with finite elements method. The one of representative profiles from Mine 'Stara Jama' in Zenica has been investigated. A collection and selection of both geo-mechanical data and geometric parameters of the mine was necessary for performing these simulations. Results of estimation have been compared with measured values (vertical displacement of surface), and then simulation performed with assumed dynamic and dimensions of excavation, over a period of time. Results are presented with bitmaps and charts.

Keywords: Computer, finite element method, mine, nonlinear analysis, numerical modeling, simulation, subsidence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2792
3482 Nonlinear Model Predictive Swing-Up and Stabilizing Sliding Mode Controllers

Authors: S. Kahvecioglu, A. Karamancioglu, A. Yazici

Abstract:

In this paper, a nonlinear model predictive swing-up and stabilizing sliding controller is proposed for an inverted pendulum-cart system. In the swing up phase, the nonlinear model predictive control is formulated as a nonlinear programming problem with energy based objective function. By solving this problem at each sampling instant, a sequence of control inputs that optimize the nonlinear objective function subject to various constraints over a finite horizon are obtained. Then, this control drives the pendulum to a predefined neighborhood of the upper equilibrium point, at where sliding mode based model predictive control is used to stabilize the systems with the specified constraints. It is shown by the simulations that, due to the way of formulating the problem, short horizon lengths are sufficient for attaining the swing up goal.

Keywords: Inverted pendulum, model predictive control, swingup, stabilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2145
3481 Some Exact Solutions of the (2+1)-Dimensional Breaking Soliton Equation using the Three-wave Method

Authors: Mohammad Taghi Darvishi, Mohammad Najafi

Abstract:

This paper considers the (2+1)-dimensional breaking soliton equation in its bilinear form. Some exact solutions to this equation are explicitly derived by the idea of three-wave solution method with the assistance of Maple. We can see that the new idea is very simple and straightforward.

Keywords: Soliton solution, computerized symbolic computation, painleve analysis, (2+1)-dimensional breaking soliton equation, Hirota's bilinear form.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
3480 Impact of Dynamic Capabilities on Knowledge Management Processes

Authors: Farzad Yavari, Fereydoun Ohadi

Abstract:

Today, with the development and growth of technology and extreme environmental changes, organizations need to identify opportunities and create creativity and innovation in order to be able to maintain or improve their position in competition with others. In this regard, it is necessary that the resources and assets of the organization are coordinated and reviewed in accordance with the orientation of the strategy. One of the competitive advantages of the present age is knowledge management, which is to equip the organization with the knowledge of the day and disseminate among employees and use it in the development of products and services. Therefore, in the forthcoming research, the impact of dynamic capabilities components (sense, seize, and reconfiguration) has been investigated on knowledge management processes (acquisition, integration and knowledge utilization) in the MAPNA Engineering and Construction Company using a field survey and applied research method. For this purpose, a questionnaire was filled out in the form of 15 questions for dynamic components and 15 questions for measuring knowledge management components and distributed among 46 employees of the knowledge management organization. Validity of the questionnaire was evaluated through content validity and its reliability with Cronbach's coefficient. Pearson correlation test and structural equation technique were used to analyze the data. The results of the research indicate a positive significant correlation between the components of dynamic capabilities and knowledge management.

Keywords: Dynamic capabilities, knowledge management, sense capability, seize capability, reconfigurable capability, knowledge acquisition, knowledge integrity, knowledge utilization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 779
3479 Multiparametric Optimization of Water Treatment Process for Thermal Power Plants

Authors: B. Mukanova, N. Glazyrina, S. Glazyrin

Abstract:

The formulated problem of optimization of the technological process of water treatment for thermal power plants is considered in this article. The problem is of multiparametric nature. To optimize the process, namely, reduce the amount of waste water, a new technology was developed to reuse such water. A mathematical model of the technology of wastewater reuse was developed. Optimization parameters were determined. The model consists of a material balance equation, an equation describing the kinetics of ion exchange for the non-equilibrium case and an equation for the ion exchange isotherm. The material balance equation includes a nonlinear term that depends on the kinetics of ion exchange. A direct problem of calculating the impurity concentration at the outlet of the water treatment plant was numerically solved. The direct problem was approximated by an implicit point-to-point computation difference scheme. The inverse problem was formulated as relates to determination of the parameters of the mathematical model of the water treatment plant operating in non-equilibrium conditions. The formulated inverse problem was solved. Following the results of calculation the time of start of the filter regeneration process was determined, as well as the period of regeneration process and the amount of regeneration and wash water. Multi-parameter optimization of water treatment process for thermal power plants allowed decreasing the amount of wastewater by 15%.

Keywords: Direct problem, multiparametric optimization, optimization parameters, water treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2102
3478 Septic B-spline Collocation Method for Solving One-dimensional Hyperbolic Telegraph Equation

Authors: Marzieh Dosti, Alireza Nazemi

Abstract:

Recently, it is found that telegraph equation is more suitable than ordinary diffusion equation in modelling reaction diffusion for such branches of sciences. In this paper, a numerical solution for the one-dimensional hyperbolic telegraph equation by using the collocation method using the septic splines is proposed. The scheme works in a similar fashion as finite difference methods. Test problems are used to validate our scheme by calculate L2-norm and L∞-norm. The accuracy of the presented method is demonstrated by two test problems. The numerical results are found to be in good agreement with the exact solutions.

Keywords: B-spline, collocation method, second-order hyperbolic telegraph equation, difference schemes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750
3477 Heuristic Method for Judging the Computational Stability of the Difference Schemes of the Biharmonic Equation

Authors: Guang Zeng, Jin Huang, Zicai Li

Abstract:

In this paper, we research the standard 13-point difference schemes for solving the biharmonic equation. Heuristic method is applied to judging the stability of multi-level difference schemes of the biharmonic equation. It is showed that the standard 13-point difference schemes are stable.

Keywords: Finite-difference equation, computational stability, hirt method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1306
3476 Evaluation of the ANN Based Nonlinear System Models in the MSE and CRLB Senses

Authors: M.V Rajesh, Archana R, A Unnikrishnan, R Gopikakumari, Jeevamma Jacob

Abstract:

The System Identification problem looks for a suitably parameterized model, representing a given process. The parameters of the model are adjusted to optimize a performance function based on error between the given process output and identified process output. The linear system identification field is well established with many classical approaches whereas most of those methods cannot be applied for nonlinear systems. The problem becomes tougher if the system is completely unknown with only the output time series is available. It has been reported that the capability of Artificial Neural Network to approximate all linear and nonlinear input-output maps makes it predominantly suitable for the identification of nonlinear systems, where only the output time series is available. [1][2][4][5]. The work reported here is an attempt to implement few of the well known algorithms in the context of modeling of nonlinear systems, and to make a performance comparison to establish the relative merits and demerits.

Keywords: Multilayer neural networks, Radial Basis Functions, Clustering algorithm, Back Propagation training, Extended Kalmanfiltering, Mean Square Error, Nonlinear Modeling, Cramer RaoLower Bound.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
3475 On the Seismic Response of Collided Structures

Authors: George D. Hatzigeorgiou, Nikos G. Pnevmatikos

Abstract:

This study examines the inelastic behavior of adjacent planar reinforced concrete (R.C.) frames subjected to strong ground motions. The investigation focuses on the effects of vertical ground motion on the seismic pounding. The examined structures are modeled and analyzed by RUAUMOKO dynamic nonlinear analysis program using reliable hysteretic models for both structural members and contact elements. It is found that the vertical ground motion mildly affects the seismic response of adjacent buildings subjected to structural pounding and, for this reason, it can be ignored from the displacement and interstorey drifts assessment. However, the structural damage is moderately affected by the vertical component of earthquakes.

Keywords: Nonlinear seismic behavior, reinforced concrete structures, structural pounding, vertical ground motions.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042
3474 A Sliding Mesh Technique and Compressibility Correction Effects of Two-equation Turbulence Models for a Pintle-Perturbed Flow Analysis

Authors: J. Y. Heo, H. G. Sung

Abstract:

Numerical simulations have been performed for assessment of compressibility correction of two-equation turbulence models suitable for large scale separation flows perturbed by pintle strokes. In order to take into account pintle movement, a sliding mesh method was applied. The chamber pressure, mass flow rate, and thrust have been analyzed, and the response lag and sensitivity at the chamber and nozzle were estimated for a movable pintle. The nozzle performance for pintle reciprocating as its insertion and extraction processes, were analyzed to better understand the dynamic performance of the pintle nozzle.

Keywords: Pintle, sliding mesh, turbulent model, compressibility correction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
3473 Mixed Frequency Excitation of an Electrostatically Actuated Resonator

Authors: Mixed Frequency Excitation of an Electrostatically Actuated Resonator

Abstract:

We investigate experimentally and theoretically the dynamics of a capacitive resonator under mixed frequency excitation of two AC harmonic signals. The resonator is composed of a proof mass suspended by two cantilever beams. Experimental measurements are conducted using a laser Doppler Vibrometer to reveal the interesting dynamics of the system when subjected to twosource excitation. A nonlinear single-degree-of-freedom model is used for the theoretical investigation. The results reveal combination resonances of additive and subtractive type, which are shown to be promising to increase the bandwidth of the resonator near primary resonance frequency. Our results also demonstrate the ability to shift the combination resonances to much lower or much higher frequency ranges. We also demonstrate the dynamic pull-in instability under mixed frequency excitation.

Keywords: Nonlinear electrostatically actuated resonator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1573
3472 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle based method, hyper-elasticity, analysis of stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
3471 Periodic Solutions for Some Strongly Nonlinear Oscillators by He's Energy Balance Method

Authors: Meng Hu, Lili Wang

Abstract:

In this paper, applying He-s energy balance method to determine frequency formulation relations of nonlinear oscillators with discontinuous term or fractional potential. By calculation and computer simulations, compared with the exact solutions show that the results obtained are of high accuracy.

Keywords: He's energy balance method, periodic solution, nonlinear oscillator, discontinuous, fractional potential.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1339
3470 A Contractor Iteration Method Using Eigenpairs for Positive Solutions of Nonlinear Elliptic Equation

Authors: Hailong Zhu, Zhaoxiang Li, Kejun Zhuang

Abstract:

By means of Contractor Iteration Method, we solve and visualize the Lane-Emden(-Fowler) equation Δu + up = 0, in Ω, u = 0, on ∂Ω. It is shown that the present method converges quadratically as Newton’s method and the computation of Contractor Iteration Method is cheaper than the Newton’s method.

Keywords: Positive solutions, newton's method, contractor iteration method, Eigenpairs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1335
3469 Computational Approaches for Ballistic Impact Response of Stainless Steel 304

Authors: A. Mostafa

Abstract:

This paper presents a numerical study on determination of ballistic limit velocity (V50) of stainless steel 304 (SS 304) used in manufacturing security screens. The simulated ballistic impact tests were conducted on clamped sheets with different thicknesses using ABAQUS/Explicit nonlinear finite element (FE) package. The ballistic limit velocity was determined using three approaches, namely: numerical tests based on material properties, FE calculated residual velocities and FE calculated residual energies. Johnson-Cook plasticity and failure criterion were utilized to simulate the dynamic behaviour of the SS 304 under various strain rates, while the well-known Lambert-Jonas equation was used for the data regression for the residual velocity and energy model. Good agreement between the investigated numerical methods was achieved. Additionally, the dependence of the ballistic limit velocity on the sheet thickness was observed. The proposed approaches present viable and cost-effective assessment methods of the ballistic performance of SS 304, which will support the development of robust security screen systems.

Keywords: Ballistic velocity, stainless steel, numerical approaches, security screen.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 579
3468 The Adsorption of SDS on Ferro-Precipitates

Authors: R.Marsalek

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (ν ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ν <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: ferro-precipitate, adsorption, SDS, zeta potential

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1866
3467 Method of Finding Aerodynamic Characteristic Equations of Missile for Trajectory Simulation

Authors: Attapon Charoenpon, Ekkarach Pankeaw

Abstract:

This paper present a new way to find the aerodynamic characteristic equation of missile for the numerical trajectories prediction more accurate. The goal is to obtain the polynomial equation based on two missile characteristic parameters, angle of attack (α ) and flight speed (╬¢ ). First, the understudied missile is modeled and used for flow computational model to compute aerodynamic force and moment. Assume that performance range of understudied missile where range -10< α <10 and 0< ╬¢ <200. After completely obtained results of all cases, the data are fit by polynomial interpolation to create equation of each case and then combine all equations to form aerodynamic characteristic equation, which will be used for trajectories simulation.

Keywords: Aerodynamic, Characteristic Equation, Angle ofAttack, Polynomial interpolation, Trajectories

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3620
3466 Analysis of Dynamic Loads Induced by Spectator Movements in Stadium

Authors: Gee-Cheol Kim, Sang-Hoon Lee, Joo-Won Kang

Abstract:

In the stadium structure, the significant dynamic responses such as resonance or similar behavior can be occurred by spectator rhythmical activities. Thus, accurate analysis and precise investigation of stadium structure that is subjected to dynamic loads are required for practical design and serviceability check of stadium structures. Moreover, it is desirable to measure and analyze the dynamic loads of spectator activities because these dynamic loads can not be easily expressed in numerical formula. In this study, various dynamic loads induced by spectator movements are measured and analyzed. These dynamic loads induced by spectators movement of stadium structure can be classified into the impact load and the periodic load. These dynamic loads can be expressed as Fourier harmonic load. And, these dynamic loads could be applied for the accurate vibration analysis of a stadium structure.

Keywords: stadium structure, spectator rhythmical activities, vibration analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2749
3465 Expansion of A Finit Size Partially Ionized Laser-Plasma

Authors: Mohamed Fawzi Mahboub, Mourad Djebli

Abstract:

The expansion mechanism of a partially ionized plasma produced by laser interaction with solid target (copper) is studied. For this purpose we use a hydrodynamical model which includes a source term combined with Saha's equation. The obtained self-similar solution in the limit of quasi-neutrality shows that the expansion, at the earlier stage, is driven by the combination of thermal pressure and electrostatic potential. They are of the same magnitude. The initial ionized fraction and the temperature are the leading parameters of the expanding profiles,

Keywords: expansion, quasi-neutral, laser-ablated plasma, self- similar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1259
3464 Application of the Piloting Law Based on Adaptive Differentiators via Second Order Sliding Mode for a Fixed Wing Aircraft

Authors: Zaouche Mohammed, Amini Mohammed, Foughali Khaled, Hamissi Aicha, Aktouf Mohand Arezki, Boureghda Ilyes

Abstract:

In this paper, we present a piloting law based on the adaptive differentiators via high order sliding mode controller, by using an aircraft in virtual simulated environment. To deal with the design of an autopilot controller, we propose a framework based on Software in the Loop (SIL) methodology and we use MicrosoftTM Flight Simulator (FS-2004) as the environment for plane simulation. The aircraft dynamic model is nonlinear, Multi-Input Multi-Output (MIMO) and tightly coupled. The nonlinearity resides in the dynamic equations and also in the aerodynamic coefficients' variability. In our case, two (02) aircrafts are used in the flight tests, the Zlin-142 and MQ-1 Predator. For both aircrafts and in a very low altitude flight, we send the piloting control inputs to the aircraft which has stalled due to a command disconnection. Then, we present the aircraft’s dynamic behavior analysis while reestablishing the command transmission. Finally, a comparative study between the two aircraft’s dynamic behaviors is presented.

Keywords: Adaptive differentiators, Microsoft Flight Simulator, MQ-1 predator, second order sliding modes, Zlin-142.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1180
3463 Numerical Solution of Manning's Equation in Rectangular Channels

Authors: Abdulrahman Abdulrahman

Abstract:

When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.

Keywords: Channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2190
3462 Movies and Dynamic Mathematical Objects on Trigonometry for Mobile Phones

Authors: Kazuhisa Takagi

Abstract:

This paper is about movies and dynamic objects for mobile phones. Dynamic objects are the software programmed by JavaScript. They consist of geometric figures and work on HTML5-compliant browsers. Mobile phones are very popular among teenagers. They like watching movies and playing games on them. So, mathematics movies and dynamic objects would enhance teaching and learning processes. In the movies, manga characters speak with artificially synchronized voices. They teach trigonometry together with dynamic mathematical objects. Many movies are created. They are Windows Media files or MP4 movies. These movies and dynamic objects are not only used in the classroom but also distributed to students. By watching movies, students can study trigonometry before or after class.

Keywords: Dynamic mathematical object, JavaScript, Google drive, transfer jet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 958
3461 Online Prediction of Nonlinear Signal Processing Problems Based Kernel Adaptive Filtering

Authors: Hamza Nejib, Okba Taouali

Abstract:

This paper presents two of the most knowing kernel adaptive filtering (KAF) approaches, the kernel least mean squares and the kernel recursive least squares, in order to predict a new output of nonlinear signal processing. Both of these methods implement a nonlinear transfer function using kernel methods in a particular space named reproducing kernel Hilbert space (RKHS) where the model is a linear combination of kernel functions applied to transform the observed data from the input space to a high dimensional feature space of vectors, this idea known as the kernel trick. Then KAF is the developing filters in RKHS. We use two nonlinear signal processing problems, Mackey Glass chaotic time series prediction and nonlinear channel equalization to figure the performance of the approaches presented and finally to result which of them is the adapted one.

Keywords: KLMS, online prediction, KAF, signal processing, RKHS, Kernel methods, KRLS, KLMS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009
3460 A Deterministic Dynamic Programming Approach for Optimization Problem with Quadratic Objective Function and Linear Constraints

Authors: S. Kavitha, Nirmala P. Ratchagar

Abstract:

This paper presents the novel deterministic dynamic programming approach for solving optimization problem with quadratic objective function with linear equality and inequality constraints. The proposed method employs backward recursion in which computations proceeds from last stage to first stage in a multi-stage decision problem. A generalized recursive equation which gives the exact solution of an optimization problem is derived in this paper. The method is purely analytical and avoids the usage of initial solution. The feasibility of the proposed method is demonstrated with a practical example. The numerical results show that the proposed method provides global optimum solution with negligible computation time.

Keywords: Backward recursion, Dynamic programming, Multi-stage decision problem, Quadratic objective function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3544
3459 The Nematode Fauna Dynamics Peculiarities of Highlands Different Ecosystems (Eastern Georgia)

Authors: E. Tskitishvili, I. Eliava, T. Tskitishvili, N. Bagathuria, L. Zghenti, M. Gigolashvili

Abstract:

There was studied dynamic of the number of nematodes fauna of various ecosystems of Gombori Mountain Ridge that belongs to peak of fauna dynamic. The nature of dynamic is in general similar in all six biotypes and the difference is evident only in total number of nematodes.

Keywords: Nematoda, dynamic, highland, ecosystem

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1291
3458 Structural Safety Evaluation of Zip-Line Due to Dynamic Impact Load

Authors: Bu Seog Ju, Jae Sang Kim, Woo Young Jung

Abstract:

In recent year, with recent increase of interest towards leisure sports, increased number of Zip-Line or Zip-Wire facilities has built. Many researches have been actively conducted on the emphasis of the cable and the wire at the bridge. However, very limited researches have been conducted on the safety of the Zip-Line structure. In fact, fall accidents from Zip-Line have been reported frequently. Therefore, in this study, the structural safety of Zip-Line under dynamic impact loading condition were evaluated on the previously installed steel cable for leisure (Zip-Line), using 3-dimensional nonlinear Finite Element (FE) model. The result from current study would assist assurance of systematic stability of Zip-Line.

Keywords: Zip-Line, Wire, Cable, 3D FE Model, Safety.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4028
3457 A Numerical Model for Studying Convectional Lifting Processes in the Tropics

Authors: Chantawan Noisri, Robert Harold Buchanan Exell

Abstract:

A simple model for studying convectional lifting processes in the tropics is described in this paper with some tests of the model in dry air. The model consists of the density equation, the wind equation, the vertical velocity equation, and the temperature equation. The model domain is two-dimensional with length 100 km and height 17.5 km. Plan for experiments to investigate the effects of the heating surface, the deep convection approximation and the treatment of velocities at the boundaries are discussed. Equations for the simplified treatment of moisture in the atmosphere in future numerical experiments are also given.

Keywords: Numerical weather prediction, Finite differences, Convection lifting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
3456 Fuzzy PID Controller with Coupled Rules for a Nonlinear Quarter Car Model

Authors: Şaban Çetin, Özgür Demir

Abstract:

In this study, Fuzzy PID Control scheme is designed for an active suspension system. The main goal of an active suspension system for using in a vehicle model is reducing body deflections and handling high comfort for a passenger car. The present system was modelled as a two-degree-of-freedom (2-DOF) nonlinear vehicle model.

Keywords: Active suspension system, Fuzzy PID controller, a nonlinear quarter car model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2344